1
|
Sano K, Kobayashi H, Chuta H, Matsuyoshi N, Kato Y, Ogasawara H. CsgI (YccT) Is a Novel Inhibitor of Curli Fimbriae Formation in Escherichia coli Preventing CsgA Polymerization and Curli Gene Expression. Int J Mol Sci 2023; 24:ijms24054357. [PMID: 36901788 PMCID: PMC10002515 DOI: 10.3390/ijms24054357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Curli fimbriae are amyloids-found in bacteria (Escherichia coli)-that are involved in solid-surface adhesion and bacterial aggregation during biofilm formation. The curli protein CsgA is coded by a csgBAC operon gene, and the transcription factor CsgD is essential to induce its curli protein expression. However, the complete mechanism underlying curli fimbriae formation requires elucidation. Herein, we noted that curli fimbriae formation was inhibited by yccT-i.e., a gene that encodes a periplasmic protein of unknown function regulated by CsgD. Furthermore, curli fimbriae formation was strongly repressed by CsgD overexpression caused by a multicopy plasmid in BW25113-the non-cellulose-producing strain. YccT deficiency prevented these CsgD effects. YccT overexpression led to intracellular YccT accumulation and reduced CsgA expression. These effects were addressed by deleting the N-terminal signal peptide of YccT. Localization, gene expression, and phenotypic analyses revealed that YccT-dependent inhibition of curli fimbriae formation and curli protein expression was mediated by the two-component regulatory system EnvZ/OmpR. Purified YccT inhibited CsgA polymerization; however, no intracytoplasmic interaction between YccT and CsgA was detected. Thus, YccT-renamed CsgI (curli synthesis inhibitor)-is a novel inhibitor of curli fimbriae formation and has a dual role as an OmpR phosphorylation modulator and CsgA polymerization inhibitor.
Collapse
Affiliation(s)
- Kotaro Sano
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Hiroaki Kobayashi
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Hirotaka Chuta
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Nozomi Matsuyoshi
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Yuki Kato
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Hiroshi Ogasawara
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Academic Assembly School of Humanities and Social Sciences Institute of Humanities, Shinshu University, Matsumoto 390-8621, Japan
- Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
- Renaissance Center for Applied Microbiology, Shinshu University, Nagano-shi, Nagano 380-8553, Japan
- Correspondence: ; Tel.: +81-268-21-5803
| |
Collapse
|
2
|
The Essential Role of OmpR in Acidithiobacillus caldus Adapting to the High Osmolarity and Its Regulation on the Tetrathionate-Metabolic Pathway. Microorganisms 2022; 11:microorganisms11010035. [PMID: 36677326 PMCID: PMC9861516 DOI: 10.3390/microorganisms11010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Acidithiobacillus spp. are prevalent in acid mine drainage, and they have been widely used in biomining for extracting nonferrous metals from ores. The osmotic stress generated by elevated concentrations of inorganic ions is a severe challenge for the growth of Acidithiobacillus spp. in the bioleaching process; however, the adaptation mechanism of these bacteria to high osmotic pressure remains unclear. In this study, bioinformatics analysis indicated that the osmotic stress response two-component system EnvZ-OmpR is widely distributed in Acidithiobacillus spp., while OmpRs from Acidithiobacillus spp. exhibited a far more evolutionary relationship with the well-studied OmpRs in E. coli and Salmonella typhimurium. The growth measurement of an Acidithiobacillus caldus (A. caldus) ompR-knockout strain demonstrated that OmpR is essential in the adaptation of this bacterium to high osmotic stress. The overall impact of OmpR on the various metabolic and regulatory systems of A. caldus was revealed by transcriptome analysis. The OmpR binding sequences of differentially expressed genes (DEGs) were predicted, and the OmpR box motif in A. caldus was analysed. The direct and negative regulation of EnvZ-OmpR on the tetrathionate-metabolic (tetH) cluster in A. caldus was discovered for the first time, and a co-regulation mode mediated by EnvZ-OmpR and RsrS-RsrR for the tetrathionate intermediate thiosulfate-oxidizing (S4I) pathway in this microorganism was proposed. This study reveals that EnvZ-OmpR is an indispensable regulatory system for the ability of A. caldus to cope with high osmotic stress and the significance of EnvZ-OmpR on the regulation of sulfur metabolism in A. caldus adapting to the high-salt environment.
Collapse
|
3
|
Tight Complex Formation of the Fumarate Sensing DcuS-DcuR Two-Component System at the Membrane and Target Promoter Search by Free DcuR Diffusion. mSphere 2022; 7:e0023522. [PMID: 35862816 PMCID: PMC9429925 DOI: 10.1128/msphere.00235-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Signaling of two-component systems by phosphoryl transfer requires interaction of the sensor kinase with the response regulator. Interaction of the C4-dicarboxylate-responsive and membrane-integral sensor kinase DcuS with the response regulator DcuR was studied. In vitro, the cytoplasmic part of DcuS (PASC-Kin) was employed. Stable complexes were formed, when either DcuS or DcuR were phosphorylated (Kd 22 ± 11 and 28 ± 7 nM, respectively). The unphosphorylated proteins produced a more labile complex (Kd 1380 ± 395 nM). Bacterial two-hybrid studies confirm interaction of DcuR with DcuS (and PASC-Kin) in vivo. The absolute contents of DcuR (197-979 pmol mg−1 protein) in the bacteria exceeded those of DcuS by more than 1 order of magnitude. According to the Kd values, DcuS exists in complex, with phosphorylated but also unphosphorylated DcuR. In live cell imaging, the predominantly freely diffusing DcuR becomes markedly less mobile after phosphorylation and activation of DcuS by fumarate. Portions of the low mobility fraction accumulated at the cell poles, the preferred location of DcuS, and other portions within the cell, representing phosphorylated DcuR bound to promoters. In the model, acitvation of DcuS increases the affinity toward DcuR, leading to DcuS-P × DcuR formation and phosphorylation of DcuR. The complex is stable enough for phosphate-transfer, but labile enough to allow exchange between DcuR from the cytosol and DcuR-P of the complex. Released DcuR-P diffuses to target promoters and binds. Uncomplexed DcuR-P in the cytosol binds to nonactivated DcuS and becomes dephosphorylated. The lower affinity between DcuR and DcuS avoids blocking of DcuS and allows rapid exchange of DcuR. IMPORTANCE Complex formation of membrane-bound sensor kinases with the response regulators represents an inherent step of signaling from the membrane to the promoters on the DNA. In the C4-dicarboxylate-sensing DcuS-DcuR two-component system, complex formation is strengthened by activation (phosphorylation) in vitro and in vivo, with trapping of the response regulator DcuR at the membrane. Single-molecule tracking of DcuR in the bacterial cell demonstrates two populations of DcuR with decreased mobility in the bacteria after activation: one at the membrane, but a second in the cytosol, likely representing DNA-bound DcuR. The data suggest a model with binding of DcuR to DcuS-P for phosphorylation, and of DcuR-P to DcuS for dephosphorylation, allowing rapid adaptation of the DcuR phosphorylation state. DcuR-P is released and transferred to DNA by 3D diffusion.
Collapse
|
4
|
Kong L, Su M, Sang J, Huang S, Wang M, Cai Y, Xie M, Wu J, Wang S, Foster SJ, Zhang J, Han A. The W-Acidic Motif of Histidine Kinase WalK Is Required for Signaling and Transcriptional Regulation in Streptococcus mutans. Front Microbiol 2022; 13:820089. [PMID: 35558126 PMCID: PMC9087282 DOI: 10.3389/fmicb.2022.820089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
In Streptococcus mutans, we find that the histidine kinase WalK possesses the longest C-terminal tail (CTT) among all 14 TCSs, and this tail plays a key role in the interaction of WalK with its response regulator WalR. We demonstrate that the intrinsically disordered CTT is characterized by a conserved tryptophan residue surrounded by acidic amino acids. Mutation in the tryptophan not only disrupts the stable interaction, but also impairs the efficient phosphotransferase and phosphatase activities of WalRK. In addition, the tryptophan is important for WalK to compete with DNA containing a WalR binding motif for the WalR interaction. We further show that the tryptophan is important for in vivo transcriptional regulation and bacterial biofilm formation by S. mutans. Moreover, Staphylococcus aureus WalK also has a characteristic CTT, albeit relatively shorter, with a conserved W-acidic motif, that is required for the WalRK interaction in vitro. Together, these data reveal that the W-acidic motif of WalK is indispensable for its interaction with WalR, thereby playing a key role in the WalRK-dependent signal transduction, transcriptional regulation and biofilm formation.
Collapse
Affiliation(s)
- Lingyuan Kong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mingyang Su
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiayan Sang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shanshan Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Min Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yongfei Cai
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mingquan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jun Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shida Wang
- State Key Laboratory for Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, The Florey Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Jiaqin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Aidong Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Translation stalling proline motifs are enriched in slow-growing, thermophilic, and multicellular bacteria. THE ISME JOURNAL 2022; 16:1065-1073. [PMID: 34824398 DOI: 10.1038/s41396-021-01154-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
Rapid bacterial growth depends on the speed at which ribosomes can translate mRNA into proteins. mRNAs that encode successive stretches of proline can cause ribosomes to stall, substantially reducing translation speed. Such stalling is especially detrimental for species that must grow and divide rapidly. Here, we focus on di-prolyl motifs (XXPPX) and ask whether their prevalence varies with growth rate. To find out we conducted a broad survey of such motifs in >3000 bacterial genomes across 35 phyla. Indeed, fast-growing species encode fewer motifs than slow-growing species, especially in highly expressed proteins. We also found many di-prolyl motifs within thermophiles, where prolines can help maintain proteome stability. Moreover, bacteria with complex, multicellular lifecycles also encode many di-prolyl motifs. This is especially evident in the slow-growing phylum Myxococcota. Bacteria in this phylum encode many serine-threonine kinases, and many di-prolyl motifs at potential phosphorylation sites within these kinases. Serine-threonine kinases are involved in cell signaling and help regulate developmental processes linked to multicellularity in the Myxococcota. Altogether, our observations suggest that weakened selection on translational rate, whether due to slow or thermophilic growth, may allow di-prolyl motifs to take on new roles in biological processes that are unrelated to translational rate.
