1
|
Jaiswal LK, Singh RK, Nayak T, Kakkar A, Kandwal G, Singh VS, Gupta A. A comparative analysis of mycobacterial ribonucleases: Towards a therapeutic novel drug target. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105645. [PMID: 39067582 DOI: 10.1016/j.meegid.2024.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Bacterial responses to continuously changing environments are addressed through modulation of gene expression at the level of transcription initiation, RNA processing and/or decay. Ribonucleases (RNases) are hydrolytic or phosphorolytic enzymes involved in a majority of RNA metabolism reactions. RNases play a crucial role in RNA degradation, either independently or in collaboration with various trans-acting regulatory factors. The genus Mycobacterium consists of five subgenera: Mycobacteroides, Mycolicibacterium, Mycobacterium, Mycolicibacter and Mycolicibacillus, which include 63 fully sequenced species (pathogenic/non-pathogenic) to date. These include 13 different RNases, among which 5 are exonucleases (RNase PH, PNPase, RNase D, nano-RNases and RNase AS) and 8 are endonucleases (RNase J, RNase H, RNase P, RNase III, RNase BN, RNase Z, RNase G and RNase E), although RNase J and RNase BN were later identified to have exoribonuclease functions also. Here, we provide a detailed comparative insight into the Escherichia coli and mycobacterial RNases with respect to their types, phylogeny, structure, function, regulation and mechanism of action, with the main emphasis on RNase E. Among these 13 different mycobacterial RNases, 10 are essential for cell survival and have diverse structures hence, they are promising drug targets. RNase E is also an essential endonuclease that is abundant in many bacteria, forms an RNA degradosome complex that controls central RNA processing/degradation and has a conserved 5' sensor domain/DNase-I like region in its RNase domain. The essential mycobacterial RNases especially RNase E provide a potential repertoire of drug targets that can be exploited for inhibitor/modulator screening against many deadly mycobacterial diseases.
Collapse
Affiliation(s)
- Lav Kumar Jaiswal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Rakesh Kumar Singh
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Tanmayee Nayak
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Anuja Kakkar
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Garima Kandwal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Vijay Shankar Singh
- Department of Microbiology, School of life Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Ankush Gupta
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India.
| |
Collapse
|
2
|
Hussain A. DEAD Box RNA Helicases: Biochemical Properties, Role in RNA Processing and Ribosome Biogenesis. Cell Biochem Biophys 2024; 82:427-434. [PMID: 38430409 DOI: 10.1007/s12013-024-01240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
DEAD box RNA helicases are a versatile group of ATP dependent enzymes that play an essential role in cellular processes like transcription, RNA processing, ribosome biogenesis and translation. These enzymes perform structural rearrangement of complex RNA molecules and enhance the productive folding of RNA and organization of macromolecular complexes. In this review article besides providing the outline about structural organization of helicases, an in-depth discussion will be done on the biochemical properties of RNA helicases like their substrate binding, binding and hydrolysis of ATP and related conformational changes that are important for functioning of the RNA helicase enzymes. I will extensively discuss the physiological role of RNA helicases in RNA processing and ribosome biogenesis.
Collapse
Affiliation(s)
- Ashaq Hussain
- Centre for Cellular and Molecular Biology, Hyderabad, India.
| |
Collapse
|
3
|
Clarke JE, Sabharwal K, Kime L, McDowall KJ. The recognition of structured elements by a conserved groove distant from domains associated with catalysis is an essential determinant of RNase E. Nucleic Acids Res 2023; 51:365-379. [PMID: 36594161 PMCID: PMC9841416 DOI: 10.1093/nar/gkac1228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/11/2022] [Accepted: 12/08/2022] [Indexed: 01/04/2023] Open
Abstract
RNase E is an endoribonuclease found in many bacteria, including important human pathogens. Within Escherichia coli, it has been shown to have a major role in both the maturation of all classes of RNA involved in translation and the initiation of mRNA degradation. Thus, knowledge of the major determinants of RNase E cleavage is central to our understanding and manipulation of bacterial gene expression. We show here that the binding of RNase E to structured RNA elements is crucial for the processing of tRNA, can activate catalysis and may be important in mRNA degradation. The recognition of structured elements by RNase E is mediated by a recently discovered groove that is distant from the domains associated with catalysis. The functioning of this groove is shown here to be essential for E. coli cell viability and may represent a key point of evolutionary divergence from the paralogous RNase G family, which we show lack amino acid residues conserved within the RNA-binding groove of members of the RNase E family. Overall, this work provides new insights into the recognition and cleavage of RNA by RNase E and provides further understanding of the basis of RNase E essentiality in E. coli.
Collapse
Affiliation(s)
| | | | - Louise Kime
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Kenneth J McDowall
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
4
|
Zabolotskii AI, Kozlovskiy SV, Katrukha AG. The Influence of the Nucleotide Composition of Genes and Gene Regulatory Elements on the Efficiency of Protein Expression in Escherichia coli. BIOCHEMISTRY (MOSCOW) 2023; 88:S176-S191. [PMID: 37069120 DOI: 10.1134/s0006297923140109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Recombinant proteins expressed in Escherichia coli are widely used in biochemical research and industrial processes. At the same time, achieving higher protein expression levels and correct protein folding still remains the key problem, since optimization of nutrient media, growth conditions, and methods for induction of protein synthesis do not always lead to the desired result. Often, low protein expression is determined by the sequences of the expressed genes and their regulatory regions. The genetic code is degenerated; 18 out of 20 amino acids are encoded by more than one codon. Choosing between synonymous codons in the coding sequence can significantly affect the level of protein expression and protein folding due to the influence of the gene nucleotide composition on the probability of formation of secondary mRNA structures that affect the ribosome binding at the translation initiation phase, as well as the ribosome movement along the mRNA during elongation, which, in turn, influences the mRNA degradation and the folding of the nascent protein. The nucleotide composition of the mRNA untranslated regions, in particular the promoter and Shine-Dalgarno sequences, also affects the efficiency of mRNA transcription, translation, and degradation. In this review, we describe the genetic principles that determine the efficiency of protein production in Escherichia coli.
Collapse
Affiliation(s)
- Artur I Zabolotskii
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | - Alexey G Katrukha
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
5
|
Otoupal PB, Cress BF, Doudna JA, Schoeniger J. CRISPR-RNAa: targeted activation of translation using dCas13 fusions to translation initiation factors. Nucleic Acids Res 2022; 50:8986-8998. [PMID: 35950485 PMCID: PMC9410913 DOI: 10.1093/nar/gkac680] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
Tools for synthetically controlling gene expression are a cornerstone of genetic engineering. CRISPRi and CRISPRa technologies have been applied extensively for programmable modulation of gene transcription, but there are few such tools for targeted modulation of protein translation rates. Here, we employ CRISPR-Cas13 as a programmable activator of translation. We develop a novel variant of the catalytically-deactivated Cas13d enzyme dCasRx by fusing it to translation initiation factor IF3. We demonstrate dCasRx-IF3's ability to enhance expression 21.3-fold above dCasRx when both are targeted to the start of the 5' untranslated region of mRNA encoding red fluorescent protein in Escherichia coli. Activation of translation is location-dependent, and we show dCasRx-IF3 represses translation when targeted to the ribosomal binding site, rather than enhancing it. We provide evidence that dCasRx-IF3 targeting enhances mRNA stability relative to dCasRx, providing mechanistic insights into how this new tool functions to enhance gene expression. We also demonstrate targeted upregulation of native LacZ 2.6-fold, showing dCasRx-IF3's ability to enhance expression of endogenous genes. dCasRx-IF3 requires no additional host modification to influence gene expression. This work outlines a novel approach, CRISPR-RNAa, for post-transcriptional control of translation to activate gene expression.
Collapse
Affiliation(s)
| | - Brady F Cress
- Innovative Genomics Institute, University of California, Berkeley, CA, USA,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, CA, USA,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA,California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA,Department of Chemistry, University of California, Berkeley, CA, USA,Howard Hughes Medical Institute, University of California, Berkeley, CA, USA,Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA,Gladstone Institutes, University of California, San Francisco, CA, USA
| | - Joseph S Schoeniger
- To whom correspondence should be addressed. Tel: +1 925 294 2955; Fax: +1 925 294 3020;
| |
Collapse
|
6
|
Mohanty BK, Kushner SR. Regulation of mRNA decay in E. coli. Crit Rev Biochem Mol Biol 2022; 57:48-72. [PMID: 34547957 PMCID: PMC9973670 DOI: 10.1080/10409238.2021.1968784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Detailed studies of the Gram-negative model bacterium, Escherichia coli, have demonstrated that post-transcriptional events exert important and possibly greater control over gene regulation than transcription initiation or effective translation. Thus, over the past 30 years, considerable effort has been invested in understanding the pathways of mRNA turnover in E. coli. Although it is assumed that most of the ribonucleases and accessory proteins involved in mRNA decay have been identified, our understanding of the regulation of mRNA decay is still incomplete. Furthermore, the vast majority of the studies on mRNA decay have been conducted on exponentially growing cells. Thus, the mechanism of mRNA decay as currently outlined may not accurately reflect what happens when cells find themselves under a variety of stress conditions, such as, nutrient starvation, changes in pH and temperature, as well as a host of others. While the cellular machinery for degradation is relatively constant over a wide range of conditions, intracellular levels of specific ribonucleases can vary depending on the growth conditions. Substrate competition will also modulate ribonucleolytic activity. Post-transcriptional modifications of transcripts by polyadenylating enzymes may favor a specific ribonuclease activity. Interactions with small regulatory RNAs and RNA binding proteins add additional complexities to mRNA functionality and stability. Since many of the ribonucleases are found at the inner membrane, the physical location of a transcript may help determine its half-life. Here we discuss the properties and role of the enzymes involved in mRNA decay as well as the multiple factors that may affect mRNA decay under various in vivo conditions.
