1
|
Wang C, Du M, Jiang Z, Cong R, Wang W, Zhang G, Li L. Comparative proteomic and phosphoproteomic analysis reveals differential heat response mechanism in two congeneric oyster species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115197. [PMID: 37451098 DOI: 10.1016/j.ecoenv.2023.115197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
High-temperature stress caused by global climate change poses a significant threat to marine ectotherms. This study investigated the role of protein phosphorylation modifications in the molecular regulation network under heat stress in oysters, which are representative intertidal organisms that experience considerable temperature changes. Firstly, the study compared the extent of thermal damage between two congeneric oyster species, the relative heat-tolerant Crassostrea angulata (C. angulata) and heat-sensitive Crassostrea gigas (C. gigas), under sublethal temperature (37 °C) for 12 h, using various physiological and biochemical methods. Subsequently, the comparative proteomic and phosphoproteomic analyses revealed that high-temperature considerably regulated signal transduction, energy metabolism, protein synthesis, cell survival and apoptosis, and cytoskeleton remodeling through phosphorylation modifications of related receptors and kinases. Furthermore, the protein kinase A, mitogen-activated protein kinase 1, tyrosine-protein kinase Src, and serine/threonine kinase AKT, exhibiting differential phosphorylation modification patterns, were identified as hub regulators that may enhance glycolysis and TCA cycle to increase the energy supply, distribute protein synthesis, inhibit Caspase-dependent apoptosis activated by endogenous mitochondrial cytochrome release and maintain cytoskeletal stability, ultimately shaping the higher thermal resistance of C. angulata. This study represents the first investigation of protein phosphorylation dynamics in marine invertebrates under heat stress, reveals the molecular mechanisms underlying the differential thermal responses between two Crassostrea oysters at the phosphorylation level, and provides new insights into understanding phosphorylation-mediated molecular responses in marine organisms during environmental changes and predicting the adaptive potential in the context of global warming.
Collapse
Affiliation(s)
- Chaogang Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mingyang Du
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhuxiang Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Rihao Cong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China.
| |
Collapse
|
2
|
Rivera-Yoshida N, Arzola AV, Arias Del Angel JA, Franci A, Travisano M, Escalante AE, Benítez M. Plastic multicellular development of Myxococcus xanthus: genotype-environment interactions in a physical gradient. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181730. [PMID: 31032028 PMCID: PMC6458408 DOI: 10.1098/rsos.181730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/25/2019] [Indexed: 05/25/2023]
Abstract
In order to investigate the contribution of the physical environment to variation in multicellular development of Myxococcus xanthus, phenotypes developed by different genotypes in a gradient of substrate stiffness conditions were quantitatively characterized. Statistical analysis showed that plastic phenotypes result from the genotype, the substrate conditions and the interaction between them. Also, phenotypes were expressed in two distinguishable scales, the individual and the population levels, and the interaction with the environment showed scale and trait specificity. Overall, our results highlight the constructive role of the physical context in the development of microbial multicellularity, with both ecological and evolutionary implications.
Collapse
Affiliation(s)
- Natsuko Rivera-Yoshida
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Alejandro V. Arzola
- Instituto de Física, Universidad Nacional Autónoma de México, Apdo Postal 20-364, 01000 Cd de México, Mexico
| | - Juan A. Arias Del Angel
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Alessio Franci
- Facultad de Ciencias, Universidad Nacional Autonóma de México, Mexico
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Ana E. Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Janczarek M, Vinardell JM, Lipa P, Karaś M. Hanks-Type Serine/Threonine Protein Kinases and Phosphatases in Bacteria: Roles in Signaling and Adaptation to Various Environments. Int J Mol Sci 2018; 19:ijms19102872. [PMID: 30248937 PMCID: PMC6213207 DOI: 10.3390/ijms19102872] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022] Open
Abstract
Reversible phosphorylation is a key mechanism that regulates many cellular processes in prokaryotes and eukaryotes. In prokaryotes, signal transduction includes two-component signaling systems, which involve a membrane sensor histidine kinase and a cognate DNA-binding response regulator. Several recent studies indicate that alternative regulatory pathways controlled by Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) also play an essential role in regulation of many different processes in bacteria, such as growth and cell division, cell wall biosynthesis, sporulation, biofilm formation, stress response, metabolic and developmental processes, as well as interactions (either pathogenic or symbiotic) with higher host organisms. Since these enzymes are not DNA-binding proteins, they exert the regulatory role via post-translational modifications of their protein targets. In this review, we summarize the current knowledge of STKs and STPs, and discuss how these enzymes mediate gene expression in prokaryotes. Many studies indicate that regulatory systems based on Hanks-type STKs and STPs play an essential role in the regulation of various cellular processes, by reversibly phosphorylating many protein targets, among them several regulatory proteins of other signaling cascades. These data show high complexity of bacterial regulatory network, in which the crosstalk between STK/STP signaling enzymes, components of TCSs, and the translational machinery occurs. In this regulation, the STK/STP systems have been proved to play important roles.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Paulina Lipa
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Magdalena Karaś
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| |
Collapse
|
4
|
Pan D, Wang L, Tan F, Lu S, Lv X, Zaynab M, Cheng CL, Abubakar YS, Chen S, Chen W. Phosphoproteomics unveils stable energy supply as key to flooding tolerance in Kandelia candel. J Proteomics 2018; 176:1-12. [DOI: 10.1016/j.jprot.2018.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/30/2017] [Accepted: 01/10/2018] [Indexed: 12/23/2022]
|
5
|
Hu D, Luo W, Fan LF, Liu FL, Gu J, Deng HM, Zhang C, Huang LH, Feng QL. Dynamics and regulation of glycolysis-tricarboxylic acid metabolism in the midgut of Spodoptera litura during metamorphosis. INSECT MOLECULAR BIOLOGY 2016; 25:153-162. [PMID: 26683413 DOI: 10.1111/imb.12208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Significant changes usually take place in the internal metabolism of insects during metamorphosis. The glycolysis-tricarboxylic acid (glycolysis-TCA) pathway is important for energy metabolism. To elucidate its dynamics, the mRNA levels of genes involved in this pathway were examined in the midgut of Spodoptera litura during metamorphosis, and the pyruvate content was quantified. The expression patterns of these genes in response to starvation were examined, and the interaction between protein phosphatase 1 (PP1) and phosphofructokinase (PFK) was studied. The results revealed that the expression or activities of most glycolytic enzymes was down-regulated in prepupae and then recovered in some degree in pupae, and all TCA-related genes were remarkably suppressed in both the prepupae and pupae. Pyruvate was enriched in the pupal midgut. Taken together, these results suggest that insects decrease both glycolysis and TCA in prepupae to save energy and then up-regulate glycolysis but down-regulate TCA in pupae to increase the supply of intermediates for construction of new organs. The expression of all these genes were down-regulated by starvation, indicating that non-feeding during metamorphosis may be a regulator of glycolysis-TCA pathway in the midgut. Importantly, interaction between PP1 and PFK was identified and is suggested to be involved in the regulation of glycolysis.