Collapse
|
6
|
Yu S, Wang Y, Shen F, Fang H, Yu Y. Copper-based fungicide copper hydroxide accelerates the evolution of antibiotic resistance via gene mutations in Escherichia coli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152885. [PMID: 34998765 DOI: 10.1016/j.scitotenv.2021.152885] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The extensive use of copper-based fungicides in orchards, especially in vineyards, leads to the accumulation of copper, which has caused growing concern. However, data on the acquisition of antibiotic resistance in opportunistic pathogens under copper-based fungicides are scarce. In this study, we investigated the potential development of antibiotic resistance in Escherichia coli K12 under selective copper hydroxide pressure. The results indicated that copper hydroxide at concentrations of 100 mg/L and 200 mg/L evolved resistance against chloramphenicol and tolerance against tetracycline to 4-8 and 2.00-2.67 times than the initial minimal inhibitory concentrations (MICs), respectively. Whole-genome sequencing analysis showed that the obtained resistant strains carried gene mutations including AcrAB-TolC multidrug efflux pump (acrB and marR), outer membrane porin (evZ), and another indirect pathways. Furthermore, the expression of multidrug efflux pump genes and oxidative stress-related genes were significantly upregulated, whereas outer membrane porin genes were downregulated. Thus, our results could well explain the emergence of antibiotic resistance and resistance mechanisms selected by copper-based fungicide, and provide a basis for the management of copper-based fungicide in agriculture to avoid the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Sumei Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yingnan Wang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fan Shen
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Lipa P, Janczarek M. Phosphorylation systems in symbiotic nitrogen-fixing bacteria and their role in bacterial adaptation to various environmental stresses. PeerJ 2020; 8:e8466. [PMID: 32095335 PMCID: PMC7020829 DOI: 10.7717/peerj.8466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022] Open
Abstract
Symbiotic bacteria, commonly called rhizobia, lead a saprophytic lifestyle in the soil and form nitrogen-fixing nodules on legume roots. During their lifecycle, rhizobia have to adapt to different conditions prevailing in the soils and within host plants. To survive under these conditions, rhizobia fine-tune the regulatory machinery to respond rapidly and adequately to environmental changes. Symbiotic bacteria play an essential role in the soil environment from both ecological and economical point of view, since these bacteria provide Fabaceae plants (legumes) with large amounts of accessible nitrogen as a result of symbiotic interactions (i.e., rhizobia present within the nodule reduce atmospheric dinitrogen (N2) to ammonia, which can be utilized by plants). Because of its restricted availability in the soil, nitrogen is one of the most limiting factors for plant growth. In spite of its high content in the atmosphere, plants are not able to assimilate it directly in the N2 form. During symbiosis, rhizobia infect host root and trigger the development of specific plant organ, the nodule. The aim of root nodule formation is to ensure a microaerobic environment, which is essential for proper activity of nitrogenase, i.e., a key enzyme facilitating N2 fixation. To adapt to various lifestyles and environmental stresses, rhizobia have developed several regulatory mechanisms, e.g., reversible phosphorylation. This key mechanism regulates many processes in both prokaryotic and eukaryotic cells. In microorganisms, signal transduction includes two-component systems (TCSs), which involve membrane sensor histidine kinases (HKs) and cognate DNA-binding response regulators (RRs). Furthermore, regulatory mechanisms based on phosphoenolopyruvate-dependent phosphotranspherase systems (PTSs), as well as alternative regulatory pathways controlled by Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) play an important role in regulation of many cellular processes in both free-living bacteria and during symbiosis with the host plant (e.g., growth and cell division, envelope biogenesis, biofilm formation, response to stress conditions, and regulation of metabolism). In this review, we summarize the current knowledge of phosphorylation systems in symbiotic nitrogen-fixing bacteria, and their role in the physiology of rhizobial cells and adaptation to various environmental conditions.
Collapse
Affiliation(s)
- Paulina Lipa
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University Lublin, Lublin, Poland
| | - Monika Janczarek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University Lublin, Lublin, Poland
| |
Collapse
|
8
|
Upton EC, Maciunas LJ, Loll PJ. Vancomycin does not affect the enzymatic activities of purified VanSA. PLoS One 2019; 14:e0210627. [PMID: 30677074 PMCID: PMC6345502 DOI: 10.1371/journal.pone.0210627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 12/29/2018] [Indexed: 11/18/2022] Open
Abstract
VanS is a membrane-bound sensor histidine kinase responsible for sensing vancomycin and activating transcription of vancomycin-resistance genes. In the presence of vancomycin, VanS phosphorylates the transcription factor VanR, converting it to its transcriptionally active form. In the absence of vancomycin, VanS dephosphorylates VanR, thereby maintaining it in a transcriptionally inactive state. To date, the mechanistic details of how vancomycin modulates VanS activity have remained elusive. We have therefore studied these details in an in vitro system, using the full-length VanS and VanR proteins responsible for type-A vancomycin resistance in enterococci. Both detergent- and amphipol-solubilized VanSA display all the enzymatic activities expected for a sensor histidine kinase, with amphipol reconstitution providing a marked boost in overall activity relative to detergent solubilization. A putative constitutively activated VanSA mutant (T168K) was constructed and purified, and was found to exhibit the expected reduction in phosphatase activity, providing confidence that detergent-solubilized VanSA behaves in a physiologically relevant manner. In both detergent and amphipol solutions, VanSA’s enzymatic activities were found to be insensitive to vancomycin, even at levels many times higher than the antibiotic’s minimum inhibitory concentration. This result argues against direct activation of VanSA via formation of a binary antibiotic-kinase complex, suggesting instead that either additional factors are required to form a functional signaling complex, or that activation does not require direct interaction with the antibiotic.
Collapse
Affiliation(s)
- Elizabeth C. Upton
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Lina J. Maciunas
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Patrick J. Loll
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
9
|
Bury A, Hellingwerf KJ. Design, characterization and in vivo functioning of a light-dependent histidine protein kinase in the yeast Saccharomyces cerevisiae. AMB Express 2018; 8:53. [PMID: 29611000 PMCID: PMC5880792 DOI: 10.1186/s13568-018-0582-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/25/2018] [Indexed: 01/24/2023] Open
Abstract
Helical alignment of the α-helical linker of the LOV (light-oxygen-voltage) domain of YtvA from Bacillus subtilis with the α-helical linker of the histidine-protein kinase domain of the Sln1 kinase of the phospho-relay system for osmoregulation of Saccharomyces cerevisiae has been used to construct a light-modulatable histidine protein kinase. In vitro, illumination with blue light inhibits both the ATP-dependent phosphorylation of this hybrid kinase, as well as the phosphoryl transfer to Ypd1, the phosphoryl transfer domain of the Sln1 system. The helical alignment was carried out with conservation of the complete Jα helix of YtvA, as well as of the phosphorylatable histidine residue of the Sln1 kinase, with conservation of the hepta-helical motive of coiled-coil structures, recognizable in the helices of the two separate, constituent, proteins. Introduction of the gene encoding this hybrid histidine protein kinase into cells of S. cerevisiae in which the endogenous Sln1 kinase had been deleted, allowed us to modulate gene expression in the yeast cells with (blue) light. This was first demonstrated via the light-induced alteration of the expression level of the mannosyl-transferase OCH1, via a translational-fusion approach. As expected, illumination decreased the expression level of OCH1; the steady state decrease in saturating levels of blue light was about 40%. To visualize the in vivo functionality of this light-dependent regulation system, we fused the green fluorescent protein (GFP) to another regulatory protein, HOG1, which is also responsive to the Sln1 kinase. HOG1 is phosphorylated by the MAP-kinase-kinase Pbs2, which in turn is under control of the Sln1 kinase, via the phosphoryl transfer domain Ypd1. Fluorescence microscopy was used to show that illumination of cells that contained the combination of the hybrid kinase and the HOG1::GFP fusion protein, led to a persistent increase in the level of nuclear accumulation of HOG1, in contrast to salt stress, which-as expected-showed the well-characterized transient response. The system described in this study will be valuable in future studies on the role of cytoplasmic diffusion in signal transduction in eukaryotic cells.
Collapse
|
10
|
Zhang DF, Ye JZ, Dai HH, Lin XM, Li H, Peng XX. Identification of ethanol tolerant outer membrane proteome reveals OmpC-dependent mechanism in a manner of EnvZ/OmpR regulation in Escherichia coli. J Proteomics 2018. [PMID: 29518576 DOI: 10.1016/j.jprot.2018.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ethanol is an efficient disinfectant, but long-term and wide usage of ethanol leads to microbial tolerance. Bacteria with the tolerance are widely identified. However, mechanisms of the tolerance are not elucidated. To explore the mechanisms of outer membrane (OM) proteins underlying ethanol tolerance in bacteria, functional proteomic methodologies were utilized to characterize OM proteins of E. coli suddenly exposed to 3.125% ethanol. Of eleven proteins altered significantly, seven were OM proteins, in which LamB, FadL and OmpC were up-regulated, and OmpT, OmpF, Tsx and OmpA were down-regulated. The alterations were validated using Western blot. Then, functional characterization of the altered abundance of OM proteins was investigated in gene-deleted and gene-complemented mutants cultured in 1.56-6.25% ethanol. Higher inhibiting rate was detected in ΔompC than ΔlamB and ΔompA, but no difference was found between Δtsx, ΔompF, ΔfadL or ΔompT and control. Furthermore, EnvZ/OmpR two-component signal transduction system, which regulates OmpC and OmpF expression, was determined to participate in the tolerance. Finally, our results show that absence of envZ, ompR or ompC and ompA led to elevated and reduced intracellular ethanol, respectively. These findings indicate EnvZ-dependent phosphotransfer signaling pathway of the OmpR-mediated expression of OmpC plays a crucial role in ethanol tolerance. BIOLOGICAL SIGNIFICANCE Ethanol tolerance is an adaptation strategy of bacteria. In the present study, we used the proteomic approaches involving 2-DE and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) to determined outer membrane (OM) protein changes in E. coli K-12 after 2 h of 1/2 MIC of ethanol exposure. Under ethanol stress, seven differential OM proteins were found, which were validated by Western blot. Functions of these seven OM proteins were compared using their genetically modified strains. Furthermore, the role of EnvZ/OmpR two-component signal transduction system was identified in ethanol tolerance of E. coli. Finally, Loss of ompC, envZ or ompR increases intracellular ethanol, while absence of ompA reduces reversal effect. This is the first report of OM proteomics in E. coli exposed to ethanol. Our findings reveal an unknown OmpC-dependent mechanism of ethanol tolerance in a manner of EnvZ/OmpR regulation.
Collapse
Affiliation(s)
- Dan-Feng Zhang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Jin-Zhou Ye
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Hong-Hou Dai
- Clinical Laboratory, Affiliated Hospital of Jinggangshan University, 343000, People's Republic of China
| | - Xiang-Min Lin
- Agroecological Institute, Fujian Agricultural and Forestry University, Fuzhou 350002, People's Republic of China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China.