Collapse
Affiliation(s)
| | - Sidney R. Kushner
- Department of Genetics, University of Georgia, Athens GA 30602
- Department of Microbiology, University of Georgia, Athens GA 30602
| |
Collapse
|
7
|
Islam MS, Bandyra KJ, Chao Y, Vogel J, Luisi BF. Impact of pseudouridylation, substrate fold, and degradosome organization on the endonuclease activity of RNase E. RNA (NEW YORK, N.Y.) 2021; 27:1339-1352. [PMID: 34341070 PMCID: PMC8522691 DOI: 10.1261/rna.078840.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
The conserved endoribonuclease RNase E dominates the dynamic landscape of RNA metabolism and underpins control mediated by small regulatory RNAs in diverse bacterial species. We explored the enzyme's hydrolytic mechanism, allosteric activation, and interplay with partner proteins in the multicomponent RNA degradosome assembly of Escherichia coli. RNase E cleaves single-stranded RNA with preference to attack the phosphate located at the 5' nucleotide preceding uracil, and we corroborate key interactions that select that base. Unexpectedly, RNase E activity is impeded strongly when the recognized uracil is isomerized to 5-ribosyluracil (pseudouridine), from which we infer the detailed geometry of the hydrolytic attack process. Kinetics analyses support models for recognition of secondary structure in substrates by RNase E and for allosteric autoregulation. The catalytic power of the enzyme is boosted when it is assembled into the multienzyme RNA degradosome, most likely as a consequence of substrate capture and presentation. Our results rationalize the origins of substrate preferences of RNase E and illuminate its catalytic mechanism, supporting the roles of allosteric domain closure and cooperation with other components of the RNA degradosome complex.
Collapse
Affiliation(s)
- Md Saiful Islam
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Katarzyna J Bandyra
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Yanjie Chao
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Xuhui district, Shanghai, 200031, China
| | - Jörg Vogel
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
8
|
Functional Characterization of the mazEF Toxin-Antitoxin System in the Pathogenic Bacterium Agrobacterium tumefaciens. Microorganisms 2021; 9:microorganisms9051107. [PMID: 34065548 PMCID: PMC8160871 DOI: 10.3390/microorganisms9051107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022] Open
Abstract
Agrobacterium tumefaciens is a pathogen of various plants which transfers its own DNA (T-DNA) to the host plants. It is used for producing genetically modified plants with this ability. To control T-DNA transfer to the right place, toxin-antitoxin (TA) systems of A. tumefaciens were used to control the target site of transfer without any unintentional targeting. Here, we describe a toxin-antitoxin system, Atu0939 (mazE-at) and Atu0940 (mazF-at), in the chromosome of Agrobacterium tumefaciens. The toxin in the TA system has 33.3% identity and 45.5% similarity with MazF in Escherichia coli. The expression of MazF-at caused cell growth inhibition, while cells with MazF-at co-expressed with MazE-at grew normally. In vivo and in vitro assays revealed that MazF-at inhibited protein synthesis by decreasing the cellular mRNA stability. Moreover, the catalytic residue of MazF-at was determined to be the 24th glutamic acid using site-directed mutagenesis. From the results, we concluded that MazF-at is a type II toxin-antitoxin system and a ribosome-independent endoribonuclease. Here, we characterized a TA system in A. tumefaciens whose understanding might help to find its physiological function and to develop further applications.
Collapse
|
9
|
Jeon HJ, Kang C, N MPA, Lee Y, Wang X, Chattoraj DK, Lim HM. Translation Initiation Control of RNase E-Mediated Decay of Polycistronic gal mRNA. Front Mol Biosci 2020; 7:586413. [PMID: 33240931 PMCID: PMC7681074 DOI: 10.3389/fmolb.2020.586413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
In bacteria, mRNA decay is a major mechanism for regulating gene expression. In Escherichia coli, mRNA decay initiates with endonucleolytic cleavage by RNase E. Translating ribosomes impede RNase E cleavage, thus providing stability to mRNA. In transcripts containing multiple cistrons, the translation of each cistron initiates separately. The effect of internal translation initiations on the decay of polycistronic transcripts remains unknown, which we have investigated here using the four-cistron galETKM transcript. We find that RNase E cleaves a few nucleotides (14-36) upstream of the translation initiation site of each cistron, generating decay intermediates galTKM, galKM, and galM mRNA with fewer but full cistrons. Blocking translation initiation reduced stability, particularly of the mutated cistrons and when they were the 5'-most cistrons. This indicates that, together with translation failure, the location of the cistron is important for its elimination. The instability of the 5'-most cistron did not propagate to the downstream cistrons, possibly due to translation initiation there. Cistron elimination from the 5' end was not always sequential, indicating that RNase E can also directly access a ribosome-free internal cistron. The finding in gal operon of mRNA decay by cistron elimination appears common in E. coli and Salmonella.
Collapse
Affiliation(s)
- Heung Jin Jeon
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Changjo Kang
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Monford Paul Abishek N
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Yonho Lee
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Xun Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dhruba K Chattoraj
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Heon M Lim
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
10
|
Li W, Lynch M. Universally high transcript error rates in bacteria. eLife 2020; 9:54898. [PMID: 32469307 PMCID: PMC7259958 DOI: 10.7554/elife.54898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
Errors can occur at any level during the replication and transcription of genetic information. Genetic mutations derived mainly from replication errors have been extensively studied. However, fundamental details of transcript errors, such as their rate, molecular spectrum, and functional effects, remain largely unknown. To globally identify transcript errors, we applied an adapted rolling-circle sequencing approach to Escherichia coli, Bacillus subtilis, Agrobacterium tumefaciens, and Mesoplasma florum, revealing transcript-error rates 3 to 4 orders of magnitude higher than the corresponding genetic mutation rates. The majority of detected errors would result in amino-acid changes, if translated. With errors identified from 9929 loci, the molecular spectrum and distribution of errors were uncovered in great detail. A G→A substitution bias was observed in M. florum, which apparently has an error-prone RNA polymerase. Surprisingly, an increased frequency of nonsense errors towards the 3' end of mRNAs was observed, suggesting a Nonsense-Mediated Decay-like quality-control mechanism in prokaryotes.
Collapse
Affiliation(s)
- Weiyi Li
- Department of Biology, Indiana University, Bloomington, United States
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, United States.,Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, United States
| |
Collapse
|
11
|
Ali N, Gowrishankar J. Cross-subunit catalysis and a new phenomenon of recessive resurrection in Escherichia coli RNase E. Nucleic Acids Res 2020; 48:847-861. [PMID: 31802130 PMCID: PMC6954427 DOI: 10.1093/nar/gkz1152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
RNase E is a 472-kDa homo-tetrameric essential endoribonuclease involved in RNA processing and turnover in Escherichia coli. In its N-terminal half (NTH) is the catalytic active site, as also a substrate 5′-sensor pocket that renders enzyme activity maximal on 5′-monophosphorylated RNAs. The protein's non-catalytic C-terminal half (CTH) harbours RNA-binding motifs and serves as scaffold for a multiprotein degradosome complex, but is dispensable for viability. Here, we provide evidence that a full-length hetero-tetramer, composed of a mixture of wild-type and (recessive lethal) active-site mutant subunits, exhibits identical activity in vivo as the wild-type homo-tetramer itself (‘recessive resurrection’). When all of the cognate polypeptides lacked the CTH, the active-site mutant subunits were dominant negative. A pair of C-terminally truncated polypeptides, which were individually inactive because of additional mutations in their active site and 5′-sensor pocket respectively, exhibited catalytic function in combination, both in vivo and in vitro (i.e. intragenic or allelic complementation). Our results indicate that adjacent subunits within an oligomer are separately responsible for 5′-sensing and cleavage, and that RNA binding facilitates oligomerization. We propose also that the CTH mediates a rate-determining initial step for enzyme function, which is likely the binding and channelling of substrate for NTH’s endonucleolytic action.
Collapse
Affiliation(s)
- Nida Ali
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Jayaraman Gowrishankar
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| |
Collapse
|
12
|
Peters G, Maertens J, Lammertyn J, De Mey M. Exploring of the feature space of de novo developed post-transcriptional riboregulators. PLoS Comput Biol 2018; 14:e1006170. [PMID: 30118473 PMCID: PMC6114898 DOI: 10.1371/journal.pcbi.1006170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 08/29/2018] [Accepted: 04/30/2018] [Indexed: 11/23/2022] Open
Abstract
Metabolic engineering increasingly depends upon RNA technology to customly rewire the metabolism to maximize production. To this end, pure riboregulators allow dynamic gene repression without the need of a potentially burdensome coexpressed protein like typical Hfq binding small RNAs and clustered regularly interspaced short palindromic repeats technology. Despite this clear advantage, no clear general design principles are available to de novo develop repressing riboregulators, limiting the availability and the reliable development of these type of riboregulators. Here, to overcome this lack of knowledge on the functionality of repressing riboregulators, translation inhibiting RNAs are developed from scratch. These de novo developed riboregulators explore features related to thermodynamical and structural factors previously attributed to translation initiation modulation. In total, 12 structural and thermodynamic features were defined of which six features were retained after removing correlations from an in silico generated riboregulator library. From this translation inhibiting RNA library, 18 riboregulators were selected using a experimental design and subsequently constructed and co-expressed with two target untranslated regions to link the translation inhibiting RNA features to functionality. The pure riboregulators in the design of experiments showed repression down to 6% of the original protein expression levels, which could only be partially explained by a ordinary least squares regression model. To allow reliable forward engineering, a partial least squares regression model was constructed and validated to link the properties of translation inhibiting RNA riboregulators to gene repression. In this model both structural and thermodynamic features were important for efficient gene repression by pure riboregulators. This approach enables a more reliable de novo forward engineering of effective pure riboregulators, which further expands the RNA toolbox for gene expression modulation. To allow reliable forward engineering of microbial cell factories, various metabolic engineering efforts rely on RNA-based technology. As such, programmable riboregulators allow dynamic control over gene expression. However, no clear design principles exist for de novo developed repressing riboregulators, which limits their applicability. Here, various engineering principles are identified and computationally explored. Subsequently, various design criteria are used in an experimental design, which were explored in an in vivo study. This resulted in a regression model that enables a more reliable computational design of repression small RNAs.
