1
|
Gras K, Fange D, Elf J. The Escherichia coli chromosome moves to the replisome. Nat Commun 2024; 15:6018. [PMID: 39019870 PMCID: PMC11255300 DOI: 10.1038/s41467-024-50047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/28/2024] [Indexed: 07/19/2024] Open
Abstract
In Escherichia coli, it is debated whether the two replisomes move independently along the two chromosome arms during replication or if they remain spatially confined. Here, we use high-throughput fluorescence microscopy to simultaneously determine the location and short-time-scale (1 s) movement of the replisome and a chromosomal locus throughout the cell cycle. The assay is performed for several loci. We find that (i) the two replisomes are confined to a region of ~250 nm and ~120 nm along the cell's long and short axis, respectively, (ii) the chromosomal loci move to and through this region sequentially based on their distance from the origin of replication, and (iii) when a locus is being replicated, its short time-scale movement slows down. This behavior is the same at different growth rates. In conclusion, our data supports a model with DNA moving towards spatially confined replisomes at replication.
Collapse
Affiliation(s)
- Konrad Gras
- Dept. of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - David Fange
- Dept. of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Johan Elf
- Dept. of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Cornet F, Blanchais C, Dusfour-Castan R, Meunier A, Quebre V, Sekkouri Alaoui H, Boudsoq F, Campos M, Crozat E, Guynet C, Pasta F, Rousseau P, Ton Hoang B, Bouet JY. DNA Segregation in Enterobacteria. EcoSal Plus 2023; 11:eesp00382020. [PMID: 37220081 PMCID: PMC10729935 DOI: 10.1128/ecosalplus.esp-0038-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/13/2023] [Indexed: 01/28/2024]
Abstract
DNA segregation ensures that cell offspring receive at least one copy of each DNA molecule, or replicon, after their replication. This important cellular process includes different phases leading to the physical separation of the replicons and their movement toward the future daughter cells. Here, we review these phases and processes in enterobacteria with emphasis on the molecular mechanisms at play and their controls.
Collapse
Affiliation(s)
- François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Corentin Blanchais
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Romane Dusfour-Castan
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Alix Meunier
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Valentin Quebre
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Hicham Sekkouri Alaoui
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - François Boudsoq
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Manuel Campos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Estelle Crozat
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Franck Pasta
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Bao Ton Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| |
Collapse
|
3
|
Sadhir I, Murray SM. Mid-cell migration of the chromosomal terminus is coupled to origin segregation in Escherichia coli. Nat Commun 2023; 14:7489. [PMID: 37980336 PMCID: PMC10657355 DOI: 10.1038/s41467-023-43351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Bacterial chromosomes are dynamically and spatially organised within cells. In slow-growing Escherichia coli, the chromosomal terminus is initially located at the new pole and must therefore migrate to midcell during replication to reproduce the same pattern in the daughter cells. Here, we use high-throughput time-lapse microscopy to quantify this transition, its timing and its relationship to chromosome segregation. We find that terminus centralisation is a rapid discrete event that occurs ~25 min after initial separation of duplicated origins and ~50 min before the onset of bulk nucleoid segregation but with substantial variation between cells. Despite this variation, its movement is tightly coincident with the completion of origin segregation, even in the absence of its linkage to the divisome, suggesting a coupling between these two events. Indeed, we find that terminus centralisation does not occur if origin segregation away from mid-cell is disrupted, which results in daughter cells having an inverted chromosome organisation. Overall, our study quantifies the choreography of origin-terminus positioning and identifies an unexplored connection between these loci, furthering our understanding of chromosome segregation in this bacterium.
Collapse
Affiliation(s)
- Ismath Sadhir
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Microcosm Earth Center, Max Planck Institute for Terrestrial Microbiology and Philipps-Universität Marburg, Marburg, Germany
| | - Seán M Murray
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| |
Collapse
|
4
|
Wang S, Chen X, Jin X, Gu F, Jiang W, Qi Q, Liang Q. Creating Polyploid Escherichia Coli and Its Application in Efficient L-Threonine Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302417. [PMID: 37749873 PMCID: PMC10625114 DOI: 10.1002/advs.202302417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Indexed: 09/27/2023]
Abstract
Prokaryotic genomes are generally organized in haploid. In synthetic biological research, efficient chassis cells must be constructed to produce bio-based products. Here, the essential division of the ftsZ gene to create functional polyploid E. coli is regulated. The artificial polyploid E. coli containing 2-4 chromosomes is confirmed through PCR amplification, terminator localization, and flow cytometry. The polyploid E. coli exhibits a larger cell size, and its low pH tolerance and acetate resistance are stronger than those of haploid E. coli. Transcriptome analysis shows that the genes of the cell's main functional pathways are significantly upregulated in the polyploid E. coli. These advantages of the polyploid E. coli results in the highest reported L-threonine yield (160.3 g L-1 ) in fed-batch fermentation to date. In summary, an easy and convenient method for constructing polyploid E. coli and demonstrated its application in L-threonine production is developed. This work provides a new approach for creating an excellent host strain for biochemical production and studying the evolution of prokaryotes and their chromosome functions.
Collapse
Affiliation(s)
- Sumeng Wang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Xuanmu Chen
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Xin Jin
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Fei Gu
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Wei Jiang
- Research Center of Basic MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinan250013P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Quanfeng Liang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| |
Collapse
|
5
|
Knöppel A, Broström O, Gras K, Elf J, Fange D. Regulatory elements coordinating initiation of chromosome replication to the Escherichia coli cell cycle. Proc Natl Acad Sci U S A 2023; 120:e2213795120. [PMID: 37220276 PMCID: PMC10235992 DOI: 10.1073/pnas.2213795120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 04/07/2023] [Indexed: 05/25/2023] Open
Abstract
Escherichia coli coordinates replication and division cycles by initiating replication at a narrow range of cell sizes. By tracking replisomes in individual cells through thousands of division cycles in wild-type and mutant strains, we were able to compare the relative importance of previously described control systems. We found that accurate triggering of initiation does not require synthesis of new DnaA. The initiation size increased only marginally as DnaA was diluted by growth after dnaA expression had been turned off. This suggests that the conversion of DnaA between its active ATP- and inactive ADP-bound states is more important for initiation size control than the total free concentration of DnaA. In addition, we found that the known ATP/ADP converters DARS and datA compensate for each other, although the removal of them makes the initiation size more sensitive to the concentration of DnaA. Only disruption of the regulatory inactivation of DnaA mechanism had a radical impact on replication initiation. This result was corroborated by the finding that termination of one round of replication correlates with the next initiation at intermediate growth rates, as would be the case if RIDA-mediated conversion from DnaA-ATP to DnaA-ADP abruptly stops at termination and DnaA-ATP starts accumulating.