Collapse
Affiliation(s)
- D Hu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - W Luo
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - L F Fan
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - F L Liu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - J Gu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - H M Deng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - C Zhang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - L H Huang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Q L Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
6
|
Urabe H, Ogawara H, Motojima K. Expression and characterization of Streptomyces coelicolor serine/threonine protein kinase PkaE. Biosci Biotechnol Biochem 2015; 79:855-62. [PMID: 25560431 DOI: 10.1080/09168451.2014.996204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We identified and characterized a new eukaryotic-type protein kinase (PkaE) from Streptomyces coelicolor A3 (2) M145. PkaE, consisting of 510 amino acid residues, is a cytoplasmic protein kinase and contains the catalytic domain of eukaryotic protein kinases in the N-terminal region. Recombinant PkaE was found to be autophosphorylated at threonine residues only. The disruption of chromosomal pkaE resulted in the overproduction of the actinorhodin-related blue pigment antibiotics. pkaE was expressed during the late growth phase in S. coelicolor A3 (2) M145, which corresponded to the production time of blue pigments. This result indicated that PkaE acts as a negative regulator for production of the secondary metabolites. In addition, PkaE was able to phosphorylate KbpA, a regulator involved in the AfsK-AfsR regulatory pathway.
Collapse
Affiliation(s)
- Hiroaki Urabe
- a Department of Biochemistry , Meiji Pharmaceutical University , Kiyose , Japan
| | | | | |
Collapse
|
7
|
Escalante AE, Inouye S, Travisano M. A spectrum of pleiotropic consequences in development due to changes in a regulatory pathway. PLoS One 2012; 7:e43413. [PMID: 22937047 PMCID: PMC3427377 DOI: 10.1371/journal.pone.0043413] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/20/2012] [Indexed: 01/29/2023] Open
Abstract
Regulatory evolution has frequently been proposed as the primary mechanism driving morphological evolution. This is because regulatory changes may be less likely to cause deleterious pleiotropic effects than changes in protein structure, and consequently have a higher likelihood to be beneficial. We examined the potential for mutations in trans acting regulatory elements to drive phenotypic change, and the predictability of such change. We approach these questions by the study of the phenotypic scope and size of controlled alteration in the developmental network of the bacterium Myxococcus xanthus. We perturbed the expression of a key regulatory gene (fruA) by constructing independent in-frame deletions of four trans acting regulatory loci that modify its expression. While mutants retained developmental capability, the deletions caused changes in the expression of fruA and a dramatic shortening of time required for completion of development. We found phenotypic changes in the majority of traits measured, indicating pleiotropic effects of changes in regulation. The magnitude of the change for different traits was variable but the extent of differences between the mutants and parental type were consistent with changes in fruA expression. We conclude that changes in the expression of essential regulatory regions of developmental networks may simultaneously lead to modest as well as dramatic morphological changes upon which selection may subsequently act.
Collapse
Affiliation(s)
- Ana E Escalante
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America.
| | | | | |
Collapse
|
8
|
Abstract
Genomic studies have revealed the presence of Ser/Thr kinases and phosphatases in many bacterial species, although their physiological roles have largely been unclear. Here we review bacterial Ser/Thr kinases (eSTKs) that show homology in their catalytic domains to eukaryotic Ser/Thr kinases and their partner phosphatases (eSTPs) that are homologous to eukaryotic phosphatases. We first discuss insights into the enzymatic mechanism of eSTK activation derived from structural studies on both the ligand-binding and catalytic domains. We then turn our attention to the identified substrates of eSTKs and eSTPs for a number of species and to the implications of these findings for understanding their physiological roles in these organisms.
Collapse
|
9
|
Treuner-Lange A. The phosphatomes of the multicellular myxobacteria Myxococcus xanthus and Sorangium cellulosum in comparison with other prokaryotic genomes. PLoS One 2010; 5:e11164. [PMID: 20567509 PMCID: PMC2887360 DOI: 10.1371/journal.pone.0011164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 05/04/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Analysis of the complete genomes from the multicellular myxobacteria Myxococcus xanthus and Sorangium cellulosum identified the highest number of eukaryotic-like protein kinases (ELKs) compared to all other genomes analyzed. High numbers of protein phosphatases (PPs) could therefore be anticipated, as reversible protein phosphorylation is a major regulation mechanism of fundamental biological processes. METHODOLOGY Here we report an intensive analysis of the phosphatomes of M. xanthus and S. cellulosum in which we constructed phylogenetic trees to position these sequences relative to PPs from other prokaryotic organisms. PRINCIPAL FINDINGS PREDOMINANT OBSERVATIONS WERE: (i) M. xanthus and S. cellulosum possess predominantly Ser/Thr PPs; (ii) S. cellulosum encodes the highest number of PP2c-type phosphatases so far reported for a prokaryotic organism; (iii) in contrast to M. xanthus only S. cellulosum encodes high numbers of SpoIIE-like PPs; (iv) there is a significant lack of synteny among M. xanthus and S. cellulosum, and (v) the degree of co-organization between kinase and phosphatase genes is extremely low in these myxobacterial genomes. CONCLUSIONS We conclude that there has been a greater expansion of ELKs than PPs in multicellular myxobacteria.