Collapse
Affiliation(s)
- Gert Peters
- Centre for Synthetic Biology, Ghent University, Ghent, Belgium
| | - Jo Maertens
- Centre for Synthetic Biology, Ghent University, Ghent, Belgium
| | | | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
13
|
Mohanty BK, Kushner SR. Enzymes Involved in Posttranscriptional RNA Metabolism in Gram-Negative Bacteria. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0011-2017. [PMID: 29676246 PMCID: PMC5912700 DOI: 10.1128/microbiolspec.rwr-0011-2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Indexed: 02/08/2023] Open
Abstract
Gene expression in Gram-negative bacteria is regulated at many levels, including transcription initiation, RNA processing, RNA/RNA interactions, mRNA decay, and translational controls involving enzymes that alter translational efficiency. In this review, we discuss the various enzymes that control transcription, translation, and RNA stability through RNA processing and degradation. RNA processing is essential to generate functional RNAs, while degradation helps control the steady-state level of each individual transcript. For example, all the pre-tRNAs are transcribed with extra nucleotides at both their 5' and 3' termini, which are subsequently processed to produce mature tRNAs that can be aminoacylated. Similarly, rRNAs that are transcribed as part of a 30S polycistronic transcript are matured to individual 16S, 23S, and 5S rRNAs. Decay of mRNAs plays a key role in gene regulation through controlling the steady-state level of each transcript, which is essential for maintaining appropriate protein levels. In addition, degradation of both translated and nontranslated RNAs recycles nucleotides to facilitate new RNA synthesis. To carry out all these reactions, Gram-negative bacteria employ a large number of endonucleases, exonucleases, RNA helicases, and poly(A) polymerase, as well as proteins that regulate the catalytic activity of particular RNases. Under certain stress conditions, an additional group of specialized endonucleases facilitate the cell's ability to adapt and survive. Many of the enzymes, such as RNase E, RNase III, polynucleotide phosphorylase, RNase R, and poly(A) polymerase I, participate in multiple RNA processing and decay pathways.
Collapse
Affiliation(s)
| | - Sidney R Kushner
- Department of Genetics
- Department of Microbiology, University of Georgia, Athens, GA 30602
| |
Collapse
|
14
|
Stevens JT, Carothers JM. Programming Gene Expression by Engineering Transcript Stability Control and Processing in Bacteria. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jason T. Stevens
- University of Washington; Center for Synthetic Biology, Molecular Engineering and Sciences Institute, Departments of Chemical Engineering and Bioengineering; 4000 15th Ave NE, Seattle WA 98195-1654 USA
| | - James M. Carothers
- University of Washington; Center for Synthetic Biology, Molecular Engineering and Sciences Institute, Departments of Chemical Engineering and Bioengineering; 4000 15th Ave NE, Seattle WA 98195-1654 USA
| |
Collapse
|
15
|
The rph-1-Encoded Truncated RNase PH Protein Inhibits RNase P Maturation of Pre-tRNAs with Short Leader Sequences in the Absence of RppH. J Bacteriol 2017; 199:JB.00301-17. [PMID: 28808133 DOI: 10.1128/jb.00301-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/04/2017] [Indexed: 01/31/2023] Open
Abstract
RNase PH, encoded by the rph gene, is a 3'→5' exoribonuclease that in E. coli participates primarily in the 3' maturation of pre-tRNAs and the degradation of rRNA in stationary-phase cells. Interestingly, the routinely used laboratory strains of MG1655 and W3110 have naturally acquired the rph-1 allele, encoding a truncated catalytically inactive RNase PH protein which is widely assumed to be benign. Contrary to this assumption, we show that the rph-1-encoded Rph-1 protein inhibits RNase P-mediated 5'-end maturation of primary pre-tRNAs with leaders of <5 nucleotides in the absence of RppH, an RNA pyrophosphohydrolase. In contrast, RppH is not required for 5'-end maturation of endonucleolytically generated pre-tRNAs in the rph-1 strain and for any tRNAs in Δrph mutant or rph+ strains. We propose that the Rph-1 protein bound to the 3' end of the substrate creates a steric hindrance that in the presence of a triphosphate at the 5' end reduces the ability of RNase P to bind to the pre-tRNA.IMPORTANCE In this paper, we demonstrate that the rph-1 mutation found in commonly used E. coli strains leads to the synthesis of a truncated functionally inactive RNase PH protein that interferes with the 5'-end maturation of specific tRNAs with short 5' leaders by RNase P in the absence of RppH, an RNA pyrophosphohydrolase that converts primary 5' triphosphates into 5' monophosphates. The data presented indicate that the presence of the triphosphate interferes with RNase P binding to the pre-tRNA.
Collapse
|
16
|
Choi W, Yamaguchi Y, Lee JW, Jang KM, Inouye M, Kim SG, Yoon MH, Park JH. Translation-dependent mRNA cleavage by YhaV in Escherichia coli. FEBS Lett 2017; 591:1853-1861. [PMID: 28573789 DOI: 10.1002/1873-3468.12705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 11/08/2022]
Abstract
Many bacteria have toxin-antitoxin (TA) systems, where toxin gene expression inhibits their own cell growth. mRNA is one of the well-known targets of the toxins in the type II toxin-antitoxin systems. Here, we examined the ribosome dependency of the endoribonuclease activity of YhaV, one of the toxins in type II TA systems, on mRNA in vitro and in vivo. A polysome profiling assay revealed that YhaV is bound to the 70S ribosomes and 50S ribosomal subunits. Moreover, we found that while YhaV cleaves ompF and lpp mRNAs in a translation-dependent manner, they did not cleave the 5' untranslated region in primer extension experiments. From these results, we conclude that YhaV is a ribosome-dependent toxin that cleaves mRNA in a translation-dependent manner.
Collapse
Affiliation(s)
- Wonho Choi
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea.,Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, South Korea
| | - Yoshihiro Yamaguchi
- OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Japan
| | - Jae-Woo Lee
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea.,Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, South Korea
| | - Kyung-Min Jang
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Masayori Inouye
- Department of Biochemistry, Rutgers-Robert Wood Johnson Medical School and Center for Advanced Biotechnology and Medicine, Piscataway, NJ, USA
| | - Sung-Gun Kim
- Department of Biomedical Sicience, U1 University, Youngdong, South Korea
| | - Min-Ho Yoon
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, South Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| |
Collapse
|
17
|
Abstract
Gram-negative and gram-positive bacteria use a variety of enzymatic pathways to degrade mRNAs. Although several recent reviews have outlined these pathways, much less attention has been paid to the regulation of mRNA decay. The functional half-life of a particular mRNA, which affects how much protein is synthesized from it, is determined by a combination of multiple factors. These include, but are not necessarily limited to, (a) stability elements at either the 5' or the 3' terminus, (b) posttranscriptional modifications, (c) ribosome density on individual mRNAs, (d) small regulatory RNA (sRNA) interactions with mRNAs, (e) regulatory proteins that alter ribonuclease binding affinities, (f) the presence or absence of endonucleolytic cleavage sites, (g) control of intracellular ribonuclease levels, and (h) physical location within the cell. Changes in physiological conditions associated with environmental alterations can significantly alter the impact of these factors in the decay of a particular mRNA.
Collapse
Affiliation(s)
- Bijoy K Mohanty
- Department of Genetics, University of Georgia, Athens, Georgia 30602;
| | - Sidney R Kushner
- Department of Genetics, University of Georgia, Athens, Georgia 30602;
| |
Collapse
|
18
|
Vakulskas CA, Leng Y, Abe H, Amaki T, Okayama A, Babitzke P, Suzuki K, Romeo T. Antagonistic control of the turnover pathway for the global regulatory sRNA CsrB by the CsrA and CsrD proteins. Nucleic Acids Res 2016; 44:7896-910. [PMID: 27235416 PMCID: PMC5027483 DOI: 10.1093/nar/gkw484] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022] Open
Abstract
The widely conserved protein CsrA (carbon storage regulator A) globally regulates bacterial gene expression at the post-transcriptional level. In many species, CsrA activity is governed by untranslated sRNAs, CsrB and CsrC in Escherichia coli, which bind to multiple CsrA dimers, sequestering them from lower affinity mRNA targets. Both the synthesis and turnover of CsrB/C are regulated. Their turnover requires the housekeeping endonuclease RNase E and is activated by the presence of a preferred carbon source via the binding of EIIAGlc of the glucose transport system to the GGDEF-EAL domain protein CsrD. We demonstrate that the CsrB 3′ segment contains the features necessary for CsrD-mediated decay. RNase E cleavage in an unstructured segment located immediately upstream from the intrinsic terminator is necessary for subsequent degradation to occur. CsrA stabilizes CsrB against RNase E cleavage by binding to two canonical sites adjacent to the necessary cleavage site, while CsrD acts by overcoming CsrA-mediated protection. Our genetic, biochemical and structural studies establish a molecular framework for sRNA turnover by the CsrD-RNase E pathway. We propose that CsrD evolution was driven by the selective advantage of decoupling Csr sRNA decay from CsrA binding, connecting it instead to the availability of a preferred carbon source.