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
11
|
Yu H, Rao X, Zhang K. Nucleoside diphosphate kinase (Ndk): A pleiotropic effector manipulating bacterial virulence and adaptive responses. Microbiol Res 2017; 205:125-134. [PMID: 28942838 DOI: 10.1016/j.micres.2017.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/23/2017] [Accepted: 09/02/2017] [Indexed: 12/11/2022]
Abstract
Nucleoside diphosphate kinase (Ndk) is a housekeeping enzyme that balances cellular nucleoside triphosphate (NTP) pools by catalyzing the reversible transfer of γ-phosphate from NTPs to nucleoside diphosphates (NDPs). In addition to its fundamental role in nucleotide metabolism, Ndk has roles in protein histidine phosphorylation, DNA cleavage/repair, and gene regulation. Recent studies have also revealed that Ndk secreted from bacteria is important in modulating virulence-associated phenotypes including quorum sensing regulation, type III secretion system activation, and virulence factor production. Moreover, after infection, Ndks released from bacteria are involved in regulating host defense activities, such as cell apoptosis, phagocytosis, and inflammatory responses. Given that Ndk exerts a pleiotropic effect on bacterial virulence and bacteria-host interactions, the biological significance of the bacterial Ndks during infection is intriguing. This review will provide a synopsis of the current knowledge regarding the biological properties and roles of Ndks in regulating bacterial virulence and adaptation and will discuss in depth the biological significance of Ndk during bacteria-host interactions.
Collapse
Affiliation(s)
- Hua Yu
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China.
| | - Kebin Zhang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
12
|
Microcin PDI regulation and proteolytic cleavage are unique among known microcins. Sci Rep 2017; 7:42529. [PMID: 28205647 PMCID: PMC5311971 DOI: 10.1038/srep42529] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/09/2017] [Indexed: 11/16/2022] Open
Abstract
Microcin PDI inhibits a diversity of pathogenic Escherichia coli through the action of an effector protein, McpM. In this study we demonstrated that expression of the inhibitory phenotype is induced under low osmolarity conditions and expression is primarily controlled by the EnvZ/OmpR two-component regulatory system. Functional, mutagenesis and complementation experiments were used to empirically demonstrate that EnvZ is required for the inhibitory phenotype and that regulation of mcpM is dependent on binding of the phosphorylated OmpR to the mcpM promoter region. The phosphorylated OmpR may recognize three different binding sites within this promoter region. Site-directed mutagenesis revealed that the McpM precursor peptide includes two leader peptides that undergo sequential cleavage at positions G17/G18 and G35/A36 during export through the type I secretion system. Competition assays showed that both cleaved products are required for the PDI phenotype although we could not distinguish loss of function from loss of secretion in these assays. McpM has four cysteines within the mature peptide and site-directed mutagenesis experiments demonstrated that the first two cysteines are necessary for McpM to inhibit susceptible cells. Together these data combined with previous work indicate that MccPDI is unique amongst the microcins that have been described to date.
Collapse
|
13
|
Aquino P, Honda B, Jaini S, Lyubetskaya A, Hosur K, Chiu JG, Ekladious I, Hu D, Jin L, Sayeg MK, Stettner AI, Wang J, Wong BG, Wong WS, Alexander SL, Ba C, Bensussen SI, Bernstein DB, Braff D, Cha S, Cheng DI, Cho JH, Chou K, Chuang J, Gastler DE, Grasso DJ, Greifenberger JS, Guo C, Hawes AK, Israni DV, Jain SR, Kim J, Lei J, Li H, Li D, Li Q, Mancuso CP, Mao N, Masud SF, Meisel CL, Mi J, Nykyforchyn CS, Park M, Peterson HM, Ramirez AK, Reynolds DS, Rim NG, Saffie JC, Su H, Su WR, Su Y, Sun M, Thommes MM, Tu T, Varongchayakul N, Wagner TE, Weinberg BH, Yang R, Yaroslavsky A, Yoon C, Zhao Y, Zollinger AJ, Stringer AM, Foster JW, Wade J, Raman S, Broude N, Wong WW, Galagan JE. Coordinated regulation of acid resistance in Escherichia coli. BMC SYSTEMS BIOLOGY 2017; 11:1. [PMID: 28061857 PMCID: PMC5217608 DOI: 10.1186/s12918-016-0376-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 12/07/2016] [Indexed: 12/29/2022]
Abstract
Background Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid. Its mechanism has not been determined. The regulation of the multiple AR systems and their coordination with broader cellular metabolism has not been fully explored. Results We utilized a combination of ChIP-Seq and gene expression analysis to experimentally map the regulatory interactions of four TFs: nac, ntrC, ompR, and csiR. Our data identified all previously in vivo confirmed direct interactions and revealed several others previously inferred from gene expression data. Our data demonstrate that nac and csiR directly modulate AR, and leads to a regulatory network model in which all four TFs participate in coordinating acid resistance, glutamate metabolism, and nitrogen metabolism. This model predicts a novel mechanism for AR1 by which the decarboxylation enzymes of AR2 are used with internally derived glutamate. This hypothesis makes several testable predictions that we confirmed experimentally. Conclusions Our data suggest that the regulatory network underlying AR is complex and deeply interconnected with the regulation of GABA and glutamate metabolism, nitrogen metabolism. These connections underlie and experimentally validated model of AR1 in which the decarboxylation enzymes of AR2 are used with internally derived glutamate. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0376-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia Aquino
- Department of Biomedical Engineering, Boston University, Boston, USA.,BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Brent Honda
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Suma Jaini
- Department of Biomedical Engineering, Boston University, Boston, USA
| | | | - Krutika Hosur
- Department of Biomedical Engineering, Boston University, Boston, USA.,BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Joanna G Chiu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Iriny Ekladious
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Dongjian Hu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Lin Jin
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Marianna K Sayeg
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Arion I Stettner
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Julia Wang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Brandon G Wong
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Winnie S Wong
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Cong Ba
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Seth I Bensussen
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - David B Bernstein
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Dana Braff
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Susie Cha
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel I Cheng
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jang Hwan Cho
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Kenny Chou
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - James Chuang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel E Gastler
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel J Grasso
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Chen Guo
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Anna K Hawes
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Divya V Israni
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Saloni R Jain
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jessica Kim
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Junyu Lei
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hao Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - David Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Qian Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Ning Mao
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Salwa F Masud
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Cari L Meisel
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jing Mi
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Minhee Park
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hannah M Peterson
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Alfred K Ramirez
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel S Reynolds
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Nae Gyune Rim
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jared C Saffie
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hang Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Wendell R Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Yaqing Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Meng Sun
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Meghan M Thommes
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Tao Tu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Tyler E Wagner
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Rouhui Yang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Christine Yoon
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Yanyu Zhao
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Anne M Stringer
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - John W Foster
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Joseph Wade
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Sahadaven Raman
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Natasha Broude
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, Boston, USA. .,Bioinformatics program, Boston University, Boston, USA. .,National Emerging Infectious Diseases Laboratory, Boston University, Boston, USA.
| |
Collapse
|
14
|
Trajtenberg F, Imelio JA, Machado MR, Larrieux N, Marti MA, Obal G, Mechaly AE, Buschiazzo A. Regulation of signaling directionality revealed by 3D snapshots of a kinase:regulator complex in action. eLife 2016; 5:e21422. [PMID: 27938660 PMCID: PMC5231405 DOI: 10.7554/elife.21422] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 12/09/2016] [Indexed: 01/19/2023] Open
Abstract
Two-component systems (TCS) are protein machineries that enable cells to respond to input signals. Histidine kinases (HK) are the sensory component, transferring information toward downstream response regulators (RR). HKs transfer phosphoryl groups to their specific RRs, but also dephosphorylate them, overall ensuring proper signaling. The mechanisms by which HKs discriminate between such disparate directions, are yet unknown. We now disclose crystal structures of the HK:RR complex DesK:DesR from Bacillus subtilis, comprising snapshots of the phosphotransfer and the dephosphorylation reactions. The HK dictates the reactional outcome through conformational rearrangements that include the reactive histidine. The phosphotransfer center is asymmetric, poised for dissociative nucleophilic substitution. The structural bases of HK phosphatase/phosphotransferase control are uncovered, and the unexpected discovery of a dissociative reactional center, sheds light on the evolution of TCS phosphotransfer reversibility. Our findings should be applicable to a broad range of signaling systems and instrumental in synthetic TCS rewiring.
Collapse
Affiliation(s)
- Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Juan A Imelio
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Matías R Machado
- Biomolecular Simulations, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nicole Larrieux
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcelo A Marti
- Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gonzalo Obal
- Protein Biophysics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ariel E Mechaly
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Département de Microbiologie, Institut Pasteur, Paris, France
| |
Collapse
|
15
|
Agrawal R, Kumar V P, Ramanan H, Saini DK. FRET reveals multiple interaction states between two component signalling system proteins of M. tuberculosis. Biochim Biophys Acta Gen Subj 2016; 1860:1498-507. [PMID: 27102281 DOI: 10.1016/j.bbagen.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/03/2016] [Accepted: 04/14/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND Two component signalling involves interaction between sensor kinase (SK) and response regulator (RR) proteins which depends on their phosphorylation status. METHODS In this study we report the development of an in vitro FRET assay for studying interaction between fluorescently tagged SK and RR proteins. RESULTS Using TCS proteins of Mycobacterium tuberculosis, we demonstrate that phosphorylation status of SK affects the SK-RR interaction, which varies from one TCS to another. The observation was strengthened by recordings from mutant SK and RR proteins. The assay retained the specificity/crosstalk potential of the participating proteins and reflected the inherent phosphotransfer potentials. CONCLUSIONS SK and RR proteins interact with each other in unphosphorylated state and the phosphorylation affects the interaction between SK and RR, which was reflected as reduction in FRET ratio. GENERAL SIGNIFICANCE A non-radioactive, in vitro FRET based assay is reported, which can be utilized for studying genome-wide partner screening, identifying crosstalk or specificity in TCSs.