Collapse
Affiliation(s)
- Anke Treuner-Lange
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität, Giessen, Germany.
| |
Collapse
|
10
|
Tyagi N, Anamika K, Srinivasan N. A framework for classification of prokaryotic protein kinases. PLoS One 2010; 5:e10608. [PMID: 20520783 PMCID: PMC2877116 DOI: 10.1371/journal.pone.0010608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 04/13/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. METHODOLOGY/PRINCIPAL FINDINGS We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses. CONCLUSION/SIGNIFICANCE Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular organization which indicates a degree of complexity and protein-protein interactions in the signaling pathways in these microbes.
Collapse
Affiliation(s)
- Nidhi Tyagi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| | | | | |
Collapse
|
11
|
Ohlsen K, Donat S. The impact of serine/threonine phosphorylation in Staphylococcus aureus. Int J Med Microbiol 2010; 300:137-41. [DOI: 10.1016/j.ijmm.2009.08.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
García-Hernández R, Moraleda-Muñoz A, Castañeda-García A, Pérez J, Muñoz-Dorado J. Myxococcus xanthus Pph2 is a manganese-dependent protein phosphatase involved in energy metabolism. J Biol Chem 2009; 284:28720-8. [PMID: 19706604 PMCID: PMC2781417 DOI: 10.1074/jbc.m109.015248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/19/2009] [Indexed: 12/15/2022] Open
Abstract
The multicellular behavior of the myxobacterium Myxococcus xanthus requires the participation of an elevated number of signal-transduction mechanisms to coordinate the cell movements and the sequential changes in gene expression patterns that lead to the morphogenetic and differentiation events. These signal-transduction mechanisms are mainly based on two-component systems and on the reversible phosphorylation of protein targets mediated by eukaryotic-like protein kinases and phosphatases. Among all these factors, protein phosphatases are the elements that remain less characterized. Hence, we have studied in this work the physiological role and biochemical activity of the protein phosphatase of the family PPP (phosphoprotein phosphatases) designated as Pph2, which is forming part of the same operon as the two-component system phoPR1. We have demonstrated that this operon is induced upon starvation in response to the depletion of the cell energy levels. The increase in the expression of the operon contributes to an efficient use of the scarce energy resources available for developing cells to ensure the completion of the life cycle. In fact, a Deltapph2 mutant is defective in aggregation, sporulation yield, morphology of the myxospores, and germination efficiency. The yeast two-hybrid technology has shown that Pph2 interacts with the gene products of MXAN_1875 and 5630, which encode a hypothetical protein and a glutamine synthetase, respectively. Because Pph2 exhibits Ser/Thr, and to some extent Tyr, Mn(2+)-dependent protein phosphatase activity, it is expected that this function is accomplished by dephosphorylation of the specific protein substrates.
Collapse
Affiliation(s)
- Raquel García-Hernández
- From the Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | - Aurelio Moraleda-Muñoz
- From the Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | - Alfredo Castañeda-García
- From the Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | - Juana Pérez
- From the Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | - José Muñoz-Dorado
- From the Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| |
Collapse
|
13
|
Transcriptome and functional analysis of the eukaryotic-type serine/threonine kinase PknB in Staphylococcus aureus. J Bacteriol 2009; 191:4056-69. [PMID: 19376851 DOI: 10.1128/jb.00117-09] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The function of the Staphylococcus aureus eukaryotic-like serine/threonine protein kinase PknB was investigated by performing transcriptome analysis using DNA microarray technology and biochemical assays. The transcriptional profile revealed a strong regulatory impact of PknB on the expression of genes encoding proteins which are involved in purine and pyrimidine biosynthesis, cell wall metabolism, autolysis, and glutamine synthesis. Functional activity of overexpressed and purified PknB kinase was demonstrated using the myelin basic protein as a surrogate substrate. Phosphorylation occurred in a time-dependent manner with Mn(2+) as a preferred cofactor. Furthermore, biochemical characterization revealed regulation of adenylosuccinate synthase (PurA) activity by phosphorylation. Phosphorylated PurA showed a 1.8-fold decrease in enzymatic activity compared to unphosphorylated PurA. Loss of PknB led to formation of larger cell clusters, and a pknB deletion strain showed 32-fold-higher sensitivity to the cell wall-active antibiotic tunicamycin. The results of this study strongly indicate that PknB has a role in regulation of purine biosynthesis, autolysis, and central metabolic processes in S. aureus.
Collapse
|
14
|
Eukaryotic-like protein kinases in the prokaryotes and the myxobacterial kinome. Proc Natl Acad Sci U S A 2008; 105:15950-5. [PMID: 18836084 DOI: 10.1073/pnas.0806851105] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ser/Thr/Tyr kinases, which together comprise a major class of regulatory proteins in eukaryotes, were not believed to play an important role in prokaryotes until recently. However, our analysis of 626 prokaryotic genomes reveals that eukaryotic-like protein kinases (ELKs) are found in nearly two-thirds of the sequenced strains. We have identified 2697 ELKs, most of which are encoded by multicellular strains of the phyla Proteobacteria (Myxococcales), Actinobacteria, Cyanobacteria, and Chloroflexi, and 2 Acidobacteria and 1 Planctomycetes. Astonishingly, 7 myxobacterial strains together encode 892 ELKs, with 4 of the strains exhibiting a genomic ELK density similar to that observed in eukaryotes. Most myxobacterial ELKs show a modular organization in which the kinase domain is located at the N terminus. The C-terminal portion of the ELKs is highly diverse and often contains sequences with similarity to characterized domains, most of them involved in signaling mechanisms or in protein-protein interactions. However, many of these architectures are unique to the myxobacteria, an observation that suggests that this group exploits sophisticated and novel signal transduction systems. Phylogenetic reconstruction using the kinase domains revealed many orthologous sequence pairs and a huge number of gene duplications that probably occurred after speciation. Furthermore, studies of the microsynteny in the ELK-encoding regions reveal only low levels of synteny among Myxococcus xanthus, Plesiocystis pacifica, and Sorangium cellulosum. However, extensive similarities between M. xanthus, Stigmatella aurantiaca, and 3 Anaeromyxobacter strains were observed, indicating that they share regulatory pathways involving various ELKs.