Collapse
Affiliation(s)
- Christopher A Vakulskas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Yuanyuan Leng
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Hazuki Abe
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Takumi Amaki
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Akihiro Okayama
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Paul Babitzke
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Kazushi Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| |
Collapse
|
19
|
Abstract
Synonymous mutations do not change the sequence of the polypeptide but they may still influence fitness. We investigated in Salmonella enterica how four synonymous mutations in the rpsT gene (encoding ribosomal protein S20) reduce fitness (i.e., growth rate) and the mechanisms by which this cost can be genetically compensated. The reduced growth rates of the synonymous mutants were correlated with reduced levels of the rpsT transcript and S20 protein. In an adaptive evolution experiment, these fitness impairments could be compensated by mutations that either caused up-regulation of S20 through increased gene dosage (due to duplications), increased transcription of the rpsT gene (due to an rpoD mutation or mutations in rpsT), or increased translation from the rpsT transcript (due to rpsT mutations). We suggest that the reduced levels of S20 in the synonymous mutants result in production of a defective subpopulation of 30S subunits lacking S20 that reduce protein synthesis and bacterial growth and that the compensatory mutations restore S20 levels and the number of functional ribosomes. Our results demonstrate how specific synonymous mutations can cause substantial fitness reductions and that many different types of intra- and extragenic compensatory mutations can efficiently restore fitness. Furthermore, this study highlights that also synonymous sites can be under strong selection, which may have implications for the use of dN/dS ratios as signature for selection.
Collapse
Affiliation(s)
- Anna Knöppel
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Joakim Näsvall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Foley PL, Hsieh PK, Luciano DJ, Belasco JG. Specificity and evolutionary conservation of the Escherichia coli RNA pyrophosphohydrolase RppH. J Biol Chem 2015; 290:9478-86. [PMID: 25657006 DOI: 10.1074/jbc.m114.634659] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Indexed: 12/20/2022] Open
Abstract
Bacterial RNA degradation often begins with conversion of the 5'-terminal triphosphate to a monophosphate by the RNA pyrophosphohydrolase RppH, an event that triggers rapid ribonucleolytic attack. Besides its role as the master regulator of 5'-end-dependent mRNA decay, RppH is important for the ability of pathogenic bacteria to invade host cells, yet little is known about how it chooses its targets. Here, we show that Escherichia coli RppH (EcRppH) requires at least two unpaired nucleotides at the RNA 5' end and prefers three or more such nucleotides. It can tolerate any nucleotide at the first three positions but has a modest preference for A at the 5' terminus and either a G or A at the second position. Mutational analysis has identified EcRppH residues crucial for substrate recognition or catalysis. The promiscuity of EcRppH differentiates it from its Bacillus subtilis counterpart, which has a strict RNA sequence requirement. EcRppH orthologs likely to share its relaxed sequence specificity are widespread in all classes of Proteobacteria, except Deltaproteobacteria, and in flowering plants. By contrast, the phylogenetic range of recognizable B. subtilis RppH orthologs appears to be restricted to the order Bacillales. These findings help to explain the selective influence of RppH on bacterial mRNA decay and show that RppH-dependent degradation has diversified significantly during the course of evolution.
Collapse
Affiliation(s)
- Patricia L Foley
- From the Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Ping-kun Hsieh
- From the Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Daniel J Luciano
- From the Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Joel G Belasco
- From the Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
21
|
Abstract
RNase E is a major intracellular endoribonuclease in many bacteria and participates in most aspects of RNA processing and degradation. RNase E requires a divalent metal ion for its activity. We show that only Mg(2+) and Mn(2+) will support significant rates of activity in vitro against natural RNAs, with Mn(2+) being preferred. Both Mg(2+) and Mn(2+) also support cleavage of an oligonucleotide substrate with similar kinetic parameters for both ions. Salts of Ni(2+) and Zn(2+) permitted low levels of activity, while Ca(2+), Co(3+), Cu(2+), and Fe(2+) did not. A mutation to one of the residues known to chelate Mg(2+), D346C, led to almost complete loss of activity dependent on Mg(2+); however, the activity of the mutant enzyme was fully restored by the presence of Mn(2+) with kinetic parameters fully equivalent to those of wild-type enzyme. A similar mutation to the other chelating residue, D303C, resulted in nearly full loss of activity regardless of metal ion. The properties of RNase E D346C enabled a test of the ionic requirements of RNase E in vivo. Plasmid shuffling experiments showed that both rneD303C (i.e., the rne gene encoding a D-to-C change at position 303) and rneD346C were inviable whether or not the selection medium was supplied with MnSO4, implying that RNase E relies on Mg(2+) exclusively in vivo.
Collapse
|
22
|
Clarke JE, Kime L, Romero A D, McDowall KJ. Direct entry by RNase E is a major pathway for the degradation and processing of RNA in Escherichia coli. Nucleic Acids Res 2014; 42:11733-51. [PMID: 25237058 PMCID: PMC4191395 DOI: 10.1093/nar/gku808] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli endoribonuclease E has a major influence on gene expression. It is essential for the maturation of ribosomal and transfer RNA as well as the rapid degradation of messenger RNA. The latter ensures that translation closely follows programming at the level of transcription. Recently, one of the hallmarks of RNase E, i.e. its ability to bind via a 5'-monophosphorylated end, was shown to be unnecessary for the initial cleavage of some polycistronic tRNA precursors. Here we show using RNA-seq analyses of ribonuclease-deficient strains in vivo and a 5'-sensor mutant of RNase E in vitro that, contrary to current models, 5'-monophosphate-independent, 'direct entry' cleavage is a major pathway for degrading and processing RNA. Moreover, we present further evidence that direct entry is facilitated by RNase E binding simultaneously to multiple unpaired regions. These simple requirements may maximize the rate of degradation and processing by permitting multiple sites to be surveyed directly without being constrained by 5'-end tethering. Cleavage was detected at a multitude of sites previously undescribed for RNase E, including ones that regulate the activity and specificity of ribosomes. A potentially broad role for RNase G, an RNase E paralogue, in the trimming of 5'-monophosphorylated ends was also revealed.
Collapse
Affiliation(s)
- Justin E Clarke
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Louise Kime
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David Romero A
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Kenneth J McDowall
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
23
|
Abstract
mRNA degradation is an important mechanism for controlling gene expression in bacterial cells. This process involves the orderly action of a battery of cellular endonucleases and exonucleases, some universal and others present only in certain species. These ribonucleases function with the assistance of ancillary enzymes that covalently modify the 5' or 3' end of RNA or unwind base-paired regions. Triggered by initiating events at either the 5' terminus or an internal site, mRNA decay occurs at diverse rates that are transcript specific and governed by RNA sequence and structure, translating ribosomes, and bound sRNAs or proteins. In response to environmental cues, bacteria are able to orchestrate widespread changes in mRNA lifetimes by modulating the concentration or specific activity of cellular ribonucleases or by unmasking the mRNA-degrading activity of cellular toxins.
Collapse
Affiliation(s)
- Monica P Hui
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, NY 10016;
| | | | | |
Collapse
|
24
|
Farasat I, Kushwaha M, Collens J, Easterbrook M, Guido M, Salis HM. Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria. Mol Syst Biol 2014; 10:731. [PMID: 24952589 PMCID: PMC4265053 DOI: 10.15252/msb.20134955] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Developing predictive models of multi-protein genetic systems to understand and optimize their behavior remains a combinatorial challenge, particularly when measurement throughput is limited. We developed a computational approach to build predictive models and identify optimal sequences and expression levels, while circumventing combinatorial explosion. Maximally informative genetic system variants were first designed by the RBS Library Calculator, an algorithm to design sequences for efficiently searching a multi-protein expression space across a > 10,000-fold range with tailored search parameters and well-predicted translation rates. We validated the algorithm's predictions by characterizing 646 genetic system variants, encoded in plasmids and genomes, expressed in six gram-positive and gram-negative bacterial hosts. We then combined the search algorithm with system-level kinetic modeling, requiring the construction and characterization of 73 variants to build a sequence-expression-activity map (SEAMAP) for a biosynthesis pathway. Using model predictions, we designed and characterized 47 additional pathway variants to navigate its activity space, find optimal expression regions with desired activity response curves, and relieve rate-limiting steps in metabolism. Creating sequence-expression-activity maps accelerates the optimization of many protein systems and allows previous measurements to quantitatively inform future designs.