Collapse
Affiliation(s)
- Anna Knöppel
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala75124, Sweden
| | - Oscar Broström
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala75124, Sweden
| | - Konrad Gras
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala75124, Sweden
| | - Johan Elf
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala75124, Sweden
| | - David Fange
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala75124, Sweden
| |
Collapse
|
6
|
Kaljević J, Saaki TNV, Govers SK, Remy O, van Raaphorst R, Lamot T, Laloux G. Chromosome choreography during the non-binary cell cycle of a predatory bacterium. Curr Biol 2021; 31:3707-3720.e5. [PMID: 34256020 PMCID: PMC8445325 DOI: 10.1016/j.cub.2021.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/13/2021] [Accepted: 06/09/2021] [Indexed: 12/03/2022]
Abstract
In bacteria, the dynamics of chromosome replication and segregation are tightly coordinated with cell-cycle progression and largely rely on specific spatiotemporal arrangement of the chromosome. Whereas these key processes are mostly investigated in species that divide by binary fission, they remain mysterious in bacteria producing larger number of descendants. Here, we establish the predatory bacterium Bdellovibrio bacteriovorus as a model to investigate the non-binary processing of a circular chromosome. We found that its single chromosome is highly compacted in a polarized nucleoid that excludes freely diffusing proteins during the non-proliferative stage of the cell cycle. A binary-like cycle of DNA replication and asymmetric segregation is followed by multiple asynchronous rounds of replication and progressive ParABS-dependent partitioning, uncoupled from cell division. Finally, we provide the first evidence for an on-off behavior of the ParB protein, which localizes at the centromere in a cell-cycle-regulated manner. Altogether, our findings support a model of complex chromosome choreography leading to the generation of variable, odd, or even numbers of offspring and highlight the adaptation of conserved mechanisms to achieve non-binary reproduction. The Bdellovibrio chromosome is polarized, with ori located near the invasive pole The highly compacted nucleoid excludes cytosolic proteins in non-replicative cells Replication and segregation of chromosomes are uncoupled from cell division The centromeric protein ParB localizes at parS in a cell-cycle-dependent manner
Collapse
Affiliation(s)
- Jovana Kaljević
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Terrens N V Saaki
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Sander K Govers
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ophélie Remy
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | | | - Thomas Lamot
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium.
| |
Collapse
|
7
|
Birnie A, Dekker C. Genome-in-a-Box: Building a Chromosome from the Bottom Up. ACS NANO 2021; 15:111-124. [PMID: 33347266 PMCID: PMC7844827 DOI: 10.1021/acsnano.0c07397] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/16/2020] [Indexed: 05/24/2023]
Abstract
Chromosome structure and dynamics are essential for life, as the way that our genomes are spatially organized within cells is crucial for gene expression, differentiation, and genome transfer to daughter cells. There is a wide variety of methods available to study chromosomes, ranging from live-cell studies to single-molecule biophysics, which we briefly review. While these technologies have yielded a wealth of data, such studies still leave a significant gap between top-down experiments on live cells and bottom-up in vitro single-molecule studies of DNA-protein interactions. Here, we introduce "genome-in-a-box" (GenBox) as an alternative in vitro approach to build and study chromosomes, which bridges this gap. The concept is to assemble a chromosome from the bottom up by taking deproteinated genome-sized DNA isolated from live cells and subsequently add purified DNA-organizing elements, followed by encapsulation in cell-sized containers using microfluidics. Grounded in the rationale of synthetic cell research, the approach would enable to experimentally study emergent effects at the global genome level that arise from the collective action of local DNA-structuring elements. We review the various DNA-structuring elements present in nature, from nucleoid-associated proteins and SMC complexes to phase separation and macromolecular crowders. Finally, we discuss how GenBox can contribute to several open questions on chromosome structure and dynamics.
Collapse
Affiliation(s)
- Anthony Birnie
- Department of Bionanoscience, Kavli
Institute of Nanoscience Delft, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli
Institute of Nanoscience Delft, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
8
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
9
|
Laloux G. Shedding Light on the Cell Biology of the Predatory Bacterium Bdellovibrio bacteriovorus. Front Microbiol 2020; 10:3136. [PMID: 32038570 PMCID: PMC6985089 DOI: 10.3389/fmicb.2019.03136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022] Open
Abstract
Bdellovibrio bacteriovorus is a predatory bacterium that feeds upon and proliferates inside other Gram-negative bacteria. Upon entry into the periplasmic space of the prey envelope, B. bacteriovorus initiates an exquisite developmental program in which it digests the host resources and grows as a filament, which eventually divides in a non-binary manner, releasing a variable number of daughter cells. The progeny then escape from the prey ghost to encounter new victims and resume the predation cycle. Owing to its unique biology, B. bacteriovorus undoubtedly represents an attractive model to unravel novel mechanisms of bacterial cell cycle control and cellular organization. Yet, the molecular factors behind the sophisticated lifestyle of this micro-predator are still mysterious. In particular, the spatiotemporal dynamics of proteins that control key cellular processes such as transmission of the genetic information, cell growth and division remain largely unexplored. In this Perspective article, I highlight outstanding fundamental questions related to these aspects and arising from the original biology of this bacterium. I also discuss available insights and potential cell biology approaches based on quantitative live imaging techniques, in combination with bacterial genetics and biochemistry, to shed light on the intracellular organization of B. bacteriovorus in space and time.
Collapse
Affiliation(s)
- Géraldine Laloux
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
10
|
Endesfelder U. From single bacterial cell imaging towards in vivo single-molecule biochemistry studies. Essays Biochem 2019; 63:187-196. [PMID: 31197072 PMCID: PMC6610453 DOI: 10.1042/ebc20190002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
Bacteria as single-cell organisms are important model systems to study cellular mechanisms and functions. In recent years and with the help of advanced fluorescence microscopy techniques, immense progress has been made in characterizing and quantifying the behavior of single bacterial cells on the basis of molecular interactions and assemblies in the complex environment of live cultures. Importantly, single-molecule imaging enables the in vivo determination of the stoichiometry and molecular architecture of subcellular structures, yielding detailed, quantitative, spatiotemporally resolved molecular maps and unraveling dynamic heterogeneities and subpopulations on the subcellular level. Nevertheless, open challenges remain. Here, we review the past and current status of the field, discuss example applications and give insights into future trends.
Collapse
Affiliation(s)
- Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
11
|
Characterisation of ParB encoded on multipartite genome in Deinococcus radiodurans and their roles in radioresistance. Microbiol Res 2019; 223-225:22-32. [DOI: 10.1016/j.micres.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/27/2019] [Accepted: 03/16/2019] [Indexed: 01/05/2023]
|
12
|
Trojanowski D, Hołówka J, Zakrzewska-Czerwińska J. Where and When Bacterial Chromosome Replication Starts: A Single Cell Perspective. Front Microbiol 2018; 9:2819. [PMID: 30534115 PMCID: PMC6275241 DOI: 10.3389/fmicb.2018.02819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022] Open
Abstract
Bacterial chromosomes have a single, unique replication origin (named oriC), from which DNA synthesis starts. This study describes methods of visualizing oriC regions and the chromosome replication in single living bacterial cells in real-time. This review also discusses the impact of live cell imaging techniques on understanding of chromosome replication dynamics, particularly at the initiation step, in different species of bacteria.
Collapse
Affiliation(s)
- Damian Trojanowski
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Joanna Hołówka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
13
|
Observing DNA in live cells. Biochem Soc Trans 2018; 46:729-740. [PMID: 29871877 DOI: 10.1042/bst20170301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/26/2018] [Accepted: 05/01/2018] [Indexed: 12/17/2022]
Abstract
The structural organization and dynamics of DNA are known to be of paramount importance in countless cellular processes, but capturing these events poses a unique challenge. Fluorescence microscopy is well suited for these live-cell investigations, but requires attaching fluorescent labels to the species under investigation. Over the past several decades, a suite of techniques have been developed for labeling and imaging DNA, each with various advantages and drawbacks. Here, we provide an overview of the labeling and imaging tools currently available for visualizing DNA in live cells, and discuss their suitability for various applications.