Collapse
Affiliation(s)
- Ruchi Agrawal
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Prem Kumar V
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Harini Ramanan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India; Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
16
|
Regulation of virulence: the rise and fall of gastrointestinal pathogens. J Gastroenterol 2016; 51:195-205. [PMID: 26553054 PMCID: PMC4767578 DOI: 10.1007/s00535-015-1141-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023]
Abstract
Colonization resistance by the commensal microbiota is a key defense against infectious pathogens in the gastrointestinal tract. The microbiota directly competes with incoming pathogens by occupying the colonization niche, depleting nutrients in the gut lumen as well as indirectly inhibiting the growth of pathogens through activation of host immunity. Enteric pathogens have evolved strategies to cope with microbiota-mediated colonization resistance. Pathogens utilize a wide array of virulence factors to outcompete their commensal rivals in the gut. However, since the expression of virulence factors is costly to maintain and reduces bacterial fitness, pathogens need to regulate their virulence properly in order to maximize their fitness. To this end, most pathogens use environmental cues to regulate their virulence gene expression. Thus, a dynamic regulation of virulence factor expression is a key invasion strategy utilized by enteric pathogens. On the other hand, host immunity selectively targets virulent pathogens in order to counter infection in the gut. The host immune system is generally tolerant of harmless microorganisms, such as the commensal microbiota. Moreover, the host relies on its commensal microbiota to contribute, in concert with its immune system, to the elimination of pathogens. Collectively, regulation of virulence determines the fate of enteric pathogens, from the establishment of infection to the eventual elimination. Here, we will review the dynamics of virulence and its role in infection.
Collapse
|
17
|
Hörnschemeyer P, Liss V, Heermann R, Jung K, Hunke S. Interaction Analysis of a Two-Component System Using Nanodiscs. PLoS One 2016; 11:e0149187. [PMID: 26882435 PMCID: PMC4755656 DOI: 10.1371/journal.pone.0149187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/28/2016] [Indexed: 11/25/2022] Open
Abstract
Two-component systems are the major means by which bacteria couple adaptation to environmental changes. All utilize a phosphorylation cascade from a histidine kinase to a response regulator, and some also employ an accessory protein. The system-wide signaling fidelity of two-component systems is based on preferential binding between the signaling proteins. However, information on the interaction kinetics between membrane embedded histidine kinase and its partner proteins is lacking. Here, we report the first analysis of the interactions between the full-length membrane-bound histidine kinase CpxA, which was reconstituted in nanodiscs, and its cognate response regulator CpxR and accessory protein CpxP. Using surface plasmon resonance spectroscopy in combination with interaction map analysis, the affinity of membrane-embedded CpxA for CpxR was quantified, and found to increase by tenfold in the presence of ATP, suggesting that a considerable portion of phosphorylated CpxR might be stably associated with CpxA in vivo. Using microscale thermophoresis, the affinity between CpxA in nanodiscs and CpxP was determined to be substantially lower than that between CpxA and CpxR. Taken together, the quantitative interaction data extend our understanding of the signal transduction mechanism used by two-component systems.
Collapse
Affiliation(s)
- Patrick Hörnschemeyer
- Fachbereich Biologie/Chemie, Mikrobiologie, Universität Osnabrück, Barbarastrasse 11, D-49076, Osnabrück, Germany
| | - Viktoria Liss
- Fachbereich Biologie/Chemie, Mikrobiologie, Universität Osnabrück, Barbarastrasse 11, D-49076, Osnabrück, Germany
| | - Ralf Heermann
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152, Martinsried, Germany
| | - Kirsten Jung
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152, Martinsried, Germany
| | - Sabine Hunke
- Fachbereich Biologie/Chemie, Mikrobiologie, Universität Osnabrück, Barbarastrasse 11, D-49076, Osnabrück, Germany
- * E-mail:
| |
Collapse
|
18
|
The opgC gene is required for OPGs succinylation and is osmoregulated through RcsCDB and EnvZ/OmpR in the phytopathogen Dickeya dadantii. Sci Rep 2016; 6:19619. [PMID: 26790533 PMCID: PMC4726272 DOI: 10.1038/srep19619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/16/2015] [Indexed: 12/18/2022] Open
Abstract
Osmoregulated periplasmic glucans (OPGs) are a family of periplasmic oligosaccharides found in the envelope of most Proteobacteria. They are required for virulence of zoo- and phyto-pathogens. The glucose backbone of OPGs is substituted by various kinds of molecules depending on the species, O-succinyl residues being the most widely distributed. In our model, Dickeya dadantii, a phytopathogenic bacteria causing soft rot disease in a wide range of plant species, the backbone of OPGs is substituted by O-succinyl residues in media of high osmolarity and by O-acetyl residues whatever the osmolarity. The opgC gene encoding a transmembrane protein required for the succinylation of the OPGs in D. dadantii was found after an in silico search of a gene encoding a protein with the main characteristics recovered in the two previously characterized OpgC of E. coli and R. sphaeroides, i.e. 10 transmembrane segments and one acyl-transferase domain. Characterization of the opgC gene revealed that high osmolarity expression of the succinyl transferase is controlled by both the EnvZ-OmpR and RcsCDB phosphorelay systems. The loss of O-succinyl residue did not affect the virulence of D. dadantii, suggesting that only the glucose backbone of OPGs is required for virulence.
Collapse
|
19
|
Phosphorelays provide tunable signal processing capabilities for the cell. PLoS Comput Biol 2013; 9:e1003322. [PMID: 24244132 PMCID: PMC3820541 DOI: 10.1371/journal.pcbi.1003322] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 09/23/2013] [Indexed: 01/19/2023] Open
Abstract
Achieving a complete understanding of cellular signal transduction requires deciphering the relation between structural and biochemical features of a signaling system and the shape of the signal-response relationship it embeds. Using explicit analytical expressions and numerical simulations, we present here this relation for four-layered phosphorelays, which are signaling systems that are ubiquitous in prokaryotes and also found in lower eukaryotes and plants. We derive an analytical expression that relates the shape of the signal-response relationship in a relay to the kinetic rates of forward, reverse phosphorylation and hydrolysis reactions. This reveals a set of mathematical conditions which, when satisfied, dictate the shape of the signal-response relationship. We find that a specific topology also observed in nature can satisfy these conditions in such a way to allow plasticity among hyperbolic and sigmoidal signal-response relationships. Particularly, the shape of the signal-response relationship of this relay topology can be tuned by altering kinetic rates and total protein levels at different parts of the relay. These findings provide an important step towards predicting response dynamics of phosphorelays, and the nature of subsequent physiological responses that they mediate, solely from topological features and few composite measurements; measuring the ratio of reverse and forward phosphorylation rate constants could be sufficient to determine the shape of the signal-response relationship the relay exhibits. Furthermore, they highlight the potential ways in which selective pressures on signal processing could have played a role in the evolution of the observed structural and biochemical characteristic in phosphorelays. Two-component phosphorelays constitute the key signaling pathways in all prokaryotes, lower eukaryotes, and plants, where they underline diverse physiological responses such as virulence, cell-cycle progression and sporulation. Despite such prevalence, our understanding of the dynamics and function of these systems remains incomplete. In particular, it is not clear why all phosphorelays studied to date embed a four-layer architecture and how their dynamics could relate to phenotypic variability in the resulting responses. Here, we use analytical approaches and numerical simulations to analyze all possible phosphorelay topologies of length four and embedding reverse phosphorylation. We find that only two topologies can embed both hyperbolic and sigmoidal signal-response relationships, and that one of these can underlie high noise (i.e. phenotypic variability) in population responses. All of the remaining topologies are either non-functional or can embed only a hyperbolic signal-response relationship. Using analytical solutions of relay dynamics, we find that reverse phosphorylation from the third layer, a topological featured commonly observed in nature, is a necessary condition for sigmoidal signal-response relationship.
Collapse
|
20
|
Chang YC, Armitage JP, Papachristodoulou A, Wadhams GH. A single phosphatase can convert a robust step response into a graded, tunable or adaptive response. MICROBIOLOGY-SGM 2013; 159:1276-1285. [PMID: 23704783 DOI: 10.1099/mic.0.066324-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many biological signalling pathways have evolved to produce responses to environmental signals that are robust to fluctuations in protein copy number and noise. Whilst beneficial for biology, this robustness can be problematic for synthetic biologists wishing to re-engineer and subsequently tune the response of a given system. Here we show that the well-characterized EnvZ/OmpR two-component signalling system from Escherichia coli possesses one such robust step response. However, the synthetic addition of just a single component into the system, an extra independently controllable phosphatase, can change this behaviour to become graded and tunable, and even show adaptation. Our approach introduces a new design principle which can be implemented simply in engineering and redesigning fast signal transduction pathways for synthetic biology.
Collapse
Affiliation(s)
- Yo-Cheng Chang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan, ROC.,Oxford Centre for Integrative Systems Biology, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK.,Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.,Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Judith P Armitage
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.,Oxford Centre for Integrative Systems Biology, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| | - Antonis Papachristodoulou
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.,Oxford Centre for Integrative Systems Biology, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| | - George H Wadhams
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.,Oxford Centre for Integrative Systems Biology, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
21
|
Barbieri CM, Wu T, Stock AM. Comprehensive analysis of OmpR phosphorylation, dimerization, and DNA binding supports a canonical model for activation. J Mol Biol 2013; 425:1612-26. [PMID: 23399542 DOI: 10.1016/j.jmb.2013.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 01/22/2013] [Accepted: 02/02/2013] [Indexed: 11/16/2022]
Abstract
The OmpR/PhoB family of response regulators (RRs) is the largest class of two-component system signal transduction proteins. Extensive biochemical and structural characterization of these transcription factors has provided insights into their activation and DNA-binding mechanisms. For the most part, OmpR/PhoB family proteins are thought to become activated through phosphorylation from their cognate histidine kinase partners, which in turn facilitates an allosteric change in the RR, enabling homodimerization and subsequently enhanced DNA binding. Incongruently, it has been suggested that OmpR, the eponymous member of this RR family, becomes activated via different mechanisms, whereby DNA binding plays a central role in facilitating dimerization and phosphorylation. Characterization of the rate and extent of the phosphorylation of OmpR and OmpR DNA-binding mutants following activation of the EnvZ/OmpR two-component system shows that DNA binding is not essential for phosphorylation of OmpR in vivo. In addition, detailed analyses of the energetics of DNA binding and dimerization of OmpR in both its unphosphorylated and phosphorylated state indicate that phosphorylation enhances OmpR dimerization and that this dimerization enhancement is the energetic driving force for phosphorylation-mediated regulation of OmpR-DNA binding. These findings suggest that OmpR phosphorylation-mediated activation follows the same paradigm as the other members of the OmpR/PhoB family of RRs in contrast to previously proposed models of OmpR activation.