Collapse
Affiliation(s)
- Iman Farasat
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Manish Kushwaha
- Department of Biological Engineering, Pennsylvania State University, University Park, PA, USA
| | - Jason Collens
- Department of Biological Engineering, Pennsylvania State University, University Park, PA, USA
| | - Michael Easterbrook
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Matthew Guido
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Howard M Salis
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA Department of Biological Engineering, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
25
|
Control of gene expression at a bacterial leader RNA, the agn43 gene encoding outer membrane protein Ag43 of Escherichia coli. J Bacteriol 2014; 196:2728-35. [PMID: 24837285 DOI: 10.1128/jb.01680-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The family of agn alleles in Escherichia coli pathovars encodes autotransporters that have been implicated in biofilm formation, autoaggregation, and attachment to cells. The alleles all have long leader RNAs preceding the Ag43 translation initiation codon. Here we present an analysis of the agn43 leader RNA from E. coli K-12. We demonstrate the presence of a rho-independent transcription terminator just 28 bp upstream of the main translation start codon and show that it is functional in vitro. Our data indicate that an as-yet-unknown mechanism of antitermination of transcription must be operative in earlier phases of growth. However, as bacterial cell cultures mature, progressively fewer transcripts are able to bypass this terminator. In the K-12 leader sequence, two in-frame translation initiation codons have been identified, one upstream and the other downstream of the transcription terminator. For optimal agn43 expression, both codons need to be present. Translation from the upstream start codon leads to increased downstream agn43 expression. Our findings have revealed two novel modes of regulation of agn43 expression in the leader RNA in addition to the previously well-characterized regulation of phase variation at the agn43 promoter.
Collapse
|
26
|
Abstract
Temperature, among other environmental factors, influences the incidence and severity of many plant diseases. Likewise, numerous traits, including the expression of virulence factors, are regulated by temperature. Little is known about the underlying genetic determinants of thermoregulation in plant-pathogenic bacteria. Previously, we showed that the expression of both fliC (encoding flagellin) and syfA (encoding a nonribosomal polypeptide synthetase) was suppressed at high temperatures in Pseudomonas syringae. In this work, we used a high-throughput screen to identify mutations that conferred overexpression of syfA at elevated temperatures (28°C compared to 20°C). Two genes, Psyr_2474, encoding an acyl-coenzyme A (CoA) dehydrogenase, and Psyr_4843, encoding an ortholog of RppH, which in Escherichia coli mediates RNA turnover, contribute to thermoregulation of syfA. To assess the global role of rppH in thermoregulation in P. syringae, RNA sequencing was used to compare the transcriptomes of an rppH deletion mutant and the wild-type strain incubated at 20°C and 30°C. The disruption of rppH had a large effect on the temperature-dependent transcriptome of P. syringae, affecting the expression of 569 genes at either 20°C or 30°C but not at both temperatures. Intriguingly, RppH is involved in the thermoregulation of ribosome-associated proteins, as well as of RNase E, suggesting a prominent role of rppH on the proteome in addition to its effect on the transcriptome.
Collapse
|
27
|
Kime L, Clarke JE, Romero A. D, Grasby JA, McDowall KJ. Adjacent single-stranded regions mediate processing of tRNA precursors by RNase E direct entry. Nucleic Acids Res 2014; 42:4577-89. [PMID: 24452799 PMCID: PMC3985628 DOI: 10.1093/nar/gkt1403] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/09/2013] [Accepted: 12/22/2013] [Indexed: 01/06/2023] Open
Abstract
The RNase E family is renowned for being central to the processing and decay of all types of RNA in many species of bacteria, as well as providing the first examples of endonucleases that can recognize 5'-monophosphorylated ends thereby increasing the efficiency of cleavage. However, there is increasing evidence that some transcripts can be cleaved efficiently by Escherichia coli RNase E via direct entry, i.e. in the absence of the recognition of a 5'-monophosphorylated end. Here, we provide biochemical evidence that direct entry is central to the processing of transfer RNA (tRNA) in E. coli, one of the core functions of RNase E, and show that it is mediated by specific unpaired regions that are adjacent, but not contiguous to segments cleaved by RNase E. In addition, we find that direct entry at a site on the 5' side of a tRNA precursor triggers a series of 5'-monophosphate-dependent cleavages. Consistent with a major role for direct entry in tRNA processing, we provide additional evidence that a 5'-monophosphate is not required to activate the catalysis step in cleavage. Other examples of tRNA precursors processed via direct entry are also provided. Thus, it appears increasingly that direct entry by RNase E has a major role in bacterial RNA metabolism.
Collapse
Affiliation(s)
- Louise Kime
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK and Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| | - Justin E. Clarke
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK and Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| | - David Romero A.
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK and Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| | - Jane A. Grasby
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK and Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| | - Kenneth J. McDowall
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK and Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| |
Collapse
|
28
|
Cao Y, Li J, Jiang N, Dong X. Mechanism for stabilizing mRNAs involved in methanol-dependent methanogenesis of cold-adaptive Methanosarcina mazei zm-15. Appl Environ Microbiol 2014; 80:1291-8. [PMID: 24317083 PMCID: PMC3911069 DOI: 10.1128/aem.03495-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/02/2013] [Indexed: 11/20/2022] Open
Abstract
Methylotrophic methanogenesis predominates at low temperatures in the cold Zoige wetland in Tibet. To elucidate the basis of cold-adapted methanogenesis in these habitats, Methanosarcina mazei zm-15 was isolated, and the molecular basis of its cold activity was studied. For this strain, aceticlastic methanogenesis was reduced 7.7-fold during growth at 15°C versus 30°C. Methanol-derived methanogenesis decreased only 3-fold under the same conditions, suggesting that it is more cold adaptive. Reverse transcription-quantitative PCR (RT-qPCR) detected <2-fold difference in the transcript abundances of mtaA1, mtaB1, and mtaC1, the methanol methyltransferase (Mta) genes, in 30°C versus 15°C culture, while ackA and pta mRNAs, encoding acetate kinase (Ack) and phosphotransacetylase (Pta) in aceticlastic methanogenesis, were 4.5- and 6.8-fold higher in 30°C culture than in 15°C culture. The in vivo half-lives of mtaA1 and mtaC1B1 mRNAs were similar in 30°C and 15°C cultures. However, the pta-ackA mRNA half-life was significantly reduced in 15°C culture compared to 30°C culture. Using circularized RNA RT-PCR, large 5' untranslated regions (UTRs) (270 nucleotides [nt] and 238 nt) were identified for mtaA1 and mtaC1B1 mRNAs, while only a 27-nt 5' UTR was present in the pta-ackA transcript. Removal of the 5' UTRs significantly reduced the in vitro half-lives of mtaA1 and mtaC1B1 mRNAs. Remarkably, fusion of the mtaA1 or mtaC1B1 5' UTRs to pta-ackA mRNA increased its in vitro half-life at both 30°C and 15°C. These results demonstrate that the large 5' UTRs significantly enhance the stability of the mRNAs involved in methanol-derived methanogenesis in the cold-adaptive M. mazei zm-15.
Collapse
Affiliation(s)
- Yi Cao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Initiation of mRNA decay in bacteria. Cell Mol Life Sci 2013; 71:1799-828. [PMID: 24064983 PMCID: PMC3997798 DOI: 10.1007/s00018-013-1472-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 12/24/2022]
Abstract
The instability of messenger RNA is fundamental to the control of gene expression. In bacteria, mRNA degradation generally follows an "all-or-none" pattern. This implies that if control is to be efficient, it must occur at the initiating (and presumably rate-limiting) step of the degradation process. Studies of E. coli and B. subtilis, species separated by 3 billion years of evolution, have revealed the principal and very disparate enzymes involved in this process in the two organisms. The early view that mRNA decay in these two model organisms is radically different has given way to new models that can be resumed by "different enzymes-similar strategies". The recent characterization of key ribonucleases sheds light on an impressive case of convergent evolution that illustrates that the surprisingly similar functions of these totally unrelated enzymes are of general importance to RNA metabolism in bacteria. We now know that the major mRNA decay pathways initiate with an endonucleolytic cleavage in E. coli and B. subtilis and probably in many of the currently known bacteria for which these organisms are considered representative. We will discuss here the different pathways of eubacterial mRNA decay, describe the major players and summarize the events that can precede and/or favor nucleolytic inactivation of a mRNA, notably the role of the 5' end and translation initiation. Finally, we will discuss the role of subcellular compartmentalization of transcription, translation, and the RNA degradation machinery.
Collapse
|
30
|
Mackie GA. Determinants in the rpsT mRNAs recognized by the 5'-sensor domain of RNase E. Mol Microbiol 2013; 89:388-402. [PMID: 23734704 DOI: 10.1111/mmi.12283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2013] [Indexed: 11/29/2022]
Abstract
RNase E plays a central role in processing virtually all classes of cellular RNA in many bacterial species. A characteristic feature of RNase E and its paralogue RNase G, as well as several other unrelated ribonucleases, is their preference for 5'-monophosphorylated substrates. The basis for this property has been explored in vitro. At limiting substrate, cleavage of the rpsT mRNA by RNase E (residues 1-529) is inefficient, requiring excess enzyme. The rpsT mRNA is cleaved sequentially in a 5' to 3' direction, with the initial cleavage(s) at positions 116/117 or 190/191 being largely driven by direct entry, independent of the 5'-terminus or the 5'-sensor domain of RNase E. Generation of the 147 nt 3'-limit product requires sequential cleavages that generate 5'-monophosphorylated termini on intermediates, and the 5'-sensor domain of RNase E. These requirements can be bypassed with limiting enzyme by deleting a stem-loop structure adjacent to the site of the major, most distal cleavage. Alternatively, this specific cleavage can be activated substantially by a 5'-phosphorylated oligonucleotide annealed 5' to the cleavage site. This finding suggests that monophosphorylated small RNAs may destabilize their mRNA targets by recruiting the 5-sensor domain of RNase E 'in trans'.