Collapse
|
14
|
Chromosome segregation drives division site selection in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2017; 114:E5959-E5968. [PMID: 28674002 DOI: 10.1073/pnas.1620608114] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accurate spatial and temporal positioning of the tubulin-like protein FtsZ is key for proper bacterial cell division. Streptococcus pneumoniae (pneumococcus) is an oval-shaped, symmetrically dividing opportunistic human pathogen lacking the canonical systems for division site control (nucleoid occlusion and the Min-system). Recently, the early division protein MapZ was identified and implicated in pneumococcal division site selection. We show that MapZ is important for proper division plane selection; thus, the question remains as to what drives pneumococcal division site selection. By mapping the cell cycle in detail, we show that directly after replication both chromosomal origin regions localize to the future cell division sites, before FtsZ. Interestingly, Z-ring formation occurs coincidently with initiation of DNA replication. Perturbing the longitudinal chromosomal organization by mutating the condensin SMC, by CRISPR/Cas9-mediated chromosome cutting, or by poisoning DNA decatenation resulted in mistiming of MapZ and FtsZ positioning and subsequent cell elongation. Together, we demonstrate an intimate relationship between DNA replication, chromosome segregation, and division site selection in the pneumococcus, providing a simple way to ensure equally sized daughter cells.
Collapse
|
15
|
Pankert T, Jegou T, Caudron-Herger M, Rippe K. Tethering RNA to chromatin for fluorescence microscopy based analysis of nuclear organization. Methods 2017; 123:89-101. [DOI: 10.1016/j.ymeth.2017.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022] Open
|
16
|
Singhi D, Jain A, Srivastava P. Localization of Low Copy Number Plasmid pRC4 in Replicating Rod and Non-Replicating Cocci Cells of Rhodococcus erythropolis PR4. PLoS One 2016; 11:e0166491. [PMID: 27935968 PMCID: PMC5148583 DOI: 10.1371/journal.pone.0166491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/28/2016] [Indexed: 11/18/2022] Open
Abstract
Rhodococcus are gram-positive bacteria, which can exist in two different shapes rod and cocci. A number of studies have been done in the past on replication and stability of small plasmids in this bacterium; however, there are no reports on spatial localization and segregation of these plasmids. In the present study, a low copy number plasmid pDS3 containing pRC4 replicon was visualized in growing cells of Rhodococcus erythropolis PR4 (NBRC100887) using P1 parS-ParB-GFP system. Cells were initially cocci and then became rod shaped in exponential phase. Cocci cells were found to be non-replicating as evident by the presence of single fluorescence focus corresponding to the plasmid and diffuse fluorescence of DnaB-GFP. Rod shaped cells contained plasmid either present as one fluorescent focus observed at the cell center or two foci localized at quarter positions. The results suggest that the plasmid is replicated at the cell center and then it goes to quarter position. In order to observe the localization of plasmid with respect to nucleoid, plasmid segregation was also studied in filaments where it was found to be replicated at the cell center in a nucleoid free region. To the best of our knowledge, this is the first report on segregation of small plasmids in R. erythropolis.
Collapse
Affiliation(s)
- Divya Singhi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India
| | - Aayushi Jain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India
- * E-mail: ,
| |
Collapse
|
17
|
Affiliation(s)
- Ido Golding
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030;
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
18
|
Structures of the nucleoid occlusion protein SlmA bound to DNA and the C-terminal domain of the cytoskeletal protein FtsZ. Proc Natl Acad Sci U S A 2016; 113:4988-93. [PMID: 27091999 DOI: 10.1073/pnas.1602327113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell division in most prokaryotes is mediated by FtsZ, which polymerizes to create the cytokinetic Z ring. Multiple FtsZ-binding proteins regulate FtsZ polymerization to ensure the proper spatiotemporal formation of the Z ring at the division site. The DNA-binding protein SlmA binds to FtsZ and prevents Z-ring formation through the nucleoid in a process called "nucleoid occlusion" (NO). As do most FtsZ-accessory proteins, SlmA interacts with the conserved C-terminal domain (CTD) that is connected to the FtsZ core by a long, flexible linker. However, SlmA is distinct from other regulatory factors in that it must be DNA-bound to interact with the FtsZ CTD. Few structures of FtsZ regulator-CTD complexes are available, but all reveal the CTD bound as a helix. To deduce the molecular basis for the unique SlmA-DNA-FtsZ CTD regulatory interaction and provide insight into FtsZ-regulator protein complex formation, we determined structures of Escherichia coli, Vibrio cholera, and Klebsiella pneumonia SlmA-DNA-FtsZ CTD ternary complexes. Strikingly, the FtsZ CTD does not interact with SlmA as a helix but binds as an extended conformation in a narrow, surface-exposed pocket formed only in the DNA-bound state of SlmA and located at the junction between the DNA-binding and C-terminal dimer domains. Binding studies are consistent with the structure and underscore key interactions in complex formation. Combined, these data reveal the molecular basis for the SlmA-DNA-FtsZ interaction with implications for SlmA's NO function and underscore the ability of the FtsZ CTD to adopt a wide range of conformations, explaining its ability to bind diverse regulatory proteins.
Collapse
|
19
|
Miura T, Nishizawa A, Nishizawa T, Asayama M, Shirai M. Actinophage R4 integrase-based site-specific chromosomal integration of non-replicative closed circular DNA. J Basic Microbiol 2016; 56:635-44. [PMID: 26870903 DOI: 10.1002/jobm.201500658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/27/2016] [Indexed: 11/07/2022]
Abstract
The actinophage R4 integrase (Sre)-based molecular genetic engineering system was developed for the chromosomal integration of multiple genes in Escherichia coli. A cloned DNA fragment containing two attP sites, green fluorescent protein (gfp) as a first transgene, and an antibiotic resistance gene as a selection marker was self-ligated to generate non-replicative closed circular DNA (nrccDNA) for integration. nrccDNA was introduced into attB-inserted E. coli cells harboring the plasmid expressing Sre by electroporation. The expressed Sre catalyzed site-specific integration between one of the two attP sites on nrccDNA and the attB site on the E. coli chromosome. The integration frequency was affected by the chromosomal location of the target site. A second nrccDNA containing two attB sites, lacZα encoding the alpha fragment of β-galactosidase as a transgene, and another antibiotic resistance gene was integrated into the residual attP site on the gfp-integrated E. coli chromosome via one of the two attB sites according to reiterating site-specific recombination. The integrants clearly exhibited β-galactosidase activity and green fluorescence, suggesting the simultaneous expression of multiple recombinant proteins in E. coli. The results of the present study showed that a step-by-step integration procedure using nrccDNA achieved the chromosomal integration of multiple genes.