Collapse
|
15
|
Tagourti J, Landoulsi A, Richarme G. Cloning, expression, purification and characterization of the stress kinase YeaG from Escherichia coli. Protein Expr Purif 2008; 59:79-85. [DOI: 10.1016/j.pep.2008.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/11/2008] [Accepted: 01/13/2008] [Indexed: 10/22/2022]
|
16
|
Sasková L, Nováková L, Basler M, Branny P. Eukaryotic-type serine/threonine protein kinase StkP is a global regulator of gene expression in Streptococcus pneumoniae. J Bacteriol 2007; 189:4168-79. [PMID: 17416671 PMCID: PMC1913385 DOI: 10.1128/jb.01616-06] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Signal transduction pathways in both prokaryotes and eukaryotes utilize protein phosphorylation as a key regulatory mechanism. Recent studies have proven that eukaryotic-type serine/threonine protein kinases (Hank's type) are widespread in many bacteria, although little is known regarding the cellular processes they control. In this study, we have attempted to establish the role of a single eukaryotic-type protein kinase, StkP of Streptococcus pneumoniae, in bacterial survival. Our results indicate that the expression of StkP is important for the resistance of S. pneumoniae to various stress conditions. To investigate the impact of StkP on this phenotype, we compared the whole-genome expression profiles of the wild-type and DeltastkP mutant strains by microarray technology. This analysis revealed that StkP positively controls the transcription of a set of genes encoding functions involved in cell wall metabolism, pyrimidine biosynthesis, DNA repair, iron uptake, and oxidative stress response. Despite the reduced transformability of the stkP mutant, we found that the competence regulon was derepressed in the stkP mutant under conditions that normally repress natural competence development. Furthermore, the competence regulon was expressed independently of exogenous competence-stimulating peptide. In summary, our studies show that a eukaryotic-type serine/threonine protein kinase functions as a global regulator of gene expression in S. pneumoniae.
Collapse
Affiliation(s)
- Lenka Sasková
- Cell and Molecular Microbiology Division, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic
| | | | | | | |
Collapse
|
17
|
Stein EA, Cho K, Higgs PI, Zusman DR. Two Ser/Thr protein kinases essential for efficient aggregation and spore morphogenesis in Myxococcus xanthus. Mol Microbiol 2006; 60:1414-31. [PMID: 16796678 DOI: 10.1111/j.1365-2958.2006.05195.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Myxococcus xanthus has a complex life cycle that involves vegetative growth and development. Previously, we described the espAB locus that is involved in timing events during the initial stages of fruiting body formation. Deletion of espA caused early aggregation and sporulation, whereas deletion of espB caused delayed aggregation and sporulation resulting in reduced spore yields. In this study, we describe two genes, pktA5 and pktB8, that flank the espAB locus and encode Ser/Thr protein kinase (STPK) homologues. Cells deficient in pktA5 or pktB8 formed translucent mounds and produced low spore yields, similar in many respects to espB mutants. Double mutant analysis revealed that espA was epistatic to pktA5 and pktB8 with respect to aggregation and fruiting body morphology, but that pktA5 and pktB8 were epistatic to espA with respect to sporulation efficiency. Expression profiles of pktA5-lacZ and pktB8-lacZ fusions and Western blot analysis showed that the STPKs are expressed under vegetative and developmental conditions. In vitro kinase assays demonstrated that the RD kinase, PktA5, autophosphorylated on threonine residue(s) and phosphorylated the artificial substrate, myelin basic protein. In contrast, autophosphorylation of the non-RD kinase, PktB8, was not observed in vitro; however, the phenotype of a pktB8 kinase-dead point mutant resembled the pktB8 deletion mutant, indicating that this residue was important for function and that it likely functions as a kinase in vivo. Immunoprecipitation of Tap-tagged PktA5 and PktB8 revealed an interaction with EspA during development in M. xanthus. These results, taken together, suggest that PktA5 and PktB8 are STPKs that function during development by interacting with EspA and EspB to regulate M. xanthus development.
Collapse
Affiliation(s)
- Emily A Stein
- Graduate Group in Microbial Biology, University of California, Berkeley, CA, USA
| | | | | | | |
Collapse
|
18
|
Nariya H, Inouye S. A protein Ser/Thr kinase cascade negatively regulates the DNA-binding activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus development. Mol Microbiol 2006; 60:1205-17. [PMID: 16689796 DOI: 10.1111/j.1365-2958.2006.05178.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The developmental process of Myxococcus xanthus is achieved by the expression of a specific set of genes under the influence of developmental signals. MrpC is a member of the CRP family of transcription regulators, essential for fruA expression during development. The Pkn8-Pkn14 protein kinase cascade negatively regulates mrpC expression (H. Nariya and S. Inouye, 2005. Mol Microbiol 58: 367-379). Elevated levels of mrpC in pkn8 and pkn14 deletion strains (Deltapkn8 and Deltapkn14) induce untimely FruA production during vegetative growth resulting in significantly faster fruiting body development. mrpC expression is presumably activated by MrpA and MrpB which belong to a two-component His-Asp phosphorelay system and is proposed to require MrpC on the basis of the genetic analysis. In the present study, we demonstrate that MrpC binds to at least eight sites in the upstream region of its promoter. Based on analysis of MrpC binding sites in the mrpC and fruA promoter regions, there are two types of MrpC-specific binding sequences. Importantly, MrpC-binding activity was greatly reduced upon its phosphorylation by Pkn14. MrpC2, a transcription activator for fruA expression, lacks the N-terminal 25 residues of MrpC and exhibited four- and eightfold greater binding activity to the mrpC and fruA promoter regions respectively. Pkn14 was not able to phosphorylate MrpC2 and phosphorylates MrpC at Thr residue(s), thus Thr-21 and/or Thr-22 is (are) the likely site(s) of MrpC phosphorylation. MrpC2 was not detected in a lonD mutant in which fruA expression is low. Thus, the LonD protease essential for development may play an important role for the activation of MrpC-binding activity through its proteolytic processing to MrpC2, required for developmental progression. MrpC2, only detectable during development in DZF1, was present at high levels during vegetative growth in Deltapkn8 and Deltapkn14, thus MrpC phosphorylation may inhibit its proteolytic processing. Based on these results, we propose a mechanism by which two transcription factors essential to development, MrpC and FruA, are regulated during the M. xanthus life cycle.