Collapse
Affiliation(s)
- George A Mackie
- Department of Biochemistry & Molecular Biology, Life Sciences Centre, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
31
|
Abstract
RNA enables the material interpretation of genetic information through time and in space. The creation, destruction and activity of RNA must be well controlled and tightly synchronized with numerous cellular processes. We discuss here the pathways and mechanism of bacterial RNA turnover, and describe how RNA itself modulates these processes as part of decision-making networks. The central roles of RNA decay and other aspects of RNA metabolism in cellular control are also suggested by their vulnerability to sabotage by phages; nonetheless, RNA can be used in defense against phage infection, and these processes are described here. Salient aspects of RNA turnover are drawn together to suggest how it could affect complex effects such as phenotypic diversity in populations and responses that persist for multiple generations.
Collapse
|
32
|
Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:491-513. [PMID: 23545199 DOI: 10.1016/j.bbagrm.2013.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 12/15/2022]
Abstract
In order to adapt to changing environmental conditions and regulate intracellular events such as division, cells are constantly producing new RNAs while discarding old or defective transcripts. These functions require the coordination of numerous ribonucleases that precisely cleave and trim newly made transcripts to produce functional molecules, and rapidly destroy unnecessary cellular RNAs. In recent years our knowledge of the nature, functions and structures of these enzymes in bacteria, archaea and eukaryotes has dramatically expanded. We present here a synthetic overview of the recent development in this dynamic area which has seen the identification of many new endoribonucleases and exoribonucleases. Moreover, the increasing pace at which the structures of these enzymes, or of their catalytic domains, have been solved has provided atomic level detail into their mechanisms of action. Based on sequence conservation and structural data, these proteins have been grouped into families, some of which contain only ribonuclease members, others including a variety of nucleolytic enzymes that act upon DNA and/or RNA. At the other extreme some ribonucleases belong to families of proteins involved in a wide variety of enzymatic reactions. Functional characterization of these fascinating enzymes has provided evidence for the extreme diversity of their biological functions that include, for example, removal of poly(A) tails (deadenylation) or poly(U) tails from eukaryotic RNAs, processing of tRNA and mRNA 3' ends, maturation of rRNAs and destruction of unnecessary mRNAs. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
33
|
Bandyra KJ, Bouvier M, Carpousis AJ, Luisi BF. The social fabric of the RNA degradosome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:514-22. [PMID: 23459248 PMCID: PMC3991390 DOI: 10.1016/j.bbagrm.2013.02.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 11/22/2022]
Abstract
Bacterial transcripts each have a characteristic half-life, suggesting that the processes of RNA degradation work in an active and selective manner. Moreover, the processes are well controlled, thereby ensuring that degradation is orderly and coordinated. Throughout much of the bacterial kingdom, RNA degradation processes originate through the actions of assemblies of key RNA enzymes, known as RNA degradosomes. Neither conserved in composition, nor unified by common evolutionary ancestry, RNA degradosomes nonetheless can be found in divergent bacterial lineages, implicating a common requirement for the co-localisation of RNA metabolic activities. We describe how the cooperation of components in the representative degradosome of Escherichia coli may enable controlled access to transcripts, so that they have defined and programmable lifetimes. We also discuss how this cooperation contributes to precursor processing and to the riboregulation of intricate post-transcriptional networks in the control of gene expression. The E. coli degradosome interacts with the cytoplasmic membrane, and we discuss how this interaction may spatially organise the assembly and contribute to subunit cooperation and substrate capture. This article is part of a Special Issue entitled: RNA Decay mechanisms. The organisation of the bacterial RNA degradosome The role in riboregulation and proposal for mechanism Discussion of access to substrates Discussion of the function of compartmentalisation
Collapse
|
34
|
Iost I, Bizebard T, Dreyfus M. Functions of DEAD-box proteins in bacteria: current knowledge and pending questions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:866-77. [PMID: 23415794 DOI: 10.1016/j.bbagrm.2013.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 11/18/2022]
Abstract
DEAD-box proteins are RNA-dependent ATPases that are widespread in all three kingdoms of life. They are thought to rearrange the structures of RNA or ribonucleoprotein complexes but their exact mechanism of action is rarely known. Whereas in yeast most DEAD-box proteins are essential, no example of an essential bacterial DEAD-box protein has been reported so far; at most, their absence results in cold-sensitive growth. Moreover, whereas yeast DEAD-box proteins are implicated in virtually all reactions involving RNA, in E. coli (the bacterium where DEAD-box proteins have been mostly studied) their role is limited to ribosome biogenesis, mRNA degradation, and possibly translation initiation. Plausible reasons for these differences are discussed here. In spite of their dispensability, E. coli DEAD-box proteins are valuable models for the mechanism of action of DEAD-box proteins in general because the reactions in which they participate can be reproduced in vitro. Here we review our present understanding of this mechanism of action. Using selected examples for which information is available: (i) we describe how, by interacting directly with a particular RNA motif or by binding to proteins that themselves recognize such a motif, DEAD-box proteins are brought to their specific RNA substrate(s); (ii) we discuss the nature of the structural transitions that DEAD-box proteins induce on their substrates; and (iii) we analyze the reasons why these proteins are mostly important at low temperatures. This article is part of a Special Issue entitled: The Biology of RNA helicases-Modulation for life.
Collapse
Affiliation(s)
- Isabelle Iost
- Univ. Bordeaux, ARNA Laboratory, F-33000 Bordeaux, France.
| | | | | |
Collapse
|
35
|
Mackie GA. RNase E: at the interface of bacterial RNA processing and decay. Nat Rev Microbiol 2012; 11:45-57. [DOI: 10.1038/nrmicro2930] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Maeda T, Wachi M. 3' Untranslated region-dependent degradation of the aceA mRNA, encoding the glyoxylate cycle enzyme isocitrate lyase, by RNase E/G in Corynebacterium glutamicum. Appl Environ Microbiol 2012; 78:8753-61. [PMID: 23042181 PMCID: PMC3502937 DOI: 10.1128/aem.02304-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/02/2012] [Indexed: 11/20/2022] Open
Abstract
We previously reported that the Corynebacterium glutamicum RNase E/G encoded by the rneG gene (NCgl2281) is required for the 5' maturation of 5S rRNA. In the search for the intracellular target RNAs of RNase E/G other than the 5S rRNA precursor, we detected that the amount of isocitrate lyase, an enzyme of the glyoxylate cycle, increased in rneG knockout mutant cells grown on sodium acetate as the sole carbon source. Rifampin chase experiments showed that the half-life of the aceA mRNA was about 4 times longer in the rneG knockout mutant than in the wild type. Quantitative real-time PCR analysis also confirmed that the level of aceA mRNA was approximately 3-fold higher in the rneG knockout mutant strain than in the wild type. Such differences were not observed in other mRNAs encoding enzymes involved in acetate metabolism. Analysis by 3' rapid amplification of cDNA ends suggested that RNase E/G cleaves the aceA mRNA at a single-stranded AU-rich region in the 3' untranslated region (3'-UTR). The lacZ fusion assay showed that the 3'-UTR rendered lacZ mRNA RNase E/G dependent. These findings indicate that RNase E/G is a novel regulator of the glyoxylate cycle in C. glutamicum.
Collapse
Affiliation(s)
- Tomoya Maeda
- Department of Bioengineering, Tokyo Institute of Technology, Yokohama, Japan
| | | |
Collapse
|
37
|
Dual-acting riboswitch control of translation initiation and mRNA decay. Proc Natl Acad Sci U S A 2012; 109:E3444-53. [PMID: 23169642 DOI: 10.1073/pnas.1214024109] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Riboswitches are mRNA regulatory elements that control gene expression by altering their structure in response to specific metabolite binding. In bacteria, riboswitches consist of an aptamer that performs ligand recognition and an expression platform that regulates either transcription termination or translation initiation. Here, we describe a dual-acting riboswitch from Escherichia coli that, in addition to modulating translation initiation, also is directly involved in the control of initial mRNA decay. Upon lysine binding, the lysC riboswitch adopts a conformation that not only inhibits translation initiation but also exposes RNase E cleavage sites located in the riboswitch expression platform. However, in the absence of lysine, the riboswitch folds into an alternative conformation that simultaneously allows translation initiation and sequesters RNase E cleavage sites. Both regulatory activities can be individually inhibited, indicating that translation initiation and mRNA decay can be modulated independently using the same conformational switch. Because RNase E cleavage sites are located in the riboswitch sequence, this riboswitch provides a unique means for the riboswitch to modulate RNase E cleavage activity directly as a function of lysine. This dual inhibition is in contrast to other riboswitches, such as the thiamin pyrophosphate-sensing thiM riboswitch, which triggers mRNA decay only as a consequence of translation inhibition. The riboswitch control of RNase E cleavage activity is an example of a mechanism by which metabolite sensing is used to regulate gene expression of single genes or even large polycistronic mRNAs as a function of environmental changes.
Collapse
|
38
|
Lodato PB, Hsieh PK, Belasco JG, Kaper JB. The ribosome binding site of a mini-ORF protects a T3SS mRNA from degradation by RNase E. Mol Microbiol 2012; 86:1167-82. [PMID: 23043360 DOI: 10.1111/mmi.12050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2012] [Indexed: 11/28/2022]
Abstract
Enterohaemorrhagic Escherichia coli harbours a pathogenicity island encoding a type 3 secretion system used to translocate effector proteins into the cytosol of intestinal epithelial cells and subvert their function. The structural proteins of the translocon are encoded in a major espADB mRNA processed from a precursor. The translocon mRNA should be highly susceptible to RNase E cleavage because of its AU-rich leader region and monophosphorylated 5'-terminus, yet it manages to avoid rapid degradation. Here, we report that the espADB leader region contains a strong Shine-Dalgarno element (SD2) and a translatable mini-ORF of six codons. Disruption of SD2 so as to weaken ribosome binding significantly reduces the concentration and stability of esp mRNA, whereas codon substitutions that impair translation of the mini-ORF have no such effect. These findings suggest that occupancy of SD2 by ribosomes, but not mini-ORF translation, helps to protect espADB mRNA from degradation, likely by hindering RNase E access to the AU-rich leader region.