Collapse
Affiliation(s)
- Takamasa Miura
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Bioresource Science, Ibaraki University College of Agriculture, Ibaraki, Japan
| | - Akito Nishizawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Bioresource Science, Ibaraki University College of Agriculture, Ibaraki, Japan
| | - Tomoyasu Nishizawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Bioresource Science, Ibaraki University College of Agriculture, Ibaraki, Japan
| | - Munehiko Asayama
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Bioresource Science, Ibaraki University College of Agriculture, Ibaraki, Japan
| | - Makoto Shirai
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Bioresource Science, Ibaraki University College of Agriculture, Ibaraki, Japan
| |
Collapse
|
20
|
PprA Protein Is Involved in Chromosome Segregation via Its Physical and Functional Interaction with DNA Gyrase in Irradiated Deinococcus radiodurans Bacteria. mSphere 2016; 1:mSphere00036-15. [PMID: 27303692 PMCID: PMC4863600 DOI: 10.1128/msphere.00036-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022] Open
Abstract
D. radiodurans is one of the most radiation-resistant organisms known. This bacterium is able to cope with high levels of DNA lesions generated by exposure to extreme doses of ionizing radiation and to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Here, we identified partners of PprA, a radiation-induced Deinococcus-specific protein, previously shown to be required for radioresistance. Our study leads to three main findings: (i) PprA interacts with DNA gyrase after irradiation, (ii) treatment of cells with novobiocin results in defects in chromosome segregation that are aggravated by the absence of PprA, and (iii) PprA stimulates the decatenation activity of DNA gyrase. Our results extend the knowledge of how D. radiodurans cells survive exposure to extreme doses of gamma irradiation and point out the link between DNA repair, chromosome segregation, and DNA gyrase activities in the radioresistant D. radiodurans bacterium. PprA, a radiation-induced Deinococcus-specific protein, was previously shown to be required for cell survival and accurate chromosome segregation after exposure to ionizing radiation. Here, we used an in vivo approach to determine, by shotgun proteomics, putative PprA partners coimmunoprecipitating with PprA when cells were exposed to gamma rays. Among them, we found the two subunits of DNA gyrase and, thus, chose to focus our work on characterizing the activities of the deinococcal DNA gyrase in the presence or absence of PprA. Loss of PprA rendered cells hypersensitive to novobiocin, an inhibitor of the B subunit of DNA gyrase. We showed that treatment of bacteria with novobiocin resulted in induction of the radiation desiccation response (RDR) regulon and in defects in chromosome segregation that were aggravated by the absence of PprA. In vitro, the deinococcal DNA gyrase, like other bacterial DNA gyrases, possesses DNA negative supercoiling and decatenation activities. These two activities are inhibited in vitro by novobiocin and nalidixic acid, whereas PprA specifically stimulates the decatenation activity of DNA gyrase. Together, these results suggest that PprA plays a major role in chromosome decatenation via its interaction with the deinococcal DNA gyrase when D. radiodurans cells are recovering from exposure to ionizing radiation. IMPORTANCED. radiodurans is one of the most radiation-resistant organisms known. This bacterium is able to cope with high levels of DNA lesions generated by exposure to extreme doses of ionizing radiation and to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Here, we identified partners of PprA, a radiation-induced Deinococcus-specific protein, previously shown to be required for radioresistance. Our study leads to three main findings: (i) PprA interacts with DNA gyrase after irradiation, (ii) treatment of cells with novobiocin results in defects in chromosome segregation that are aggravated by the absence of PprA, and (iii) PprA stimulates the decatenation activity of DNA gyrase. Our results extend the knowledge of how D. radiodurans cells survive exposure to extreme doses of gamma irradiation and point out the link between DNA repair, chromosome segregation, and DNA gyrase activities in the radioresistant D. radiodurans bacterium.
Collapse
|
21
|
Abstract
How is the bacterial chromosome organized within the bacterial cell? Over the last 60 years, a variety of approaches have been used to investigate this question. More recently, the parallel development of epifluorescence microscopy and genetic tools has enabled the direct visualization of the intracellular positioning of DNA sequences in live cells and has consequently revolutionized our view of the architecture of the nucleoid in vivo. In this chapter I present a comprehensive methodology designed to characterize the architecture of the nucleoid DNA and the positioning of specific DNA sequences in live Escherichia coli cells. DNA localization systems, preparation of stable agarose-mounted microscopy slides, and basic image analysis tools are mentioned.
Collapse
Affiliation(s)
- Christian Lesterlin
- MMSB - Molecular Microbiology and Structural Biochemistry, Université Lyon 1, CNRS, UMR 5086, 7 Passage du Vercors, 69 367, Lyon Cedex 07, France.
| | - Nelly Duabrry
- MMSB - Molecular Microbiology and Structural Biochemistry, Université Lyon 1, CNRS, UMR 5086, 7 Passage du Vercors, 69 367, Lyon Cedex 07, France.
| |
Collapse
|
22
|
Magnan D, Joshi MC, Barker AK, Visser BJ, Bates D. DNA Replication Initiation Is Blocked by a Distant Chromosome-Membrane Attachment. Curr Biol 2015; 25:2143-9. [PMID: 26255849 DOI: 10.1016/j.cub.2015.06.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/26/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
Abstract
Although it has been recognized for several decades that chromosome structure regulates the capacity of replication origins to initiate, very little is known about how or if cells actively regulate structure to direct initiation. We report that a localized inducible protein tether between the chromosome and cell membrane in E. coli cells imparts a rapid and complete block to replication initiation. Tethers, composed of a trans-membrane and transcription repressor fusion protein bound to an array of operator sequences, can be placed up to 1 Mb from the origin with no loss of penetrance. Tether-induced initiation blocking has no effect on elongation at pre-existing replication forks and does not cause cell or DNA damage. Whole-genome and site-specific fluorescent DNA labeling in tethered cells indicates that global nucleoid structure and chromosome organization are disrupted. Gene expression patterns, assayed by RNA sequencing, show that tethering induces global supercoiling changes, which are likely incompatible with replication initiation. Parallels between tether-induced initiation blocking and rifampicin treatment and the role of programmed changes in chromosome structure in replication control are discussed.
Collapse
Affiliation(s)
- David Magnan
- Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohan C Joshi
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anna K Barker
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bryan J Visser
- Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Bates
- Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA; Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Passot FM, Nguyen HH, Dard-Dascot C, Thermes C, Servant P, Espéli O, Sommer S. Nucleoid organization in the radioresistant bacteriumDeinococcus radiodurans. Mol Microbiol 2015; 97:759-74. [DOI: 10.1111/mmi.13064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Fanny Marie Passot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris Sud; Bâtiment 409 Orsay 91405 France
| | - Hong Ha Nguyen
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris Sud; Bâtiment 409 Orsay 91405 France
| | - Cloelia Dard-Dascot
- Plateforme Intégrée IMAGIF - CNRS; Avenue de la Terrasse; Gif sur Yvette 91198 France
| | - Claude Thermes
- Plateforme Intégrée IMAGIF - CNRS; Avenue de la Terrasse; Gif sur Yvette 91198 France
| | - Pascale Servant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris Sud; Bâtiment 409 Orsay 91405 France
| | - Olivier Espéli
- Center for Interdisciplinary Research In Biology (CIRB); Collège de France; CNRS UMR 7241, INSERM U1050, 11 place Marcelin Berthelot Paris 75005 France
| | - Suzanne Sommer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris Sud; Bâtiment 409 Orsay 91405 France
| |
Collapse
|
24
|
Fossum-Raunehaug S, Helgesen E, Stokke C, Skarstad K. Escherichia coli SeqA structures relocalize abruptly upon termination of origin sequestration during multifork DNA replication. PLoS One 2014; 9:e110575. [PMID: 25333813 PMCID: PMC4204900 DOI: 10.1371/journal.pone.0110575] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/22/2014] [Indexed: 01/23/2023] Open
Abstract
The Escherichia coli SeqA protein forms complexes with new, hemimethylated DNA behind replication forks and is important for successful replication during rapid growth. Here, E. coli cells with two simultaneously replicating chromosomes (multifork DNA replication) and YFP tagged SeqA protein was studied. Fluorescence microscopy showed that in the beginning of the cell cycle cells contained a single focus at midcell. The focus was found to remain relatively immobile at midcell for a period of time equivalent to the duration of origin sequestration. Then, two abrupt relocalization events occurred within 2-6 minutes and resulted in SeqA foci localized at each of the cell's quarter positions. Imaging of cells containing an additional fluorescent tag in the origin region showed that SeqA colocalizes with the origin region during sequestration. This indicates that the newly replicated DNA of first one chromosome, and then the other, is moved from midcell to the quarter positions. At the same time, origins are released from sequestration. Our results illustrate that newly replicated sister DNA is segregated pairwise to the new locations. This mode of segregation is in principle different from that of slowly growing bacteria where the newly replicated sister DNA is partitioned to separate cell halves and the decatenation of sisters a prerequisite for, and possibly a mechanistic part of, segregation.