Collapse
Affiliation(s)
- Hirofumi Nariya
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
19
|
Hussain H, Branny P, Allan E. A eukaryotic-type serine/threonine protein kinase is required for biofilm formation, genetic competence, and acid resistance in Streptococcus mutans. J Bacteriol 2006; 188:1628-32. [PMID: 16452447 PMCID: PMC1367251 DOI: 10.1128/jb.188.4.1628-1632.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report an operon encoding a eukaryotic-type serine/threonine protein kinase (STPK) and its cognate phosphatase (STPP) in Streptococcus mutans. Mutation of the gene encoding the STPK produced defects in biofilm formation, genetic competence, and acid resistance, determinants important in caries pathogenesis.
Collapse
Affiliation(s)
- Haitham Hussain
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom
| | | | | |
Collapse
|
20
|
Nariya H, Inouye S. Factors that modulate the Pkn4 kinase cascade in Myxococcus xanthus. J Mol Microbiol Biotechnol 2006; 9:147-53. [PMID: 16415588 DOI: 10.1159/000089643] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Myxococcus xanthus, a gram-negative developmental bacterium, contains a large number of protein Ser/Thr kinases (PSTKs). Among these PSTKs, Pkn4 is shown to be 6-phosphofructokinase (PFK) kinase. PFK associates with the regulatory domain of Pkn4 (Pkn4RD) and is activated 2.7-fold upon phosphorylation at Thr-226 by Pkn4. The activation of PFK is required to consume glycogen accumulated during early development and is essential for efficient sporulation. Three new factors, MkapA, MkapB and MkapC have been identified that associate with Pkn4 by the yeast two-hybrid screen and each contains well-known protein-protein interaction domains. MkapB interacts with Pkn4 in a phosphorylation-dependent manner and remains associated with Pkn4 after its phosphorylation. Binding of MkapB to Pkn4 prevents the interaction of Pkn4 with PFK and consequently PFK phosphorylation and activation. A pfk-pkn4 deletion mutant accumulates glycogen at a rate two folds higher than the parent strain, DZF1, at the stationary phase and early development stage, it is unable to consume glycogen during development and produces only 3.4% of the DZF1 spore yield. In contrast, an mkapB deletion mutant exhibits a 24 h delay in fruiting body formation, accumulates less glycogen in the stationary phase and gives rise to 6.4% of the DZF1 spore yield. In addition to Pkn4, MkapA associates with other membrane-associated PSTKs, Pkn1, Pkn2, Pkn8 and Pkn9, while MkapB associates with Pkn8 and Pkn9, and MkapC with Pkn8. These results indicate that there are complex PSTK networks in M. xanthus sharing common modulating factors.
Collapse
Affiliation(s)
- Hirofumi Nariya
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
21
|
Cozzone AJ. Role of Protein Phosphorylation on Serine/Threonine and Tyrosine in the Virulence of Bacterial Pathogens. J Mol Microbiol Biotechnol 2006; 9:198-213. [PMID: 16415593 DOI: 10.1159/000089648] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial pathogens have developed a diversity of strategies to interact with host cells, manipulate their behaviors, and thus to survive and propagate. During the process of pathogenesis, phosphorylation of proteins on hydroxyl amino acids (serine, threonine, tyrosine) occurs at different stages, including cell-cell interaction and adherence, translocation of bacterial effectors into host cells, and changes in host cellular structure and function induced by infection. The phosphorylation reactions are catalyzed in a reversible fashion by specific protein kinases and phosphatases that belong to either the invading bacterial cells or the infected eukaryotic host cells. Among the various virulence factors involved in bacterial pathogenesis, special attention has been paid recently to the cell wall components, exopolysaccharides. A major breakthrough has been made by showing the existence of a biological link between the activity of certain protein-tyrosine kinases/phosphatases and the production and/or transport of surface polysaccharides. In addition, genetic studies have revealed a key role played by some serine/threonine kinases in pathogenesis. Considering the structural organization and membrane topology of these different kinases, it can be envisaged that they operate as one-component systems in signal transduction pathways, in the form of single proteins containing input and output domains on the same polypeptide chain. From a general standpoint, the demonstration of a direct relationship between protein phosphorylation on serine/threonine/tyrosine and bacterial virulence represents a novel concept of great importance in deciphering the molecular and cellular mechanisms that underlie pathogenesis.