Collapse
Affiliation(s)
- Patricia B Lodato
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
39
|
Richards J, Luciano DJ, Belasco JG. Influence of translation on RppH-dependent mRNA degradation in Escherichia coli. Mol Microbiol 2012; 86:1063-72. [PMID: 22989003 DOI: 10.1111/mmi.12040] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2012] [Indexed: 11/29/2022]
Abstract
In Escherichia coli, the endonuclease RNase E can access internal cleavage sites in mRNA either directly or by a 5' end-dependent mechanism in which cleavage is facilitated by prior RppH-catalysed conversion of the 5'-terminal triphosphate to a monophosphate, to which RNase E can bind. The characteristics of transcripts that determine which of these two pathways is primarily responsible for their decay are poorly understood. Here we report the influence of ribosome binding and translocation on each pathway, using yeiP and trxB as model transcripts. Ribosome binding to the translation initiation site impedes degradation by both mechanisms. However, because the effect on the rate of 5' end-independent decay is greater, poor ribosome binding favours degradation by that pathway. Arresting translation elongation with chloramphenicol quickly inhibits RNase E cleavage downstream of the initiation codon but has little or no immediate effect on cleavage upstream of the ribosome binding site. RNase E binding to a monophosphorylated 5' end appears to increase the likelihood of cleavage at sites within the 5' untranslated region. These findings indicate that ribosome binding and translocation can have a major impact on 5' end-dependent mRNA degradation in E. coli and suggest a possible sequence of events that follow pyrophosphate removal.
Collapse
Affiliation(s)
- Jamie Richards
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
40
|
Differential control of the rate of 5'-end-dependent mRNA degradation in Escherichia coli. J Bacteriol 2012; 194:6233-9. [PMID: 22984254 DOI: 10.1128/jb.01223-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many Escherichia coli mRNAs are degraded by a 5'-end-dependent mechanism in which RppH-catalyzed conversion of the 5'-terminal triphosphate to a monophosphate triggers rapid endonucleolytic cleavage by RNase E. However, little is understood about what governs the decay rates of these transcripts. We investigated the decay of three such messages--rpsT P1, yfcZ, and ydfG--to characterize the rate-determining step in their degradation. The steady-state ratio of monophosphorylated to triphosphorylated rpsT P1 and yfcZ mRNA indicates that their decay rate is limited by cleavage of the monophosphorylated intermediate, making RNase E critical for their rapid turnover. Conversely, the decay rate of ydfG is limited by generation of the monophosphorylated intermediate; therefore, either RNase E or its less abundant paralog RNase G is sufficient for rapid ydfG degradation. Although all three transcripts are stabilized when RppH is absent, overproducing RppH does not accelerate their decay, nor does RppH overproduction appear to influence the longevity of most other messages that it targets. The failure of excess RppH to hasten rpsT P1 and yfcZ degradation despite increasing the percentage of each that is monophosphorylated is consistent with the observation that pyrophosphate removal is not the rate-limiting step in their decay. In contrast, neither the ydfG decay rate nor the fraction of ydfG transcripts that are monophosphorylated increases when the cellular concentration of RppH is raised, suggesting that, for some RppH targets, the rate of formation of the monophosphorylated intermediate is limited by an ancillary factor or by a step that precedes pyrophosphate removal.
Collapse
|
41
|
Go H, Moore CJ, Lee M, Shin E, Jeon CO, Cha CJ, Han SH, Kim SJ, Lee SW, Lee Y, Ha NC, Kim YH, Cohen SN, Lee K. Upregulation of RNase E activity by mutation of a site that uncompetitively interferes with RNA binding. RNA Biol 2012; 8:1022-34. [PMID: 22186084 DOI: 10.4161/rna.8.6.18063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli RNase E contains a site that selectively binds to RNAs containing 5'-monophosphate termini, increasing the efficiency of endonucleolytic cleavage of these RNAs. Random mutagenesis of N-Rne, the N-terminal catalytic region of RNase E, identified a hyperactive variant that remains preferentially responsive to phosphorylation at 5' termini. Biochemical analyses showed that the mutation (Q36R), which replaces glutamine with arginine at a position distant from the catalytic site, increases formation of stable RNA-protein complexes without detectably affecting the enzyme's secondary or tertiary structure. Studies of cleavage of fluorogenic substrate and EMSA experiments indicated that the Q36R mutation increases catalytic activity and RNA binding. However, UV crosslinking and mass spectrometry studies suggested that the mutant enzyme lacks an RNA binding site present in its wild-type counterpart: two substrate-bound tryptic peptides, (65) HGFLPLK (71)--which includes amino acids previously implicated in substrate binding and catalysis--and (24) LYDLDIESPGHEQK (37)--which includes the Q36 locus-were identified in wild-type enzyme complexes. Only the shorter peptide was observed for complexes containing Q36R. Our results identify a novel RNase E locus that disparately affects the number of substrate binding sites and catalytic activity of the enzyme. We propose a model that may account for these surprising effects.
Collapse
Affiliation(s)
- Hayoung Go
- School of Biological Sciences, Chung-Ang University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Vivanco-Domínguez S, Bueno-Martínez J, León-Avila G, Iwakura N, Kaji A, Kaji H, Guarneros G. Protein synthesis factors (RF1, RF2, RF3, RRF, and tmRNA) and peptidyl-tRNA hydrolase rescue stalled ribosomes at sense codons. J Mol Biol 2012; 417:425-39. [PMID: 22326347 DOI: 10.1016/j.jmb.2012.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/17/2012] [Accepted: 02/03/2012] [Indexed: 10/14/2022]
Abstract
During translation, ribosomes stall on mRNA when the aminoacyl-tRNA to be read is not readily available. The stalled ribosomes are deleterious to the cell and should be rescued to maintain its viability. To investigate the contribution of some of the cellular translation factors on ribosome rescuing, we provoked stalling at AGA codons in mutants that affected the factors and then analyzed the accumulation of oligopeptidyl (peptides of up to 6 amino acid residues, oligopep-)-tRNA or polypeptidyl (peptides of more than 300 amino acids in length, polypep-)-tRNA associated with ribosomes. Stalling was achieved by starvation for aminoacyl-tRNA(Arg4) upon induced expression of engineered lacZ (β-galactosidase) reporter gene harboring contiguous AGA codons close to the initiation codon or at internal codon positions together with minigene ATGAGATAA accompanied by reduced peptidyl-tRNA hydrolase (Pth). Our results showed accumulations of peptidyl-tRNA associated with ribosomes in mutants for release factors (RF1, RF2, and RF3), ribosome recycling factor (RRF), Pth, and transfer-messenger RNA (tmRNA), implying that each of these factors cooperate in rescuing stalled ribosomes. The role of these factors in ribosome releasing from the stalled complex may vary depending on the length of the peptide in the peptidyl-tRNA. RF3 and RRF rescue stalled ribosomes by "drop-off" of peptidyl-tRNA, while RF1, RF2 (in the absence of termination codon), or Pth may rescue by hydrolyzing the associated peptidyl-tRNA. This is followed by the disassembly of the ribosomal complex of tRNA and mRNA by RRF and elongation factor G.
Collapse
Affiliation(s)
- Serafín Vivanco-Domínguez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, P.O. Box 14-740, Mexico City, 07000, Mexico
| | | | | | | | | | | | | |
Collapse
|
43
|
Klinkert B, Cimdins A, Gaubig LC, Roßmanith J, Aschke-Sonnenborn U, Narberhaus F. Thermogenetic tools to monitor temperature-dependent gene expression in bacteria. J Biotechnol 2012; 160:55-63. [PMID: 22285954 DOI: 10.1016/j.jbiotec.2012.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/29/2011] [Accepted: 01/12/2012] [Indexed: 10/14/2022]
Abstract
Free-living bacteria constantly monitor their ambient temperature. Drastic deviations elicit immediate protective responses known as cold shock or heat shock response. Many mammalian pathogens use temperature surveillance systems to recognize the successful invasion of a host by its body temperature, usually 37°C. Translation of temperature-responsive genes can be modulated by RNA thermometers (RNATs). RNATs form complex structures primarily in the 5'-untranslated region of their transcripts. Most RNATs block the ribosome binding site at low temperatures. Translation is induced at increasing temperature by melting of the RNA structure. The analysis of such temperature-dependent RNA elements calls for adequate test systems that function in the appropriate temperature range. Here, we summarize previously established reporter gene systems based on the classical β-galactosidase LacZ, the heat-stable β-galactosidase BgaB and the green fluorescent protein GFP. We validate these systems by testing known RNATs and describe the construction and application of an optimized bgaB system. Finally, two novel RNA thermometer candidates from Escherichia coli and Salmonella will be presented.