Collapse
Affiliation(s)
- Christopher M Barbieri
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 679 Hoes Lane West, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
22
|
Brzóstkowska M, Raczkowska A, Brzostek K. OmpR, a response regulator of the two-component signal transduction pathway, influences inv gene expression in Yersinia enterocolitica O9. Front Cell Infect Microbiol 2012; 2:153. [PMID: 23264953 PMCID: PMC3524506 DOI: 10.3389/fcimb.2012.00153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/19/2012] [Indexed: 11/13/2022] Open
Abstract
The environmental control of invasin (inv) expression in Yersinia enterocolitica is mediated by a regulatory network composed of negative and positive regulators of inv gene transcription. Previously, we demonstrated that OmpR, a response regulator of the two-component signal transduction pathway EnvZ/OmpR, negatively regulates inv gene expression in Y. enterocolitica O9 by direct interaction with the inv promoter region. This study was undertaken to clarify the role of OmpR in the inv regulatory circuit in which RovA protein has been shown to positively regulate inv transcription. Using ompR, rovA, and ompR rovA Y. enterocolitica mutant backgrounds we showed that the inhibitory effect of OmpR on inv transcription may be observed only when RovA is present/active in Y. enterocolitica cells. To extend our research on inv regulation we examined the effect of OmpR on rovA gene expression. Analysis of rovA-lacZ transcriptional fusion in Y. enterocolitica wild-type and ompR background indicated that OmpR does not influence rovA expression. Thus, our results indicate that OmpR influences inv expression directly via binding to the inv promoter, but not through modulation of rovA expression.
Collapse
Affiliation(s)
- Marta Brzóstkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | | | | |
Collapse
|
23
|
Salvado B, Vilaprinyo E, Karathia H, Sorribas A, Alves R. Two component systems: physiological effect of a third component. PLoS One 2012; 7:e31095. [PMID: 22363555 PMCID: PMC3281920 DOI: 10.1371/journal.pone.0031095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 01/02/2012] [Indexed: 11/18/2022] Open
Abstract
Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS). These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK) and by a response regulator (RR) that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call "third component") on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible.
Collapse
Affiliation(s)
- Baldiri Salvado
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida & IRBLleida, Lleida, Spain
| | - Ester Vilaprinyo
- Evaluation and Clinical Epidemiology Department, Parc de Salut Mar and CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Hiren Karathia
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida & IRBLleida, Lleida, Spain
| | - Albert Sorribas
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida & IRBLleida, Lleida, Spain
| | - Rui Alves
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida & IRBLleida, Lleida, Spain
- * E-mail:
| |
Collapse
|
24
|
Wei Y, Ng WL, Cong J, Bassler BL. Ligand and antagonist driven regulation of the Vibrio cholerae quorum-sensing receptor CqsS. Mol Microbiol 2012; 83:1095-108. [PMID: 22295878 PMCID: PMC3310172 DOI: 10.1111/j.1365-2958.2012.07992.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Quorum sensing, a bacterial cell–cell communication process, controls biofilm formation and virulence factor production in Vibrio cholerae, a human pathogen that causes the disease cholera. The major V. cholerae autoinducer is (S)-3-hydroxytridecan-4-one (CAI-1). A membrane bound two-component sensor histidine kinase called CqsS detects CAI-1, and the CqsS → LuxU → LuxO phosphorelay cascade transduces the information encoded in CAI-1 into the cell. Because the CAI-1 ligand is known and because the signalling circuit is simple, consisting of only three proteins, this system is ideal for analysing ligand regulation of a sensor histidine kinase. Here we reconstitute the CqsS → LuxU → LuxO phosphorylation cascade in vitro. We find that CAI-1 inhibits the initial auto-phosphorylation of CqsS whereas subsequent phosphotransfer steps and CqsS phosphatase activity are not CAI-1-controlled. CAI-1 binding to CqsS causes a conformational change that renders His194 in CqsS inaccessible to the CqsS catalytic domain. CqsS mutants with altered ligand detection specificities are faithfully controlled by their corresponding modified ligands in vitro. Likewise, pairing of agonists and antagonists allows in vitro assessment of their opposing activities. Our data are consistent with a two-state model for ligand control of histidine kinases.
Collapse
Affiliation(s)
- Yunzhou Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
25
|
Yuan J, Wei B, Shi M, Gao H. Functional assessment of EnvZ/OmpR two-component system in Shewanella oneidensis. PLoS One 2011; 6:e23701. [PMID: 21886811 PMCID: PMC3160321 DOI: 10.1371/journal.pone.0023701] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 07/22/2011] [Indexed: 11/23/2022] Open
Abstract
EnvZ and OmpR constitute the bacterial two-component signal transduction system known to mediate osmotic stress response in a number of Gram-negative bacteria. In an effort to understand the mechanism through which Shewanella oneidensis senses and responds to environmental osmolarity changes, structure of the ompR-envZ operon was determined with Northern blotting assay and roles of the EnvZ/OmpR two-component system in response to various stresses were investigated with mutational analysis, quantitative reverse transcriptase PCR (qRT-PCR), and phenotype microarrays. Results from the mutational analysis and qRT-PCR suggested that the EnvZ/OmpR system contributed to osmotic stress response of S. oneidensis and very likely engaged a similar strategy employed by E. coli, which involved reciprocal regulation of two major porin coding genes. Additionally, the ompR-envZ system was also found related to cell motility. We further showed that the ompR-envZ dependent regulation of porin genes and motility resided almost completely on ompR and only partially on envZ, indicating additional mechanisms for OmpR phosphorylation. In contrast to E. coli lacking ompR-envZ, however, growth of S. oneidensis did not show a significant dependence on ompR-envZ even under osmotic stress. Further analysis with phenotype microarrays revealed that the S. oneidensis strains lacking a complete ompR-envZ system displayed hypersensitivities to a number of agents, especially in alkaline environment. Taken together, our results suggest that the function of the ompR-envZ system in S. oneidensis, although still connected with osmoregulation, has diverged considerably from that of E. coli. Additional mechanism must exist to support growth of S. oneidensis under osmotic stress.
Collapse
Affiliation(s)
- Jie Yuan
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Buyun Wei
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Miaomiao Shi
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
26
|
Raczkowska A, Brzóstkowska M, Kwiatek A, Bielecki J, Brzostek K. Modulation of inv gene expression by the OmpR two-component response regulator protein of Yersinia enterocolitica. Folia Microbiol (Praha) 2011; 56:313-9. [PMID: 21818612 DOI: 10.1007/s12223-011-0054-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/12/2011] [Indexed: 12/22/2022]
Abstract
To elucidate the physiological meaning of OmpR-dependent expression of invasin gene (inv) inhibition in Yersinia enterocolitica, the function of the EnvZ/OmpR regulatory pathway in osmoregulation of inv expression was analyzed in detail. The osmoregulation of inv expression was found to be a multifaceted process involving both OmpR-dependent and -independent mechanisms. Analysis of inv transcription in strains lacking OmpR or EnvZ proteins indicated that kinase EnvZ is not the only regulator of OmpR phosphorylation. Using the transcriptional inv::lacZ fusion in a heterologous system (Escherichia coli) we tried to clarify the role of OmpR in the inv regulatory circuit composed of negative (H-NS) and positive (RovA) regulators of inv gene transcription. We were able to show a significant increase in inv expression in E. coli ompR background under H-NS( Ecoli )-repressed condition. Moreover, H-NS-mediated inv repression was relieved when RovA of Y. enterocolitica was expressed from a plasmid. Furthermore, we showed that RovA may activate inv expression irrespective on the presence of H-NS protein. Using this strategy we showed that OmpR of Y. enterocolitica decrease RovA-mediated inv activation.
Collapse
Affiliation(s)
- A Raczkowska
- Department of Applied Microbiology, University of Warsaw, Faculty of Biology, Institute of Microbiology, Miecznikowa 1, Warsaw, Poland
| | | | | | | | | |
Collapse
|
27
|
Psakis G, Mailliet J, Lang C, Teufel L, Essen LO, Hughes J. Signaling Kinetics of Cyanobacterial Phytochrome Cph1, a Light Regulated Histidine Kinase. Biochemistry 2011; 50:6178-88. [DOI: 10.1021/bi200612d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Georgios Psakis
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| | - Jo Mailliet
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| | - Christina Lang
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| | - Lotte Teufel
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps University, D35032 Marburg, Germany
| | - Jon Hughes
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| |
Collapse
|
28
|
Tiwari A, Ray JCJ, Narula J, Igoshin OA. Bistable responses in bacterial genetic networks: designs and dynamical consequences. Math Biosci 2011; 231:76-89. [PMID: 21385588 DOI: 10.1016/j.mbs.2011.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/23/2011] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
Abstract
A key property of living cells is their ability to react to stimuli with specific biochemical responses. These responses can be understood through the dynamics of underlying biochemical and genetic networks. Evolutionary design principles have been well studied in networks that display graded responses, with a continuous relationship between input signal and system output. Alternatively, biochemical networks can exhibit bistable responses so that over a range of signals the network possesses two stable steady states. In this review, we discuss several conceptual examples illustrating network designs that can result in a bistable response of the biochemical network. Next, we examine manifestations of these designs in bacterial master-regulatory genetic circuits. In particular, we discuss mechanisms and dynamic consequences of bistability in three circuits: two-component systems, sigma-factor networks, and a multistep phosphorelay. Analyzing these examples allows us to expand our knowledge of evolutionary design principles networks with bistable responses.
Collapse
Affiliation(s)
- Abhinav Tiwari
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | | | | | | |
Collapse
|
29
|
Krell T, Lacal J, Busch A, Silva-Jiménez H, Guazzaroni ME, Ramos JL. Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol 2010; 64:539-59. [PMID: 20825354 DOI: 10.1146/annurev.micro.112408.134054] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria sense and respond to a wide range of physical and chemical signals. Central to sensing and responding to these signals are two-component systems, which have a sensor histidine kinase (SK) and a response regulator (RR) as basic components. Here we review the different molecular mechanisms by which these signals are integrated and modulate the phosphorylation state of SKs. Apart from the basic mechanism, which consists of signal recognition by the SK that leads to an alteration of its autokinase activity and subsequently a change in the RR phosphorylation state, a variety of alternative modes have evolved. The biochemical data available on SKs, particularly their molecular interactions with signals, nucleotides, and their cognate RRs, are also reviewed.