Collapse
Affiliation(s)
- Alain J Cozzone
- Institute of Biology and Chemistry of Proteins, University of Lyon/CNRS, Lyon, France.
| |
Collapse
|
22
|
Lux R, Shi W. A novel bacterial signalling system with a combination of a Ser/Thr kinase cascade and a His/Asp two-component system. Mol Microbiol 2005; 58:345-8. [PMID: 16194223 DOI: 10.1111/j.1365-2958.2005.04856.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prokaryotes and eukaryotes have long been thought to use very different types of kinases (the His kinases of the 'bacterial' two-component systems versus the 'eukaryotic' Ser/Thr/Tyr kinases) to carry out signal transduction. This paradigm no longer holds true, because both systems are now found together in an increasing number of prokaryotic organisms and 'two-component' His kinase are present in eukaryotes. Pioneering work on bacterial protein serine threonine kinases (PSTKs) has been performed in Myxococcus xanthus, a soil bacterium with a complex life cycle that possesses orthologues of signalling-related kinases 'typical' of both the prokaryotic and the eukaryotic kingdoms. In the work reported in this volume of Molecular Microbiology, Nariya and Inouye describe a PSTK cascade that modulates the biochemical activity of MrpC, a CRP-like transcriptional regulator for essential developmental signalling pathways in M. xanthus whose transcription is under the control of a two-component system. This is the first report of both a functional PSTK cascade in bacteria and the use of both PSTK and two-component systems to control a single complex bacterial signalling event.
Collapse
Affiliation(s)
- Renate Lux
- School of Dentistry, UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
23
|
Rajagopal L, Vo A, Silvestroni A, Rubens CE. Regulation of purine biosynthesis by a eukaryotic-type kinase in Streptococcus agalactiae. Mol Microbiol 2005; 56:1329-46. [PMID: 15882424 PMCID: PMC2366208 DOI: 10.1111/j.1365-2958.2005.04620.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Group B streptococci (GBS) are the principal causal agents of human neonatal pneumonia, sepsis and meningitis. We had previously described the existence of a eukaryotic-type serine/threonine kinase (Stk1) and phosphatase (Stp1) in GBS that regulate growth and virulence of the pathogen. Our previous results also demonstrated that these enzymes reversibly phosphorylated an inorganic pyrophosphatase. To understand the role of these eukaryotic-type enzymes on growth of GBS, we assessed the stk1-mutants for auxotrophic requirements. In this report, we describe that in the absence of the kinase (Stk1), GBS are attenuated for de novo purine biosynthesis and are consequently growth arrested. During growth in media lacking purines, the intracellular G nucleotide pools (GTP, GDP and GMP) are significantly reduced in the Stk1-deficient strains, while levels of A nucleotides (ATP, ADP and AMP) are marginally increased when compared with the isogenic wild-type strain. We provide evidence that the reduced pools of G nucleotides result from altered activity of the IMP utilizing enzymes, adenylosuccinate synthetase (PurA) and IMP dehydrogenase (GuaB) in these strains. We also demonstrate that Stk1 and Stp1 reversibly phosphorylate and consequently regulate PurA activity in GBS. Collectively, these data indicate the novel role of eukaryotic-type kinases in regulation of metabolic processes such as purine biosynthesis.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Division of Infectious Disease and Department of Pediatrics, Children's Hospital and Regional Medical Center and University of Washington, Suite 300, Mail Stop CW, 307 Westlake Ave. North, Seattle, WA 98109, USA.
| | | | | | | |
Collapse
|
24
|
Krupa A, Srinivasan N. Diversity in domain architectures of Ser/Thr kinases and their homologues in prokaryotes. BMC Genomics 2005; 6:129. [PMID: 16171520 PMCID: PMC1262709 DOI: 10.1186/1471-2164-6-129] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2004] [Accepted: 09/19/2005] [Indexed: 11/17/2022] Open
Abstract
Background Ser/Thr/Tyr kinases (STYKs) commonly found in eukaryotes have been recently reported in many bacterial species. Recent studies elucidating their cellular functions have established their roles in bacterial growth and development. However functions of a large number of bacterial STYKs still remain elusive. The organisation of domains in a large dataset of bacterial STYKs has been investigated here in order to recognise variety in domain combinations which determine functions of bacterial STYKs. Results Using sensitive sequence and profile search methods, domain organisation of over 600 STYKs from 125 prokaryotic genomes have been examined. Kinase catalytic domains of STYKs tethered to a wide range of enzymatic domains such as phosphatases, HSP70, peptidyl prolyl isomerases, pectin esterases and glycoproteases have been identified. Such distinct preferences for domain combinations are not known to be present in either the Histidine kinase or the eukaryotic STYK families. Domain organisation of STYKs specific to certain groups of bacteria has also been noted in the current anlaysis. For example, Hydrophobin like domains in Mycobacterial STYK and penicillin binding domains in few STYKs of Gram-positive organisms and FHA domains in cyanobacterial STYKs. Homologues of characterised substrates of prokaryotic STYKs have also been identified. Conclusion The domains and domain architectures of most of the bacterial STYKs identified are very different from the known domain organisation in STYKs of eukaryotes. This observation highlights distinct biological roles of bacterial STYKs compared to eukaryotic STYKs. Bacterial STYKs reveal high diversity in domain organisation. Some of the modular organisations conserved across diverse bacterial species suggests their central role in bacterial physiology. Unique domain architectures of few other groups of STYKs reveal recruitment of functions specific to the species.