Collapse
Affiliation(s)
- Solveig Fossum-Raunehaug
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, Oslo, Norway
- School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Emily Helgesen
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, Oslo, Norway
| | - Caroline Stokke
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, Oslo, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, Oslo, Norway
- School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Bakshi S, Dalrymple RM, Li W, Choi H, Weisshaar JC. Partitioning of RNA polymerase activity in live Escherichia coli from analysis of single-molecule diffusive trajectories. Biophys J 2014; 105:2676-86. [PMID: 24359739 DOI: 10.1016/j.bpj.2013.10.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/20/2013] [Accepted: 10/23/2013] [Indexed: 11/28/2022] Open
Abstract
Superresolution fluorescence microscopy is used to locate single copies of RNA polymerase (RNAP) in live Escherichia coli and track their diffusive motion. On a timescale of 0.1-1 s, most copies separate remarkably cleanly into two diffusive states. The "slow" RNAPs, which move indistinguishably from DNA loci, are assigned to specifically bound copies (with fractional population ftrxn) that are initiating transcription, elongating, pausing, or awaiting termination. The "mixed-state" RNAP copies, with effective diffusion constant Dmixed = 0.21 μm(2) s(-1), are assigned as a rapidly exchanging mixture of nonspecifically bound copies (fns) and copies undergoing free, three-dimensional diffusion within the nucleoids (ffree). Longer trajectories of 7-s duration reveal transitions between the slow and mixed states, corroborating the assignments. Short trajectories of 20-ms duration enable direct observation of the freely diffusing RNAP copies, yielding Dfree = 0.7 μm(2) s(-1). Analysis of single-particle trajectories provides quantitative estimates of the partitioning of RNAP into different states of activity: ftrxn = 0.54 ± 0.07, fns = 0.28 ± 0.05, ffree = 0.12 ± 0.03, and fnb = 0.06 ± 0.05 (fraction unable to bind to DNA on a 1-s timescale). These fractions disagree with earlier estimates.
Collapse
Affiliation(s)
- Somenath Bakshi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Renée M Dalrymple
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Wenting Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Heejun Choi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - James C Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin; Molecular Biophysics Program, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
26
|
Deghelt M, Mullier C, Sternon JF, Francis N, Laloux G, Dotreppe D, Van der Henst C, Jacobs-Wagner C, Letesson JJ, De Bolle X. G1-arrested newborn cells are the predominant infectious form of the pathogen Brucella abortus. Nat Commun 2014; 5:4366. [PMID: 25006695 PMCID: PMC4104442 DOI: 10.1038/ncomms5366] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 06/10/2014] [Indexed: 12/15/2022] Open
Abstract
Several intracellular pathogens, such as Brucella abortus, display a biphasic infection process starting with a non-proliferative stage of unclear nature. Here, we study the cell cycle of B. abortus at the single-cell level, in culture and during infection of HeLa cells and macrophages. The localization of segregation and replication loci of the two bacterial chromosomes indicates that, immediately after being engulfed by host-cell endocytic vacuoles, most bacterial cells are newborn. These bacterial cells do not initiate DNA replication for the next 4 to 6 h, indicating a G1 arrest. Moreover, growth is completely stopped during that time, reflecting a global cell cycle block. Growth and DNA replication resume later, although bacteria still reside within endosomal-like compartments. We hypothesize that the predominance of G1-arrested bacteria in the infectious population, and the bacterial cell cycle arrest following internalization, may constitute a widespread strategy among intracellular pathogens to colonize new proliferation niches. Certain pathogenic bacteria such as Brucella abortus undergo a temporary non-proliferative stage after infecting host cells. Here, the authors study chromosomal replication and segregation in B. abortus during infection, showing that the non-proliferative stage consists of G1-arrested newborn cells.
Collapse
Affiliation(s)
- Michaël Deghelt
- 1] Microorganisms biology research unit (URBM), University of Namur (UNamur), Namur, Belgium [2]
| | - Caroline Mullier
- 1] Microorganisms biology research unit (URBM), University of Namur (UNamur), Namur, Belgium [2]
| | - Jean-François Sternon
- Microorganisms biology research unit (URBM), University of Namur (UNamur), Namur, Belgium
| | - Nayla Francis
- Microorganisms biology research unit (URBM), University of Namur (UNamur), Namur, Belgium
| | - Géraldine Laloux
- 1] Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA [2] Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA [3] Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Delphine Dotreppe
- Microorganisms biology research unit (URBM), University of Namur (UNamur), Namur, Belgium
| | - Charles Van der Henst
- Microorganisms biology research unit (URBM), University of Namur (UNamur), Namur, Belgium
| | - Christine Jacobs-Wagner
- 1] Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA [2] Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA [3] Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Jean-Jacques Letesson
- Microorganisms biology research unit (URBM), University of Namur (UNamur), Namur, Belgium
| | - Xavier De Bolle
- Microorganisms biology research unit (URBM), University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
27
|
Intracellular locations of replication proteins and the origin of replication during chromosome duplication in the slowly growing human pathogen Helicobacter pylori. J Bacteriol 2013; 196:999-1011. [PMID: 24363345 DOI: 10.1128/jb.01198-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We followed the position of the replication complex in the pathogenic bacterium Helicobacter pylori using antibodies raised against the single-stranded DNA binding protein (HpSSB) and the replicative helicase (HpDnaB). The position of the replication origin, oriC, was also localized in growing cells by fluorescence in situ hybridization (FISH) with fluorescence-labeled DNA sequences adjacent to the origin. The replisome assembled at oriC near one of the cell poles, and the two forks moved together toward the cell center as replication progressed in the growing cell. Termination and resolution of the forks occurred near midcell, on one side of the septal membrane. The duplicated copies of oriC did not separate until late in elongation, when the daughter chromosomes segregated into bilobed nucleoids, suggesting sister chromatid cohesion at or near the oriC region. Components of the replication machinery, viz., HpDnaB and HpDnaG (DNA primase), were found associated with the cell membrane. A model for the assembly and location of the H. pylori replication machinery during chromosomal duplication is presented.
Collapse
|
28
|
Short-time movement of E. coli chromosomal loci depends on coordinate and subcellular localization. Nat Commun 2013; 4:3003. [DOI: 10.1038/ncomms3003] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/09/2013] [Indexed: 11/08/2022] Open
|
29
|
Cagliero C, Grand RS, Jones MB, Jin DJ, O'Sullivan JM. Genome conformation capture reveals that the Escherichia coli chromosome is organized by replication and transcription. Nucleic Acids Res 2013; 41:6058-71. [PMID: 23632166 PMCID: PMC3695519 DOI: 10.1093/nar/gkt325] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To fit within the confines of the cell, bacterial chromosomes are highly condensed into a structure called the nucleoid. Despite the high degree of compaction in the nucleoid, the genome remains accessible to essential biological processes, such as replication and transcription. Here, we present the first high-resolution chromosome conformation capture-based molecular analysis of the spatial organization of the Escherichia coli nucleoid during rapid growth in rich medium and following an induced amino acid starvation that promotes the stringent response. Our analyses identify the presence of origin and terminus domains in exponentially growing cells. Moreover, we observe an increased number of interactions within the origin domain and significant clustering of SeqA-binding sequences, suggesting a role for SeqA in clustering of newly replicated chromosomes. By contrast, ‘histone-like’ protein (i.e. Fis, IHF and H-NS) -binding sites did not cluster, and their role in global nucleoid organization does not manifest through the mediation of chromosomal contacts. Finally, genes that were downregulated after induction of the stringent response were spatially clustered, indicating that transcription in E. coli occurs at transcription foci.