Collapse
Affiliation(s)
- Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Carlyon RE, Ryther JL, VanYperen RD, Griffitts JS. FeuN, a novel modulator of two-component signalling identified in Sinorhizobium meliloti. Mol Microbiol 2010; 77:170-82. [PMID: 20487268 DOI: 10.1111/j.1365-2958.2010.07198.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sinorhizobium meliloti is a nitrogen-fixing bacterial symbiont of alfalfa and related legumes. Symbiotic infection by S. meliloti requires an osmosensory two-component system composed of the response regulator FeuP and the sensor kinase FeuQ. The FeuPQ pathway positively regulates transcription of multiple genes including ndvA, which encodes the cyclic glucan exporter. Here we show that proper regulation of this signalling pathway is essential for cell viability. Without the small 83 amino acid protein FeuN, S. meliloti cells are unable to grow, and this phenotype is dependent on the FeuPQ pathway. Using Escherichia coli as a heterologous system, we show that expression of feuP and feuQ leads to a dramatic increase in ndvA promoter activity, but that simultaneous expression of feuN abrogates this effect. Random mutagenesis of the feuPQ bicistron revealed a defined region of the FeuQ protein in and around its two predicted transmembrane domains that are required for FeuN-dependent signalling modulation. Marker enzyme fusion experiments indicate that most of the FeuN polypeptide is localized to the periplasm. Our data support a model in which FeuN interacts directly with FeuQ to attenuate phosphorylation of FeuP, and that without this activity, hyperactive signalling through FeuPQ results in cessation of growth or death.
Collapse
Affiliation(s)
- Rebecca E Carlyon
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | | | | | | |
Collapse
|
31
|
Kinetic characterization of the WalRKSpn (VicRK) two-component system of Streptococcus pneumoniae: dependence of WalKSpn (VicK) phosphatase activity on its PAS domain. J Bacteriol 2010; 192:2346-58. [PMID: 20190050 DOI: 10.1128/jb.01690-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The WalRK two-component system plays important roles in maintaining cell wall homeostasis and responding to antibiotic stress in low-GC Gram-positive bacteria. In the major human pathogen, Streptococcus pneumoniae, phosphorylated WalR(Spn) (VicR) response regulator positively controls the transcription of genes encoding the essential PcsB division protein and surface virulence factors. WalR(Spn) is phosphorylated by the WalK(Spn) (VicK) histidine kinase. Little is known about the signals sensed by WalK histidine kinases. To gain information about WalK(Spn) signal transduction, we performed a kinetic characterization of the WalRK(Spn) autophosphorylation, phosphoryltransferase, and phosphatase reactions. We were unable to purify soluble full-length WalK(Spn). Consequently, these analyses were performed using two truncated versions of WalK(Spn) lacking its single transmembrane domain. The longer version (Delta35 amino acids) contained most of the HAMP domain and the PAS, DHp, and CA domains, whereas the shorter version (Delta195 amino acids) contained only the DHp and CA domains. The autophosphorylation kinetic parameters of Delta35 and Delta195 WalK(Spn) were similar [K(m)(ATP) approximately 37 microM; k(cat) approximately 0.10 min(-1)] and typical of those of other histidine kinases. The catalytic efficiency of the two versions of WalK(Spn) approximately P were also similar in the phosphoryltransfer reaction to full-length WalR(Spn). In contrast, absence of the HAMP-PAS domains significantly diminished the phosphatase activity of WalK(Spn) for WalR(Spn) approximately P. Deletion and point mutations confirmed that optimal WalK(Spn) phosphatase activity depended on the PAS domain as well as residues in the DHp domain. In addition, these WalK(Spn) DHp domain and DeltaPAS mutations led to attenuation of virulence in a murine pneumonia model.
Collapse
|
32
|
Ninfa AJ. Use of two-component signal transduction systems in the construction of synthetic genetic networks. Curr Opin Microbiol 2010; 13:240-5. [PMID: 20149718 DOI: 10.1016/j.mib.2010.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/04/2010] [Accepted: 01/08/2010] [Indexed: 10/19/2022]
Abstract
Two-component signal transduction systems are a common type of signaling system in prokaryotes; the typical cell has dozens of systems regulating aspects of physiology and controlling responses to environmental conditions. In this review, I consider how these systems may be useful for engineering novel cell functions. Examples of successful incorporation of two-component systems into engineered systems are noted, and features of the systems that favor or hinder potential future use of these signaling systems for synthetic biology applications are discussed. The focus will be on the engineering of novel couplings of sensory functions to signaling outputs. Recent successes in this area are noted, such as the development of light-sensitive transmitter proteins and chemotactic receptors responsive to nitrate.
Collapse
Affiliation(s)
- Alexander J Ninfa
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606, USA.
| |
Collapse
|
33
|
Noriega CE, Lin HY, Chen LL, Williams SB, Stewart V. Asymmetric cross-regulation between the nitrate-responsive NarX-NarL and NarQ-NarP two-component regulatory systems from Escherichia coli K-12. Mol Microbiol 2009; 75:394-412. [PMID: 19968795 DOI: 10.1111/j.1365-2958.2009.06987.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The NarX-NarL and NarQ-NarP sensor-response regulator pairs control Escherichia coli gene expression in response to nitrate and nitrite. Previous analysis suggests that the Nar two-component systems form a cross-regulation network in vivo. Here we report on the kinetics of phosphoryl transfer between different sensor-regulator combinations in vitro. NarX exhibited a noticeable kinetic preference for NarL over NarP, whereas NarQ exhibited a relatively slight kinetic preference for NarL. These findings were substantiated in reactions containing one sensor and both response regulators, or with two sensors and a single response regulator. We isolated 21 NarX mutants with missense substitutions in the cytoplasmic central and transmitter modules. These confer phenotypes that reflect defects in phospho-NarL dephosphorylation. Five of these mutants, all with substitutions in the transmitter DHp domain, also exhibited NarP-blind phenotypes. Phosphoryl transfer assays in vitro confirmed that these NarX mutants have defects in catalysing NarP phosphorylation. By contrast, the corresponding NarQ mutants conferred phenotypes indicating comparable interactions with both NarP and NarL. Our overall results reveal asymmetry in the Nar cross-regulation network, such that NarQ interacts similarly with both response regulators, whereas NarX interacts preferentially with NarL.
Collapse
Affiliation(s)
- Chris E Noriega
- Department of Microbiology, University of California, Davis, CA 95616-8665, USA
| | | | | | | | | |
Collapse
|
34
|
Casino P, Rubio V, Marina A. Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell 2009; 139:325-36. [PMID: 19800110 DOI: 10.1016/j.cell.2009.08.032] [Citation(s) in RCA: 306] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 03/26/2009] [Accepted: 08/21/2009] [Indexed: 11/25/2022]
Abstract
The chief mechanism used by bacteria for sensing their environment is based on two conserved proteins: a sensor histidine kinase (HK) and an effector response regulator (RR). The signal transduction process involves highly conserved domains of both proteins that mediate autokinase, phosphotransfer, and phosphatase activities whose output is a finely tuned RR phosphorylation level. Here, we report the structure of the complex between the entire cytoplasmic portion of Thermotoga maritima class I HK853 and its cognate, RR468, as well as the structure of the isolated RR468, both free and BeF(3)(-) bound. Our results provide insight into partner specificity in two-component systems, recognition of the phosphorylation state of each partner, and the catalytic mechanism of the phosphatase reaction. Biochemical analysis shows that the HK853-catalyzed autokinase reaction proceeds by a cis autophosphorylation mechanism within the HK subunit. The results suggest a model for the signal transduction mechanism in two-component systems.
Collapse
Affiliation(s)
- Patricia Casino
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV-CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Jaume Roig 11, 46010 Valencia, Spain
| | | | | |
Collapse
|
35
|
Groban ES, Clarke EJ, Salis HM, Miller SM, Voigt CA. Kinetic buffering of cross talk between bacterial two-component sensors. J Mol Biol 2009; 390:380-93. [PMID: 19445950 DOI: 10.1016/j.jmb.2009.05.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 05/05/2009] [Accepted: 05/07/2009] [Indexed: 11/26/2022]
Abstract
Two-component systems are a class of sensors that enable bacteria to respond to environmental and cell-state signals. The canonical system consists of a membrane-bound sensor histidine kinase that autophosphorylates in response to a signal and transfers the phosphate to an intracellular response regulator. Bacteria typically have dozens of two-component systems. The key questions are whether these systems are linear and, if they are, how cross talk between systems is buffered. In this work, we studied the EnvZ/OmpR and CpxA/CpxR systems from Escherichia coli, which have been shown previously to exhibit slow cross talk in vitro. Using in vitro radiolabeling and a rapid quenched-flow apparatus, we experimentally measured 10 biochemical parameters capturing the cognate and non-cognate phosphotransfer reactions between the systems. These data were used to parameterize a mathematical model that was used to predict how cross talk is affected as different genes are knocked out. It was predicted that significant cross talk between EnvZ and CpxR only occurs for the triple mutant DeltaompR DeltacpxA DeltaactA-pta. All seven combinations of these knockouts were made to test this prediction and only the triple mutant demonstrated significant cross talk, where the cpxP promoter was induced 280-fold upon the activation of EnvZ. Furthermore, the behavior of the other knockouts agrees with the model predictions. These results support a kinetic model of buffering where both the cognate bifunctional phosphatase activity and the competition between regulator proteins for phosphate prevent cross talk in vivo.
Collapse
Affiliation(s)
- Eli S Groban
- University of California, San Francisco, 94158, USA
| | | | | | | | | |
Collapse
|
36
|
Ortiz de Orué Lucana D, Groves MR. The three-component signalling system HbpS-SenS-SenR as an example of a redox sensing pathway in bacteria. Amino Acids 2009; 37:479-86. [PMID: 19259771 DOI: 10.1007/s00726-009-0260-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 01/30/2009] [Indexed: 01/06/2023]
Abstract
The two-component system SenS-SenR and the extracellular HbpS protein of the cellulose degrader Streptomyces reticuli have been shown to act in concert as a novel system which detects redox stress. In vivo and in vitro experiments have led to the hypothesis that HbpS binds and degrades heme, communicating the extracellular presence of heme and oxidative stress to the membrane-embedded sensor histidine kinase SenS via a bound iron. The response regulator SenR would then up-regulate downstream signalling cascades, leading to the appropriate gene expression levels for bacterial survival in an oxidative environment. Sequence analysis has shown that homologs of HbpS and SenS-SenR exist in a number of ecologically and medically relevant bacterial species, suggesting the existence of a previously undescribed bacterial oxidative stress-response pathway common to both Gram-negative and Gram-positive bacteria. The presented report reviews the current knowledge of the function of this novel protein family consisting of an accessory protein and its cognate two-component system, which could be more properly described as a three-component system.