Collapse
Affiliation(s)
- A Krupa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
- Cell Cycle Control Laboratory, London Research Institute, Cancer Research – UK, South Mimms, Hertfordshire, EN6 3LD UK
| | - N Srinivasan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
25
|
Nariya H, Inouye S. Identification of a protein Ser/Thr kinase cascade that regulates essential transcriptional activators inMyxococcus xanthusdevelopment. Mol Microbiol 2005; 58:367-79. [PMID: 16194226 DOI: 10.1111/j.1365-2958.2005.04826.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pkn8 is a membrane-associated protein Ser/Thr kinase (PSTK) of Myxoccocus xanthus that was previously found to associate with a novel cytoplasmic kinase, Pkn14. In the present study, MrpC, an essential transcription factor for fruA expression during fruiting body development, was identified using a genomic yeast two-hybrid screen with Pkn14 as bait. Our biochemical studies demonstrated that purified Pkn8 and Pkn14 are active kinases and that Pkn8 is able to phosphorylate Pkn14 that forms a tetramer via its C-terminal 41 residues. Moreover, Pkn14 phosphorylated purified MrpC, indicating that Pkn8 is a Pkn14 kinase and Pkn14 is an MrpC kinase. The pkn8 and pkn14 deletion strains (Deltapkn8 and Deltapkn14) developed into fruiting bodies significantly faster than that of the parent strain, DZF1. While mrpC expression was at a low level in DZF1 during vegetative growth, it was highly elevated in Deltapkn8 and Deltapkn14 during vegetative growth and development. Furthermore, FruA, usually induced at 6 h of development, was instead detected at the early stationary phase and accumulated faster during development in Deltapkn8 and Deltapkn14. Therefore, the developmental phenotype of Deltapkn8 and Deltapkn14 seems to be due to untimely FruA production mediated by elevated levels of MrpC in Deltapkn8 and Deltapkn14 during vegetative growth. As pkn14 expression was increased at the mid- and late-log. phases in DZF1 but decreased during development, the Pkn8-Pkn14 kinase cascade appears to negatively regulate mrpC expression by phosphorylating MrpC during vegetative growth. This is the first demonstration of a functional PSTK cascade in prokaryotes. mrpC expression has been proposed to be activated by MrpA and MrpB which belong to a two-component His-Asp phosphorelay signal transduction system and that MrpC autoregulate its own expression (Sun H. and Shi W., 2001 J Bacteriol 183: 4786-4795). Therefore, M. xanthus seems to utilize both eukaryotic PSTK cascade and prokaryotic His-Asp phosphorelay system to precisely regulate mrpC expression with specific timing during development.
Collapse
Affiliation(s)
- Hirofumi Nariya
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
26
|
Villarino A, Duran R, Wehenkel A, Fernandez P, England P, Brodin P, Cole ST, Zimny-Arndt U, Jungblut PR, Cerveñansky C, Alzari PM. Proteomic identification of M. tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions. J Mol Biol 2005; 350:953-63. [PMID: 15978616 DOI: 10.1016/j.jmb.2005.05.049] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 05/20/2005] [Accepted: 05/20/2005] [Indexed: 11/20/2022]
Abstract
Genes for functional Ser/Thr protein kinases (STPKs) are ubiquitous in prokaryotic genomes, but little is known about their physiological substrates and their actual involvement in bacterial signal transduction pathways. We report here the identification of GarA (Rv1827), a Forkhead-associated (FHA) domain-containing protein, as a putative physiological substrate of PknB, an essential Ser/Thr protein kinase from Mycobacterium tuberculosis. Using a global proteomic approach, GarA was found to be the best detectable substrate of the PknB catalytic domain in non-denatured whole-cell protein extracts from M. tuberculosis and the saprophyte Mycobacterium smegmatis. Enzymological and binding studies of the recombinant proteins demonstrate that docking interactions between the activation loop of PknB and the C-terminal FHA domain of GarA are required to enable efficient phosphorylation at a single N-terminal threonine residue, Thr22, of the substrate. The predicted amino acid sequence of the garA gene, including both the N-terminal phosphorylation motif and the FHA domain, is strongly conserved in mycobacteria and other related actinomycetes, suggesting a functional role of GarA in putative STPK-mediated signal transduction pathways. The ensuing model of PknB-GarA interactions suggests a substrate recruitment mechanism that might apply to other mycobacterial kinases bearing multiple phosphorylation sites in their activation loops.
Collapse
Affiliation(s)
- A Villarino
- Unité de Biochimie Structurale (URA 2185 CNRS), Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nariya H, Inouye S. Modulating factors for the Pkn4 kinase cascade in regulating 6-phosphofructokinase in Myxococcus xanthus. Mol Microbiol 2005; 56:1314-28. [PMID: 15882423 DOI: 10.1111/j.1365-2958.2005.04619.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myxococcus xanthus, a Gram-negative developmental bacterium, contains a large number of protein Ser/Thr kinases (PSTKs). Among these PSTKs, Pkn4 has been shown to be 6-phosphofructokinase (PFK) kinase. PFK associates with the regulatory domain of Pkn4 (Pkn4RD) and is activated by Pkn4-mediated phosphorylation. The activation of PFK is required to consume glycogen accumulated during early development and is essential for efficient sporulation. Using the yeast two-hybrid screen, we identified three new factors, MkapA, MkapB and MkapC, that interact with Pkn4 and each contains well-known protein-protein interaction domains. MkapB contains eight tandem repeats of the TPR (tetratrico peptide repeat) domain and its interaction with Pkn4RD was phosphorylation-dependent. MkapB remained associated with Pkn4RD. As a result, Pkn4 did not interact with PFK and its activation was inhibited. While deletion of the pfk-pkn4 operon did not inhibit fruiting body formation, the spore yield was low. In contrast, a mkapB deletion mutant exhibited a 24 h delay in fruiting body formation, accumulated less glycogen in the stationary phase and gave rise to 3.2% spore formation as opposed to 100% attained with DZF1. In addition to Pkn4, MkapA associated with other membrane-associated PSTKs, Pkn1, Pkn2, Pkn8 and Pkn9, while MkapB associated with Pkn8 and Pkn9, and MkapC with Pkn8. These results indicate that there are complex PSTK networks in M. xanthus that share common modulating factors.