Collapse
Affiliation(s)
- Cedric Cagliero
- Gene Regulation and Chromosome Biology Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
30
|
Wang X, Montero Llopis P, Rudner DZ. Organization and segregation of bacterial chromosomes. Nat Rev Genet 2013; 14:191-203. [PMID: 23400100 DOI: 10.1038/nrg3375] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bacterial chromosome must be compacted more than 1,000-fold to fit into the compartment in which it resides. How it is condensed, organized and ultimately segregated has been a puzzle for over half a century. Recent advances in live-cell imaging and genome-scale analyses have led to new insights into these problems. We argue that the key feature of compaction is the orderly folding of DNA along adjacent segments and that this organization provides easy and efficient access for protein-DNA transactions and has a central role in driving segregation. Similar principles and common proteins are used in eukaryotes to condense and to resolve sister chromatids at metaphase.
Collapse
Affiliation(s)
- Xindan Wang
- Harvard Medical School, Department of Microbiology and Immunobiology, HIM 1025, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
31
|
Chen AH, Afonso B, Silver PA, Savage DF. Spatial and temporal organization of chromosome duplication and segregation in the cyanobacterium Synechococcus elongatus PCC 7942. PLoS One 2012; 7:e47837. [PMID: 23112856 PMCID: PMC3480399 DOI: 10.1371/journal.pone.0047837] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/21/2012] [Indexed: 01/02/2023] Open
Abstract
The spatial and temporal control of chromosome duplication and segregation is crucial for proper cell division. While this process is well studied in eukaryotic and some prokaryotic organisms, relatively little is known about it in prokaryotic polyploids such as Synechococcus elongatus PCC 7942, which is known to possess one to eight copies of its single chromosome. Using a fluorescent repressor-operator system, S. elongatus chromosomes and chromosome replication forks were tagged and visualized. We found that chromosomal duplication is asynchronous and that the total number of chromosomes is correlated with cell length. Thus, replication is independent of cell cycle and coupled to cell growth. Replication events occur in a spatially random fashion. However, once assembled, replisomes move in a constrained manner. On the other hand, we found that segregation displays a striking spatial organization in some cells. Chromosomes transiently align along the major axis of the cell and timing of alignment was correlated to cell division. This mechanism likely contributes to the non-random segregation of chromosome copies to daughter cells.
Collapse
Affiliation(s)
- Anna H. Chen
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bruno Afonso
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - David F. Savage
- Department of Molecular and Cell Biology and Department of Chemistry, University of California, Berkeley, California, United States of America
| |
Collapse
|
32
|
A MatP-divisome interaction coordinates chromosome segregation with cell division in E. coli. EMBO J 2012; 31:3198-211. [PMID: 22580828 DOI: 10.1038/emboj.2012.128] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 04/12/2012] [Indexed: 11/09/2022] Open
Abstract
Initiation of chromosome segregation in bacteria is achieved by proteins acting near the origin of replication. Here, we report that the precise choreography of the terminus region of the Escherichia coli chromosome is also tightly controlled. The segregation of the terminus (Ter) macrodomain (MD) involves the structuring factor MatP. We characterized that migration of the Ter MD from the new pole to mid-cell and its subsequent persistent localization at mid-cell relies on several processes. First, the replication of the Ter DNA is concomitant with its recruitment from the new pole to mid-cell in a sequential order correlated with the position on the genetic map. Second, using a strain carrying a linear chromosome with the Ter MD split in two parts, we show that replisomes are repositioned at mid-cell when replication of the Ter occurs. Third, we demonstrate that anchoring the Ter MD at mid-cell depends on the specific interaction of MatP with the division apparatus-associated protein ZapB. Our results reveal how segregation of the Ter MD is integrated in the cell-cycle control.
Collapse
|
33
|
Hong SH, McAdams HH. Compaction and transport properties of newly replicated Caulobacter crescentus DNA. Mol Microbiol 2011; 82:1349-58. [DOI: 10.1111/j.1365-2958.2011.07899.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Buenemann M, Lenz P. Geometrical ordering of DNA in bacteria. Commun Integr Biol 2011; 4:291-3. [PMID: 21980561 DOI: 10.4161/cib.4.3.14891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 01/21/2011] [Indexed: 12/20/2022] Open
Abstract
The bacterium Caulobacter crescentus shows a remarkable spatial ordering of its chromosome that leads to a strong linear correlation between the position of genes on the chromosomal map and their spatial position in the cellular volume. In a recent study we have shown that a robust and universal geometrical ordering mechanism can explain this correlation. We demonstrated that self-avoidance of DNA, specific positioning of one or few DNA loci (such as origin or terminus) together with the action of DNA compaction proteins (that organize the chromosome into topological domains) are sufficient to get a linear arrangement of the chromosome along the cell axis. This configuration, however, only represents the population average. Individual cells can have DNA arrangements that deviate significantly from the mean configuration and that break left-right symmetry. Symmetry breaking is stronger for longer chromosomes.
Collapse
Affiliation(s)
- Mathias Buenemann
- Fachbereich Physik and Zentrum für Synthetische Mikrobiologie; Philipps-Universität Marburg; Marburg, Germany
| | | |
Collapse
|
35
|
Meile JC, Mercier R, Stouf M, Pages C, Bouet JY, Cornet F. The terminal region of the E. coli chromosome localises at the periphery of the nucleoid. BMC Microbiol 2011; 11:28. [PMID: 21288323 PMCID: PMC3040692 DOI: 10.1186/1471-2180-11-28] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/02/2011] [Indexed: 11/23/2022] Open
Abstract
Background Bacterial chromosomes are organised into a compact and dynamic structures termed nucleoids. Cytological studies in model rod-shaped bacteria show that the different regions of the chromosome display distinct and specific sub-cellular positioning and choreographies during the course of the cell cycle. The localisation of chromosome loci along the length of the cell has been described. However, positioning of loci across the width of the cell has not been determined. Results Here, we show that it is possible to assess the mean positioning of chromosomal loci across the width of the cell using two-dimension images from wide-field fluorescence microscopy. Observed apparent distributions of fluorescent-tagged loci of the E. coli chromosome along the cell diameter were compared with simulated distributions calculated using a range of cell width positioning models. Using this method, we detected the migration of chromosome loci towards the cell periphery induced by production of the bacteriophage T4 Ndd protein. In the absence of Ndd production, loci outside the replication terminus were located either randomly along the nucleoid width or towards the cell centre whereas loci inside the replication terminus were located at the periphery of the nucleoid in contrast to other loci. Conclusions Our approach allows to reliably observing the positioning of chromosome loci along the width of E. coli cells. The terminal region of the chromosome is preferentially located at the periphery of the nucleoid consistent with its specific roles in chromosome organisation and dynamics.
Collapse
Affiliation(s)
- Jean-Christophe Meile
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000 Toulouse, France
| | | | | | | | | | | |
Collapse
|
36
|
Escherichia coli sister chromosome separation includes an abrupt global transition with concomitant release of late-splitting intersister snaps. Proc Natl Acad Sci U S A 2011; 108:2765-70. [PMID: 21282646 DOI: 10.1073/pnas.1019593108] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The basis for segregation of sister chromosomes in bacteria is not established. We show here that two discrete ~150-kb regions, both located early in the right replichore, exhibit prolonged juxtaposition of sister loci, for 20 and 30 min, respectively, after replication. Flanking regions, meanwhile, separate. Thus, the two identified regions comprise specialized late-splitting intersister connections or snaps. Sister snap loci separate simultaneously in both snap regions, concomitant with a major global nucleoid reorganization that results in emergence of a bilobed nucleoid morphology. Split snap loci move rapidly apart to a separation distance comparable with one-half the length of the nucleoid. Concomitantly, at already split positions, sister loci undergo further separation to a comparable distance. The overall consequence of these and other effects is that thus far replicated sister chromosomes become spatially separated (individualized) into the two nucleoid lobes, while the terminus region (and likely, all unreplicated portions of the chromosome) moves to midcell. These and other findings imply that segregation of Escherichia coli sister chromosomes is not a smooth continuous process but involves at least one and likely, two major global transition(s). The presented patterns further suggest that accumulation of internal intranucleoid forces and constraining of these forces by snaps play central roles in global chromosome dynamics. They are consistent with and supportive of our previous proposals that individualization of sisters in E. coli is driven primarily by internally generated pushing forces and is directly analogous to sister individualization at the prophase to prometaphase transition of the eukaryotic cell cycle.