Collapse
|
37
|
Igoshin OA, Alves R, Savageau MA. Hysteretic and graded responses in bacterial two-component signal transduction. Mol Microbiol 2008; 68:1196-215. [PMID: 18363790 DOI: 10.1111/j.1365-2958.2008.06221.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial two-component systems (TCS) are key signal transduction networks regulating global responses to environmental change. Environmental signals may modulate the phosphorylation state of sensor kinases (SK). The phosphorylated SK transfers the phosphate to its cognate response regulator (RR), which causes physiological response to the signal. Frequently, the SK is bifunctional and, when unphosphorylated, it is also capable of dephosphorylating the RR. The phosphatase activity may also be modulated by environmental signals. Using the EnvZ/OmpR system as an example, we constructed mathematical models to examine the steady-state and kinetic properties of the network. Mathematical modelling reveals that the TCS can show bistable behaviour for a given range of parameter values if unphosphorylated SK and RR form a dead-end complex that prevents SK autophosphorylation. Additionally, for bistability to exist the major dephosphorylation flux of the RR must not depend on the unphosphorylated SK. Structural modelling and published affinity studies suggest that the unphosphorylated SK EnvZ and the RR OmpR form a dead-end complex. However, bistability is not possible because the dephosphorylation of OmpR approximately P is mainly done by unphosphorylated EnvZ. The implications of this potential bistability in the design of the EnvZ/OmpR network and other TCS are discussed.
Collapse
Affiliation(s)
- Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, TX 77251-1892, USA.
| | | | | |
Collapse
|
38
|
Bogel G, Schrempf H, Ortiz de Orué Lucana D. DNA-binding characteristics of the regulator SenR in response to phosphorylation by the sensor histidine autokinase SenS from Streptomyces reticuli. FEBS J 2007; 274:3900-13. [PMID: 17617222 DOI: 10.1111/j.1742-4658.2007.05923.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The two-component system SenS-SenR from Streptomyces reticuli has been shown to influence the production of the redox regulator FurS, the mycelium-associated enzyme CpeB, which displays heme-dependent catalase and peroxidase activity as well as heme-independent manganese peroxidase activity, and the extracellular heme-binding protein HbpS. In addition, it was suggested to participate in the sensing of redox changes. In this work, the tagged cytoplasmic domain of SenS (SenS(c)), as well as the full-length differently tagged SenR, and corresponding mutant proteins carrying specific amino acid exchanges were purified after heterologous expression in Escherichia coli. In vitro, SenS(c) is autophosphorylated to SenS(c) approximately P at the histidine residue at position 199, transfers the phosphate group to the aspartic acid residue at position 65 in SenR, and acts as a phosphatase for SenR approximately P. Bandshift and footprinting assays in combination with competition and mutational analyses revealed that only unphosphorylated SenR binds to specific sites upstream of the furS-cpeB operon. Further specific sites within the regulatory region, common to the oppositely orientated senS and hbpS genes, were recognized by SenR. Upon its phosphorylation, the DNA-binding affinity of this area was enhanced. These data, together with previous in vivo studies using mutants lacking functional senS and senR, indicate that the two-component SenS-SenR system governs the transcription of the furS-cpeB operon, senS-senR and the hbpS gene. Comparative analyses reveal that only the genomes of a few actinobacteria encode two-component systems that are closely related to SenS-SenR.
Collapse
Affiliation(s)
- Gabriele Bogel
- FB Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
| | | | | |
Collapse
|
39
|
Yoshida T, Qin L, Egger LA, Inouye M. Transcription Regulation of ompF and ompC by a Single Transcription Factor, OmpR. J Biol Chem 2006; 281:17114-17123. [PMID: 16618701 DOI: 10.1074/jbc.m602112200] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ompF and ompC genes of Escherichia coli are reciprocally regulated by a single transcription factor, phosphorylated OmpR (OmpR-P), depending upon medium osmolarity. This regulation involves activation of ompF and its repression with concomitant activation of ompC. This occurs through OmpR-P binding to four (F1, F2, F3, and F4) and three (C1, C2, and C3) sites located upstream of the ompF and ompC promoters, respectively, through a novel mechanism. Here we show that there is a distinct OmpR-P binding hierarchy within F1, F2, and F3 sites as well as within C1, C2, and C3 sites. Each of these sites contains two tandem 10-bp OmpR-P-binding subsites, a-site and b-site (from 5' to 3' direction). OmpR-P has higher affinity to the downstream b-site than to the upstream a-site in each case. Six OmpR-P molecules bind to F and C sites two-by-two in a discontinuous "galloping" manner. We propose that this tight hierarchical binding of a transcription factor, OmpR, allows distinct stepwise regulation of ompF and ompC transcription, which minimizes their overlapping expression upon changes in the medium osmolarity to achieve the reciprocal expression of ompF and ompC.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Ling Qin
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Linda A Egger
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854.
| |
Collapse
|
40
|
Yang YL, Liao JC. Determination of functional interactions among signalling pathways in Escherichia coli K-12. Metab Eng 2005; 7:280-90. [PMID: 16002309 DOI: 10.1016/j.ymben.2005.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 04/11/2005] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
Interaction among different signalling pathways has been noted repeatedly. However, no systematic method has been developed to identify and quantify such interactions. Here we reported that network component analysis (NCA) was able to determine interactions among various signalling pathways in Escherichia coli K-12 based on known transcription factor (TF)-promoter connectivity information and microarray data from genetic knockout strains. The TF activities determined from NCA allow the quantitation of functional interactions, barring gross errors in the connectivity and microarray data. By using a robust statistical test, 37 pairs of functional interactions were identified. Eighteen interaction pairs confirmed previous implications, while 19 others represent new predictions. These results demonstrate that the functional interactions among various signalling pathways may be rather significant. With reasonable TF-promoter connectivity, NCA coupled with genetic knockouts and microarray experiments provides a systematic way to elucidate interaction networks. As this approach cannot distinguish between cross-talks and unidentified direct regulation, the results should provide incentives for further experimental testing.
Collapse
Affiliation(s)
- Young-Lyeol Yang
- Department of Chemical Engineering, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
41
|
Skerker JM, Prasol MS, Perchuk BS, Biondi EG, Laub MT. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol 2005; 3:e334. [PMID: 16176121 PMCID: PMC1233412 DOI: 10.1371/journal.pbio.0030334] [Citation(s) in RCA: 314] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 07/22/2005] [Indexed: 01/18/2023] Open
Abstract
Two-component signal transduction systems, comprised of histidine kinases and their response regulator substrates, are the predominant means by which bacteria sense and respond to extracellular signals. These systems allow cells to adapt to prevailing conditions by modifying cellular physiology, including initiating programs of gene expression, catalyzing reactions, or modifying protein–protein interactions. These signaling pathways have also been demonstrated to play a role in coordinating bacterial cell cycle progression and development. Here we report a system-level investigation of two-component pathways in the model organism Caulobacter crescentus. First, by a comprehensive deletion analysis we show that at least 39 of the 106 two-component genes are required for cell cycle progression, growth, or morphogenesis. These include nine genes essential for growth or viability of the organism. We then use a systematic biochemical approach, called phosphotransfer profiling, to map the connectivity of histidine kinases and response regulators. Combining these genetic and biochemical approaches, we identify a new, highly conserved essential signaling pathway from the histidine kinase CenK to the response regulator CenR, which plays a critical role in controlling cell envelope biogenesis and structure. Depletion of either cenK or cenR leads to an unusual, severe blebbing of cell envelope material, whereas constitutive activation of the pathway compromises cell envelope integrity, resulting in cell lysis and death. We propose that the CenK–CenR pathway may be a suitable target for new antibiotic development, given previous successes in targeting the bacterial cell wall. Finally, the ability of our in vitro phosphotransfer profiling method to identify signaling pathways that operate in vivo takes advantage of an observation that histidine kinases are endowed with a global kinetic preference for their cognate response regulators. We propose that this system-wide selectivity insulates two-component pathways from one another, preventing unwanted cross-talk. Histidine kinases and their (sensory) response regulators are screened for in C. crescentus. Follow-up experiments determine several essential components, including one pair critical for cell envelope biogenesis and structure.
Collapse
Affiliation(s)
- Jeffrey M Skerker
- 1Bauer Center for Genomics Research, Harvard University, Cambridge, Massachusetts, United States of America
| | - Melanie S Prasol
- 1Bauer Center for Genomics Research, Harvard University, Cambridge, Massachusetts, United States of America
| | - Barrett S Perchuk
- 1Bauer Center for Genomics Research, Harvard University, Cambridge, Massachusetts, United States of America
| | - Emanuele G Biondi
- 1Bauer Center for Genomics Research, Harvard University, Cambridge, Massachusetts, United States of America
| | - Michael T Laub
- 1Bauer Center for Genomics Research, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
42
|
A simulation model of Escherichia coli osmoregulatory switch using E-CELL system. BMC Microbiol 2004; 4:44. [PMID: 15571621 PMCID: PMC543474 DOI: 10.1186/1471-2180-4-44] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 11/30/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial signal transduction mechanism referred to as a "two component regulatory systems" contributes to the overall adaptability of the bacteria by regulating the gene expression. Osmoregulation is one of the well-studied two component regulatory systems comprising of the sensor, EnvZ and the cognate response regulator, OmpR, which together control the expression of OmpC and OmpF porins in response to the osmolyte concentration. RESULTS A quantitative model of the osmoregulatory switch operative in Escherichia coli was constructed by integrating the enzyme rate equations using E-CELL system. Using the substance reactor logic of the E-CELL system, a total of 28 reactions were defined from the injection of osmolyte till the regulated expression of porins by employing the experimental kinetic constants as reported in literature. In the case of low osmolarity, steady state production of OmpF and repression of OmpC was significant. In this model we show that the steady state - production of OmpF is dramatically reduced in the high osmolarity medium. The rate of OmpC production increased after sucrose addition, which is comparable with literature results. The relative porin production seems to be unaltered with changes in cell volume changes, ATP, EnvZ and OmpR at low and high osmolarity conditions. But the reach of saturation was rapid at high and low osmolarity with altered levels of the above components. CONCLUSIONS The E-CELL system allows us to perform virtual experiments on the bacterial osmoregulation model. This model does not take into account interaction with other networks in the cell. It suggests that the regulation of OmpF and OmpC is a direct consequence of the level of OmpRP in the cell and is dependent on the way in which OmpRP interacts with ompF and ompC regulatory regions. The preliminary simulation experiment indicates that both reaching steady state expression and saturation is delayed in the case of OmpC compared to OmpF. Experimental analysis will help improve the model. The model captures the basic features of the generally accepted view of EnvZ-OmpR signaling and is a reasonable starting point for building sophisticated models and explaining quantitative features of the system.