Collapse
Affiliation(s)
- Hirofumi Nariya
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
28
|
Nováková L, Sasková L, Pallová P, Janecek J, Novotná J, Ulrych A, Echenique J, Trombe MC, Branny P. Characterization of a eukaryotic type serine/threonine protein kinase and protein phosphatase of Streptococcus pneumoniae and identification of kinase substrates. FEBS J 2005; 272:1243-54. [PMID: 15720398 DOI: 10.1111/j.1742-4658.2005.04560.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Searching the genome sequence of Streptococcus pneumoniae revealed the presence of a single Ser/Thr protein kinase gene stkP linked to protein phosphatase phpP. Biochemical studies performed with recombinant StkP suggest that this protein is a functional eukaryotic-type Ser/Thr protein kinase. In vitro kinase assays and Western blots of S. pneumoniae subcellular fractions revealed that StkP is a membrane protein. PhpP is a soluble protein with manganese-dependent phosphatase activity in vitro against a synthetic substrate RRA(pT)VA. Mutations in the invariant aspartate residues implicated in the metal binding completely abolished PhpP activity. Autophosphorylated form of StkP was shown to be a substrate for PhpP. These results suggest that StkP and PhpP could operate as a functional pair in vivo. Analysis of phosphoproteome maps of both wild-type and stkP null mutant strains labeled in vivo and subsequent phosphoprotein identification by peptide mass fingerprinting revealed two possible substrates for StkP. The evidence is presented that StkP can phosphorylate in vitro phosphoglucosamine mutase GlmM which catalyzes the first step in the biosynthetic pathway leading to the formation of UDP-N-acetylglucosamine, an essential common precursor to cell envelope components.
Collapse
Affiliation(s)
- Linda Nováková
- Cell and Molecular Microbiology Division, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mesojednik S, Legisa M. Posttranslational modification of 6-phosphofructo-1-kinase in Aspergillus niger. Appl Environ Microbiol 2005; 71:1425-32. [PMID: 15746345 PMCID: PMC1065176 DOI: 10.1128/aem.71.3.1425-1432.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 10/05/2004] [Indexed: 11/20/2022] Open
Abstract
Two different enzymes exhibiting 6-phosphofructo-1-kinase (PFK1) activity were isolated from the mycelium of Aspergillus niger: the native enzyme with a molecular mass of 85 kDa, which corresponded to the calculated molecular mass of the deduced amino acid sequence of the A. niger pfkA gene, and a shorter protein of approximately 49 kDa. A fragment of identical size also was obtained in vitro by the proteolytic digestion of the partially purified native PFK1 with proteinase K. When PFK1 activity was measured during the proteolytic degradation of the native protein, it was found to be lost after 1 h of incubation, but it was reestablished after induction of phosphorylation by adding the catalytic subunit of cyclic AMP-dependent protein kinase to the system. By determining kinetic parameters, different ratios of activities measured at ATP concentrations of 0.1 and 1 mM were detected with fragmented PFK1, as with the native enzyme. Fructose-2,6-biphosphate significantly increased the Vmax of the fragmented protein, while it had virtually no effect on the native protein. The native enzyme could be purified only from the early stages of growth on a minimal medium, while the 49-kDa fragment appeared later and was activated at the time of a sudden change in the growth rate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of sequential purifications of PFK1 enzymes by affinity chromatography during the early stages of the fungal development suggested spontaneous posttranslational modification of the native PFK1 in A. niger cells, while from the kinetic parameters determined for both isolated forms it could be concluded that the fragmented enzyme might be more efficient under physiological conditions.
Collapse
Affiliation(s)
- Suzana Mesojednik
- National Institute of Chemistry, Hajdrihova 19, PO Box 660, Si-1001 Ljubljana, Slovenia
| | | |
Collapse
|
30
|
Molle V, Girard-Blanc C, Kremer L, Doublet P, Cozzone AJ, Prost JF. Protein PknE, a novel transmembrane eukaryotic-like serine/threonine kinase from Mycobacterium tuberculosis. Biochem Biophys Res Commun 2003; 308:820-5. [PMID: 12927792 DOI: 10.1016/s0006-291x(03)01476-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein PknE from Mycobacterium tuberculosis has been overproduced and purified, and its biochemical properties have been analyzed. This protein is shown to be a eukaryotic-like (Hanks'-type) protein kinase with a structural organization similar to that of membrane-bound eukaryotic sensor serine/threonine kinases. It consists of a N-terminal catalytic domain located in the cytoplasm, linked via a single transmembrane-spanning region to an extracellular C-terminal domain. The full-length enzyme, as well as the cytosolic domain alone, can autophosphorylate on serine and threonine residues. Such autokinase activity requires the presence of a lysine residue at position 45 in subdomain II, which is known to be essential also for eukaryotic kinase activity. Involvement of PknE in the transduction of external signals into the cytosol of bacteria is proposed.
Collapse
Affiliation(s)
- Virginie Molle
- Institut de Biologie et Chimie des Protéines, Université de Lyon, Centre National de la Recherche Scientifique, Lyon, France.
| | | | | | | | | | | |
Collapse
|
31
|
Nariya H, Inouye S. An effective sporulation of Myxococcus xanthus requires glycogen consumption via Pkn4-activated 6-phosphofructokinase. Mol Microbiol 2003; 49:517-28. [PMID: 12828646 DOI: 10.1046/j.1365-2958.2003.03572.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
6-Phosphofructokinase (PFK) is a key enzyme for glycolysis in both prokaryotes and eukaryotes. Previously, it was found that the activity of Myxococcus xanthus PFK increased 2.7-fold upon phosphorylation at Thr-226 by the Ser/Thr kinase Pkn4. The pkn4 gene is located 18 bp downstream of the pfk gene forming an operon, and both genes are expressed during vegetative growth and development. Here, we show that glycogen, which accumulates during stationary phase and early in development, is consumed during sporulation. A pfk-pkn4 deletion strain accumulated glycogen at a higher level than the wild-type strain, was unable to consume glycogen during developmental progression and exhibited a poor spore yield. From genetic complementation analysis of the pfk-pkn4 deletion strain with the pfk and pkn4 genes, it was found that glycogen consumption and a high spore yield require not only the pfk gene but also the pkn4 gene. Furthermore, phosphorylation is critical for glycogen consumption because the pfk gene engineered to express the mutant PFK (Thr-226-Ala) did not complement a pfk mutant. We propose that glycogen metabolism in M. xanthus is regulated in a similar manner to that in eukaryotes requiring a protein Ser/Thr kinase.
Collapse
Affiliation(s)
- Hirofumi Nariya
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|