Collapse
|
37
|
Nielsen HJ, Hansen FG. An automated and highly efficient method for counting and measuring fluorescent foci in rod-shaped bacteria. J Microsc 2010; 239:194-9. [PMID: 20701657 DOI: 10.1111/j.1365-2818.2010.03374.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Direct measurements of cells from photo micrographs are becoming increasingly used when investigating the position and/or distribution of chromosomal loci in bacteria. In general, these measurements have been done manually, and without clear definition of how they are made. Here we present a procedure for standardizing the measurement of cell properties from phase contrast images. Furthermore, we present a program using these standardized methods that can measure the intracellular positions of fluorescent foci in bacterial cells faster and with more precision than manual measurement.
Collapse
Affiliation(s)
- H J Nielsen
- Department of Systems Biology, Building 301, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
38
|
Buenemann M, Lenz P. A geometrical model for DNA organization in bacteria. PLoS One 2010; 5:e13806. [PMID: 21085464 PMCID: PMC2972204 DOI: 10.1371/journal.pone.0013806] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 10/11/2010] [Indexed: 02/03/2023] Open
Abstract
Recent experimental studies have revealed that bacteria, such as C. crescentus, show a remarkable spatial ordering of their chromosome. A strong linear correlation has been found between the position of genes on the chromosomal map and their spatial position in the cellular volume. We show that this correlation can be explained by a purely geometrical model. Namely, self-avoidance of DNA, specific positioning of one or few DNA loci (such as origin or terminus) together with the action of DNA compaction proteins (that organize the chromosome into topological domains) are sufficient to get a linear arrangement of the chromosome along the cell axis. We develop a Monte-Carlo method that allows us to test our model numerically and to analyze the dependence of the spatial ordering on various physiologically relevant parameters. We show that the proposed geometrical ordering mechanism is robust and universal (i.e. does not depend on specific bacterial details). The geometrical mechanism should work in all bacteria that have compacted chromosomes with spatially fixed regions. We use our model to make specific and experimentally testable predictions about the spatial arrangement of the chromosome in mutants of C. crescentus and the growth-stage dependent ordering in E. coli.
Collapse
Affiliation(s)
- Mathias Buenemann
- Department of Physics and Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
- Fachbereich Physik and Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Peter Lenz
- Department of Physics and Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Independent segregation of the two arms of the Escherichia coli ori region requires neither RNA synthesis nor MreB dynamics. J Bacteriol 2010; 192:6143-53. [PMID: 20889756 DOI: 10.1128/jb.00861-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism of Escherichia coli chromosome segregation remains elusive. We present results on the simultaneous tracking of segregation of multiple loci in the ori region of the chromosome in cells growing under conditions in which a single round of replication is initiated and completed in the same generation. Loci segregated as expected for progressive replication-segregation from oriC, with markers placed symmetrically on either side of oriC segregating to opposite cell halves at the same time, showing that sister locus cohesion in the origin region is local rather than extensive. We were unable to observe any influence on segregation of the proposed centromeric site, migS, or indeed any other potential cis-acting element on either replication arm (replichore) in the AB1157 genetic background. Site-specific inhibition of replication close to oriC on one replichore did not prevent segregation of loci on the other replichore. Inhibition of RNA synthesis and inhibition of the dynamic polymerization of the actin homolog MreB did not affect ori and bulk chromosome segregation.
Collapse
|
40
|
Strong intranucleoid interactions organize the Escherichia coli chromosome into a nucleoid filament. Proc Natl Acad Sci U S A 2010; 107:4991-5. [PMID: 20194778 DOI: 10.1073/pnas.0912062107] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The stochasticity of chromosome organization was investigated by fluorescently labeling genetic loci in live Escherichia coli cells. In spite of the common assumption that the chromosome is well modeled by an unstructured polymer, measurements of the locus distributions reveal that the E. coli chromosome is precisely organized into a nucleoid filament with a linear order. Loci in the body of the nucleoid show a precision of positioning within the cell of better than 10% of the cell length. The precision of interlocus distance of genomically-proximate loci was better than 4% of the cell length. The measured dependence of the precision of interlocus distance on genomic distance singles out intranucleoid interactions as the mechanism responsible for chromosome organization. From the magnitude of the variance, we infer the existence of an as-yet uncharacterized higher-order DNA organization in bacteria. We demonstrate that both the stochastic and average structure of the nucleoid is captured by a fluctuating elastic filament model.
Collapse
|
41
|
Ferullo DJ, Lovett ST. The stringent response and cell cycle arrest in Escherichia coli. PLoS Genet 2008; 4:e1000300. [PMID: 19079575 PMCID: PMC2586660 DOI: 10.1371/journal.pgen.1000300] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 11/07/2008] [Indexed: 11/18/2022] Open
Abstract
The bacterial stringent response, triggered by nutritional deprivation, causes an accumulation of the signaling nucleotides pppGpp and ppGpp. We characterize the replication arrest that occurs during the stringent response in Escherichia coli. Wild type cells undergo a RelA-dependent arrest after treatment with serine hydroxamate to contain an integer number of chromosomes and a replication origin-to-terminus ratio of 1. The growth rate prior to starvation determines the number of chromosomes upon arrest. Nucleoids of these cells are decondensed; in the absence of the ability to synthesize ppGpp, nucleoids become highly condensed, similar to that seen after treatment with the translational inhibitor chloramphenicol. After induction of the stringent response, while regions corresponding to the origins of replication segregate, the termini remain colocalized in wild-type cells. In contrast, cells arrested by rifampicin and cephalexin do not show colocalized termini, suggesting that the stringent response arrests chromosome segregation at a specific point. Release from starvation causes rapid nucleoid reorganization, chromosome segregation, and resumption of replication. Arrest of replication and inhibition of colony formation by ppGpp accumulation is relieved in seqA and dam mutants, although other aspects of the stringent response appear to be intact. We propose that DNA methylation and SeqA binding to non-origin loci is necessary to enforce a full stringent arrest, affecting both initiation of replication and chromosome segregation. This is the first indication that bacterial chromosome segregation, whose mechanism is not understood, is a step that may be regulated in response to environmental conditions.
Collapse
Affiliation(s)
- Daniel J. Ferullo
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Susan T. Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
42
|
Lesterlin C, Pages C, Dubarry N, Dasgupta S, Cornet F. Asymmetry of chromosome Replichores renders the DNA translocase activity of FtsK essential for cell division and cell shape maintenance in Escherichia coli. PLoS Genet 2008; 4:e1000288. [PMID: 19057667 PMCID: PMC2585057 DOI: 10.1371/journal.pgen.1000288] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/30/2008] [Indexed: 11/18/2022] Open
Abstract
Bacterial chromosomes are organised as two replichores of opposite polarity that coincide with the replication arms from the ori to the ter region. Here, we investigated the effects of asymmetry in replichore organisation in Escherichia coli. We show that large chromosome inversions from the terminal junction of the replichores disturb the ongoing post-replicative events, resulting in inhibition of both cell division and cell elongation. This is accompanied by alterations of the segregation pattern of loci located at the inversion endpoints, particularly of the new replichore junction. None of these defects is suppressed by restoration of termination of replication opposite oriC, indicating that they are more likely due to the asymmetry of replichore polarity than to asymmetric replication. Strikingly, DNA translocation by FtsK, which processes the terminal junction of the replichores during cell division, becomes essential in inversion-carrying strains. Inactivation of the FtsK translocation activity leads to aberrant cell morphology, strongly suggesting that it controls membrane synthesis at the division septum. Our results reveal that FtsK mediates a reciprocal control between processing of the replichore polarity junction and cell division.