Collapse
|
43
|
Kim CC, Falkow S. Delineation of upstream signaling events in the salmonella pathogenicity island 2 transcriptional activation pathway. J Bacteriol 2004; 186:4694-704. [PMID: 15231802 PMCID: PMC438577 DOI: 10.1128/jb.186.14.4694-4704.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Survival and replication in the intracellular environment are critical components of the ability of Salmonella enterica serovar Typhimurium to establish systemic infection in the murine host. Intracellular survival is mediated by a number of genetic loci, including Salmonella pathogenicity island 2 (SPI2). SPI2 is a 40-kb locus encoding a type III secretion system that secretes effector molecules, which permits bacterial survival and replication in the intracellular environment of host cells. A two-component regulatory system, ssrAB, is also encoded in SPI2 and controls expression of the secretion system and effectors. While the environmental signals to which SPI2 responds in vivo are not known, activation of expression is dependent on OmpR and can be stimulated in vitro by chelation of cations or by a shift from rich to acidic minimal medium. In this work, we demonstrated that SPI2 activation is associated with OmpR in the phosphorylated form (OmpR-P). Mutations in envZ and ackA-pta, which disrupted two distinct sources of OmpR phosphorylation, indicated that SPI2 activation by chelators or a shift from rich to acidic minimal medium is largely dependent on functional EnvZ. In contrast, the PhoPQ pathway is not required for SPI2 activation in the presence of OmpR-P. As in the case of in vitro stimulation, SPI2 expression in macrophages correlates with the presence of OmpR-P. Additionally, EnvZ, but not acetyl phosphate, is required for maximal expression of SPI2 in the intracellular environment, suggesting that the in vitro SPI2 activation pathway is the same as that used in vivo.
Collapse
Affiliation(s)
- Charles C Kim
- Microbiology and Immunology, 299 Campus Drive, Stanford University Medical Center, Stanford, CA 94305, USA.
| | | |
Collapse
|
44
|
Perron K, Caille O, Rossier C, Van Delden C, Dumas JL, Köhler T. CzcR-CzcS, a Two-component System Involved in Heavy Metal and Carbapenem Resistance in Pseudomonas aeruginosa. J Biol Chem 2004; 279:8761-8. [PMID: 14679195 DOI: 10.1074/jbc.m312080200] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa is an environmental bacterium involved in mineralization of organic matter. It is also an opportunistic pathogen able to cause serious infections in immunocompromised hosts. As such, it is exposed to xenobiotics including solvents, heavy metals, and antimicrobials. We studied the response of P. aeruginosa upon exposure to heavy metals or antibiotics to investigate whether common regulatory mechanisms govern resistance to both types of compounds. We showed that sublethal zinc concentrations induced resistance to zinc, cadmium, and cobalt, while lethal zinc concentrations selected mutants constitutively resistant to these heavy metals. Both zinc-induced and stable zinc-resistant strains were also resistant to the carbapenem antibiotic imipenem. On the other hand, only 20% of clones selected on imipenem were also resistant to zinc. Heavy metal resistance in the mutants could be correlated by quantitative real time PCR with increased expression of the heavy metal efflux pump CzcCBA and its cognate two-component regulator genes czcR-czcS. Western blot analysis revealed reduced expression of the basic amino acid and carbapenem-specific OprD porin in all imipenem-resistant mutants. Sequencing of the czcR-czcS DNA region in eight independent zinc- and imipenem-resistant mutants revealed the presence of the same V194L mutation in the CzcS sensor protein. Overexpression in a susceptible wild type strain of the mutated CzsS protein, but not of the wild type form, resulted in decreased oprD and increased czcC expression. We further show that zinc is released from latex urinary catheters into urine in amounts sufficient to induce carbapenem resistance in P. aeruginosa, possibly compromising treatment of urinary tract infections by this class of antibiotics.
Collapse
Affiliation(s)
- Karl Perron
- Laboratory of Bacteriology and Microbial Ecology, Department of Botany and Plant Biology Sciences III, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
45
|
Castelli ME, Cauerhff A, Amongero M, Soncini FC, Vescovi EG. The H box-harboring domain is key to the function of the Salmonella enterica PhoQ Mg2+-sensor in the recognition of its partner PhoP. J Biol Chem 2003; 278:23579-85. [PMID: 12702718 DOI: 10.1074/jbc.m303042200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In two-component signaling systems, the transduction strategy relies on a conserved His-Asp phosphoryl exchange between the sensor histidine kinase and its cognate response-regulator, and structural and functional consensus motifs are found when comparing either the diverse histidine kinases or response regulators present in a single cell. Therefore, the mechanism that guarantees the specific recognition between partners of an individual pair is essential to unequivocally generate the appropriate adaptive response. Based on sequence alignments with other histidine kinases, we dissected the Salmonella enterica Mg2+-sensor PhoQ in different subdomains and examined by in vivo and in vitro assays its interaction with the associated response regulator PhoP. This signal transduction system allows Salmonella to withstand environmental Mg2+ limitation by triggering gene expression that is vital throughout the infective cycle in the host. Using resonant mirror biosensor technology, we calculated the kinetic and equilibrium binding constants and determined that the His-phosphotransfer domain is essential for the PhoQ specific recognition and interaction with PhoP. Additionally, we show the role of this domain in the bimolecular transphosphorylation and provide evidence that this region undergoes dimerization.
Collapse
Affiliation(s)
- María E Castelli
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | |
Collapse
|
46
|
Cai SJ, Inouye M. Spontaneous subunit exchange and biochemical evidence for trans-autophosphorylation in a dimer of Escherichia coli histidine kinase (EnvZ). J Mol Biol 2003; 329:495-503. [PMID: 12767831 DOI: 10.1016/s0022-2836(03)00446-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The EnvZ/OmpR histidyl-aspartyl phosphorelay (HAP) system in Escherichia coli regulates the expression of ompF and ompC, the major outer membrane porin genes, in response to environmental osmolarity changes. Here, we report that dimers of EnvZc, the cytoplasmic domain of EnvZ, undergo spontaneous subunit exchange in solution. By introducing a cysteine substitution (S260C) in the dimerization domain of EnvZc, we were able to crosslink the two subunits in a dimer and trap the heterodimer formed between two different mutant EnvZc. By using a complementing system with two autophosphorylation-defective EnvZc mutants, one containing the H243V mutation at the autophosphorylation site and the other containing the G405A mutation in the ATP-binding domain, we demonstrated that an EnvZc(G405A) subunit can be phosphorylated by an EnvZc(H243V) subunit only when a heterodimer is formed. The rate of subunit exchange is concentration-dependent, with higher rates at higher concentrations of protein. The disulfide-crosslinked EnvZc(G405A) homodimer could not be phosphorylated by EnvZc(H243V), since the heterodimer formation between the two mutant proteins was blocked, indicating that autophosphorylation cannot occur by dimer-dimer interaction. By using MBP-deltaL-EnvZc(S260C) fusion protein (deltaL: the linker region, spanning residues 180-222, was deleted), it was found that in the disulfide-crosslinked MBP-deltaL-EnvZc(S260C)/deltaL-EnvZc(S260C/G405A) heterodimer, only the deltaL-EnvZc(S260C/G405A) subunit was phosphorylated but not the MBP-deltaL-EnvZc(S260C) subunit. Together, the present results provide biochemical evidence that EnvZ autophosphorylation occurs in trans and only within an EnvZ dimer.
Collapse
Affiliation(s)
- Sheng-Jian Cai
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA
| | | |
Collapse
|
47
|
Qin L, Cai S, Zhu Y, Inouye M. Cysteine-scanning analysis of the dimerization domain of EnvZ, an osmosensing histidine kinase. J Bacteriol 2003; 185:3429-35. [PMID: 12754242 PMCID: PMC155382 DOI: 10.1128/jb.185.11.3429-3435.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EnvZ and OmpR are a transmembrane sensor and its cognate response regulator, respectively, regulating the transcription of porin genes in response to medium osmolarity in Escherichia coli. The cytoplasmic domain of EnvZ (EnvZc) possesses both kinase and phosphatase activities and can be dissected into two functional domains, A and B. Here, we performed a cysteine-scanning analysis of domain A, a 67-residue central dimerization and phosphatase domain containing His-243 as the phosphorylation site, and we examined the effects of the cysteine substitution mutations on the enzymatic activities of domain A. The substitution mutations were made at 31 residues, from which 24 mutant domain A proteins were biochemically characterized. From the analysis of the phosphatase activity of purified mutant proteins, it was found that there are two regions in domain A which are important for this activity. Cysteine mutations in these regions dramatically reduce or completely abolish the phosphatase activity of domain A. The mutations that have the most-severe effects on domain A phosphatase activity also significantly reduce the phosphatase activity of EnvZc containing the same mutation. Using an in vitro complementation system with EnvZc(H243V), these cysteine mutants were further characterized for their autophosphorylation activities as well as their phosphotransfer activities. The results indicate that some mutations are specific either for the phosphatase activity or for the kinase activity.
Collapse
Affiliation(s)
- Ling Qin
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
48
|
Yoshida T, Qin L, Inouye M. Formation of the stoichiometric complex of EnvZ, a histidine kinase, with its response regulator, OmpR. Mol Microbiol 2002; 46:1273-82. [PMID: 12453214 DOI: 10.1046/j.1365-2958.2002.03239.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
EnvZ, a histidine kinase, and its cognate response regulator OmpR of Escherichia coli are responsible for adaptation to external osmotic changes by regulating the levels of the outer membrane porin proteins, OmpF and OmpC. The osmosensor, EnvZ, has dual enzymatic functions with OmpR kinase and OmpR-P phosphatase. Here, we demonstrate that the cytoplasmic kinase domain of EnvZ (EnvZc) and OmpR are able to form a 1:1 complex detected by native PAGE. This indicates that two OmpR molecules can bind to one EnvZc dimer. As this 1:1 EnvZc/OmpR complex is formed even in the presence of a large excess of EnvZc, OmpR binding to EnvZc is co-operative. The complex formation is also observed between EnvZc and phosphorylated OmpR for the phosphatase reaction. OmpR-P bound to EnvZc was readily released upon the addition of OmpR, indicating that OmpR and OmpR-P can compete for the binding to EnvZ. On the basis of these results, a model is discussed to explain how cellular OmpR-P concentrations are regulated in response to medium osmolarity.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|