Collapse
Affiliation(s)
- Christian Lesterlin
- Laboratoire de Microbiologie et de Génétique Moléculaire, Centre National de la Recherche Scientifique, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
- * E-mail: (CL); (FC)
| | - Carine Pages
- Laboratoire de Microbiologie et de Génétique Moléculaire, Centre National de la Recherche Scientifique, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Nelly Dubarry
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - François Cornet
- Laboratoire de Microbiologie et de Génétique Moléculaire, Centre National de la Recherche Scientifique, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
- * E-mail: (CL); (FC)
| |
Collapse
|
43
|
Abstract
An ongoing mission for biologists is to probe the molecular nature of cellular processes within live cells. Although much of what we have discovered during the molecular biology revolution of the last 50 years has been achieved by exploiting bacteria as 'bags of DNA and proteins', relatively little has been learnt about how they organize their life processes within cells. The mistaken perception of bacteria cells as unstructured systems arose partly because of the difficulty of performing studies by light microscopy due to their small size (many of them having cell lengths a few times bigger than the wavelength of visible light). With the opportunities provided by a range of new fluorophores and by new microscopic techniques, a revolution in bacterial cell biology is revealing unimagined organization in the bacterial cell. We review the development and exploitation of new visualization methods and reagents and show how they are contributing to the understanding of bacterial structure, chromosome organization, DNA metabolism and their relationship to the cell cycle.
Collapse
|
44
|
Edgar R, Rokney A, Feeney M, Semsey S, Kessel M, Goldberg MB, Adhya S, Oppenheim AB. Bacteriophage infection is targeted to cellular poles. Mol Microbiol 2008; 68:1107-16. [PMID: 18363799 PMCID: PMC3740151 DOI: 10.1111/j.1365-2958.2008.06205.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The poles of bacteria exhibit several specialized functions related to the mobilization of DNA and certain proteins. To monitor the infection of Escherichia coli cells by light microscopy, we developed procedures for the tagging of mature bacteriophages with quantum dots. Surprisingly, most of the infecting phages were found attached to the bacterial poles. This was true for a number of temperate and virulent phages of E. coli that use widely different receptors and for phages infecting Yersinia pseudotuberculosis and Vibrio cholerae. The infecting phages colocalized with the polar protein marker IcsA-GFP. ManY, an E. coli protein that is required for phage lambda DNA injection, was found to localize to the bacterial poles as well. Furthermore, labelling of lambda DNA during infection revealed that it is injected and replicated at the polar region of infection. The evolutionary benefits that lead to this remarkable preference for polar infections may be related to lambda's developmental decision as well as to the function of poles in the ability of bacterial cells to communicate with their environment and in gene regulation.
Collapse
Affiliation(s)
- Rotem Edgar
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Reyes-Lamothe R, Wang X, Sherratt D. Escherichia coli and its chromosome. Trends Microbiol 2008; 16:238-45. [DOI: 10.1016/j.tim.2008.02.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/23/2008] [Accepted: 02/29/2008] [Indexed: 01/22/2023]
|
46
|
Adachi S, Fukushima T, Hiraga S. Dynamic events of sister chromosomes in the cell cycle of Escherichia coli. Genes Cells 2008; 13:181-97. [DOI: 10.1111/j.1365-2443.2007.01157.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Abstract
In recent years, the subcellular organization of prokaryotic cells has become a focal point of interest in microbiology. Bacteria have evolved several different mechanisms to target protein complexes, membrane vesicles and DNA to specific positions within the cell. This versatility allows bacteria to establish the complex temporal and spatial regulatory networks that couple morphological and physiological differentiation with cell-cycle progression. In addition to stationary localization factors, dynamic cytoskeletal structures also have a fundamental role in many of these processes. In this Review, we summarize the current knowledge on localization mechanisms in bacteria, with an emphasis on the role of polymeric protein assemblies in the directed movement and positioning of macromolecular complexes.
Collapse
|
48
|
Abstract
Analyses of DNA pattern provide an excellent tool to determine activity states of bacteria. Bacterial cell cycle behaviour is generally different from the eukaryotic one and is pre-determined by the bacteria's diversity within the phylogenetic tree, and their metabolic traits. As a result, every species creates its specific proliferation pattern that differs from every other one. Up to now, just few bacterial species have been investigated and little information is available concerning DNA cycling even in already known species. This prevents understanding of the complexity and diversity of ongoing bacterial interactions in many ecosystems or in biotechnology. Flow cytometry is the only possible technique to shed light on the dynamics of bacterial communities and DNA patterns will help to unlock the hidden principles of their life. This review provides basic knowledge about the molecular background of bacterial cell cycling, discusses modes of cell cycle phases and presents techniques to both obtain DNA patterns and to combine the contained information with physiological cell states.
Collapse
Affiliation(s)
- S Müller
- Department of Environmental Microbiology, UFZ, Helmholtz Centre for Environmental Research, Leipzig-Halle, Leipzig, Germany.
| |
Collapse
|
49
|
Abstract
Most bacteria have one chromosome but some have more than one, as is common in eukaryotes. How multiple chromosomes are maintained in bacteria remains largely obscure. Here we have examined the behaviour of the two Vibrio cholerae chromosomes as a function of growth rate. At slow growth rates, both chromosomes were maintained at copy numbers of one to two per cell. Increasing the growth rate by nutritional shift-up amplified the origin-proximal DNA of the larger chromosome (chrI) to four copies per cell, but not that of the smaller chrII. The latter was amplified when its specific initiator was supplied in excess or a specific negative regulator was deleted. The growth rate-insensitive behaviour of chrII, whose origin is similar to origins of members of a major class of plasmids, was shared by some but not all of several representative plasmids tested in V. cholerae. Also, unlike plasmid replication, chrII replication is known to be initiated at a specific stage of the cell cycle. Raising chrII copy number decreased growth rate, suggesting that this chromosome might serve as a repository for necessary but potentially deleterious genes.
Collapse
Affiliation(s)
- Preeti Srivastava
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-4260, USA
| | | |
Collapse
|
50
|
Nielsen HJ, Youngren B, Hansen FG, Austin S. Dynamics of Escherichia coli chromosome segregation during multifork replication. J Bacteriol 2007; 189:8660-6. [PMID: 17905986 PMCID: PMC2168957 DOI: 10.1128/jb.01212-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division, the chromosomes contain multiple replication forks and must be segregated while this complex pattern of replication is still ongoing. Here, we show that replication and segregation continue in step, starting at the origin and progressing to the replication terminus. Thus, early-replicated markers on the multiple-branched chromosomes continue to separate soon after replication to form separate protonucleoids, even though they are not segregated into different daughter cells until later generations. The segregation pattern follows the pattern of chromosome replication and does not follow the cell division cycle. No extensive cohesion of sister DNA regions was seen at any growth rate. We conclude that segregation is driven by the progression of the replication forks.
Collapse
Affiliation(s)
- Henrik J Nielsen
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, CCR, NCI-Frederick, Frederick, MD 21702-1201, USA.
| | | | | | | |
Collapse
|