Collapse
Affiliation(s)
- Birgit Klinkert
- Microbial Biology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Laalami S, Putzer H. mRNA degradation and maturation in prokaryotes: the global players. Biomol Concepts 2011; 2:491-506. [DOI: 10.1515/bmc.2011.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/26/2011] [Indexed: 11/15/2022] Open
Abstract
AbstractThe degradation of messenger RNA is of universal importance for controlling gene expression. It directly affects protein synthesis by modulating the amount of mRNA available for translation. Regulation of mRNA decay provides an efficient means to produce just the proteins needed and to rapidly alter patterns of protein synthesis. In bacteria, the half-lives of individual mRNAs can differ by as much as two orders of magnitude, ranging from seconds to an hour. Most of what we know today about the diverse mechanisms of mRNA decay and maturation in prokaryotes comes from studies of the two model organisms Escherichia coli and Bacillus subtilis. Their evolutionary distance provided a large picture of potential pathways and enzymes involved in mRNA turnover. Among them are three ribonucleases, two of which have been discovered only recently, which have a truly general role in the initiating events of mRNA degradation: RNase E, RNase J and RNase Y. Their enzymatic characteristics probably determine the strategies of mRNA metabolism in the organism in which they are present. These ribonucleases are coded, alone or in various combinations, in all prokaryotic genomes, thus reflecting how mRNA turnover has been adapted to different ecological niches throughout evolution.
Collapse
Affiliation(s)
- Soumaya Laalami
- CNRS UPR 9073, affiliated with Univ Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Harald Putzer
- CNRS UPR 9073, affiliated with Univ Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
45
|
Abstract
RNase E is an essential endoribonuclease with a preference for RNA substrates with 5'-monophosphate ends. Primary transcripts, which have 5' triphosphate ends, are thus protected from RNase E. Their conversion to 5'-monophosphate transcripts by RppH is a prerequisite for RNase E-mediated processing and degradation. 5'-monophosphate recognition involves binding to a subdomain in the catalytic core of RNase E known as the 5' sensor. There are, however, transcripts that can be attacked directly by RNase E in a 5'-end-independent pathway. Direct entry involves elements outside of the catalytic domain that are located in the carboxyl terminal half (CTH) of RNase E. Strains harbouring rne alleles that express variants of RNase E in which 5' sensing (rneR169Q) or direct entry (rneΔCTH) are inactivated, are viable. However, the rneR169Q/rneΔCTH and ΔrppH/rneΔCTH combinations are synthetic lethal suggesting that the essential function(s) of RNase E requires at least one of these pathways to be active. A striking result is the demonstration that mutations affecting Rho-dependent transcription termination can overcome synthetic lethality by a pathway that requires RNase H. It is hypothesized that R-loop formation and RNase H cleavage substitute for RNase E-dependent RNA processing and mRNA degradation.
Collapse
Affiliation(s)
- Marie Bouvier
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, Toulouse, France
| | | |
Collapse
|
46
|
Anupama K, Leela JK, Gowrishankar J. Two pathways for RNase E action in Escherichia coli in vivo and bypass of its essentiality in mutants defective for Rho-dependent transcription termination. Mol Microbiol 2011; 82:1330-48. [PMID: 22026368 DOI: 10.1111/j.1365-2958.2011.07895.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The endonuclease RNase E of Escherichia coli is essential for viability, but deletion of its C-terminal half (CTH) is not lethal. RNase E preferentially acts on 5'-monophosphorylated RNA whose generation from primary transcripts is catalysed by RppH, but ΔRppH strains are viable. Here we show that the RNase E-ΔCTH ΔRppH combination is lethal, and that the lethality is suppressed by rho or nusG mutations impairing Rho-dependent transcription termination. Lethality was correlated with defects in bulk mRNA decay and tRNA processing, which were reversed by the rho suppressor. Lethality suppression was dependent on RNase H1 or the helicase UvsW of phage T4, both of which act to remove RNA-DNA hybrids (R-loops). The rho and nusG mutations also rescued inviability of a double alteration R169Q (that abolishes 5'-sensing) with ΔCTH in RNase E, as also that of conditional RNase E deficiency. We suggest that the ΔCTH alteration leads to loss of a second 5'-end-independent pathway of RNase E action. We further propose that an increased abundance of R-loops in the rho and nusG mutants, although ordinarily inimical to growth, contributes to rescue the lethality associated with loss of the two RNase E cleavage pathways by providing an alternative means of RNA degradation.
Collapse
Affiliation(s)
- K Anupama
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 001, India
| | | | | |
Collapse
|
47
|
Taverniti V, Forti F, Ghisotti D, Putzer H. Mycobacterium smegmatis RNase J is a 5'-3' exo-/endoribonuclease and both RNase J and RNase E are involved in ribosomal RNA maturation. Mol Microbiol 2011; 82:1260-76. [PMID: 22014150 DOI: 10.1111/j.1365-2958.2011.07888.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The presence of very different sets of enzymes, and in particular the presence of RNase E and RNase J, has been used to explain significant differences in RNA metabolism between the two model organisms Escherichia coli and Bacillus subtilis. However, these studies might have somewhat polarized our view of RNA metabolism. Here, we identified a RNase J in Mycobacterium smegmatis that has both 5'-3' exo- and endonucleolytic activity. This enzyme coexists with RNase E in this organism, a configuration that enabled us to study how these two key nucleases collaborate. We demonstrate that RNase E is responsible for the processing of the furA-katG transcript in M. smegmatis and that both RNase E and RNase J are involved in the 5' end processing of all ribosomal RNAs. In contrast to B. subtilis, the activity of RNase J, although required in vivo for 23S rRNA maturation, is not essential in M. smegmatis. We show that the pathways for ribosomal RNA maturation in M. smegmatis are quite different from those observed in E. coli and in B. subtilis. Studying organisms containing different combinations of key ribonucleases can thus significantly broaden our view of the possible strategies that exist to direct RNA metabolism.
Collapse
Affiliation(s)
- Valerio Taverniti
- Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | |
Collapse
|
48
|
Yu Q, Li Y, Ma A, Liu W, Wang H, Zhuang G. An efficient design strategy for a whole-cell biosensor based on engineered ribosome binding sequences. Anal Bioanal Chem 2011; 401:2891-8. [PMID: 21947012 DOI: 10.1007/s00216-011-5411-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 08/16/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
Abstract
In prokaryotes, the ribosome binding sequence (RBS), located in the 5' untranslated region (5' UTR) of an mRNA, plays a critical role in enhancing mRNA translation and stability. To evaluate the effect of the RBS on the sensitivity and signal intensity of an environmental whole-cell biosensor, three Escherichia coli-based biosensors that respond to benzene, toluene, ethylbenzene, and the xylenes (BTEX) were constructed; the three biosensors have the same Pu promoter and xylR regulator from the Pseudomonas putida TOL plasmid but differ in the engineered RBS in their reporter genes. The results from time and dose-dependent induction of luminescence activity by 2-chlorotoluene showed that the BTEX-SE and BTEX-SD biosensors with engineered RBS had signal intensities approximately 10-35 times higher than the primary BTEX-W biosensor. The limits of detection (LOD) of the BTEX-SE and BTEX-SD biosensors were also significantly lower than the LOD of the BTEX-W biosensor (20 ± 5 μmol L(-1) and 25 ± 5 μmol L(-1) vs. 120 ± 10 μmol L(-1)). Moreover, the BTEX-SE and BTEX-SD biosensors responded three times more rapidly to the analytes. These results suggest that rationally designed RBS in the 5' UTR of a reporter gene may be a promising strategy for increasing the sensitivity, signal intensity, and response speed of whole-cell biosensors.
Collapse
Affiliation(s)
- Qing Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
49
|
Richards J, Liu Q, Pellegrini O, Celesnik H, Yao S, Bechhofer DH, Condon C, Belasco JG. An RNA pyrophosphohydrolase triggers 5'-exonucleolytic degradation of mRNA in Bacillus subtilis. Mol Cell 2011; 43:940-9. [PMID: 21925382 PMCID: PMC3176438 DOI: 10.1016/j.molcel.2011.07.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 05/31/2011] [Accepted: 07/14/2011] [Indexed: 11/29/2022]
Abstract
In Escherichia coli, RNA degradation often begins with conversion of the 5'-terminal triphosphate to a monophosphate, creating a better substrate for internal cleavage by RNase E. Remarkably, no homolog of this key endonuclease is present in many bacterial species, such as Bacillus subtilis and various pathogens. Here, we report that the degradation of primary transcripts in B. subtilis can nevertheless be triggered by an analogous process to generate a short-lived, monophosphorylated intermediate. Like its E. coli counterpart, the B. subtilis RNA pyrophosphohydrolase that catalyzes this event is a Nudix protein that prefers unpaired 5' ends. However, in B. subtilis, this modification exposes transcripts to rapid 5' exonucleolytic degradation by RNase J, which is absent in E. coli but present in most bacteria lacking RNase E. This pathway, which closely resembles the mechanism by which deadenylated mRNA is degraded in eukaryotic cells, explains the stabilizing influence of 5'-terminal stem-loops in such bacteria.
Collapse
Affiliation(s)
- Jamie Richards
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Quansheng Liu
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Olivier Pellegrini
- CNRS UPR 9073 (affiliated with Université de Paris Diderot, Sorbonne Paris Cité) and Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Helena Celesnik
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Shiyi Yao
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine of New York University, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - David H. Bechhofer
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine of New York University, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Ciarán Condon
- CNRS UPR 9073 (affiliated with Université de Paris Diderot, Sorbonne Paris Cité) and Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Joel G. Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
50
|
Deikus G, Bechhofer DH. 5' End-independent RNase J1 endonuclease cleavage of Bacillus subtilis model RNA. J Biol Chem 2011; 286:34932-40. [PMID: 21862575 DOI: 10.1074/jbc.m111.287409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus subtilis trp leader RNA is a small (140-nucleotide) RNA that results from attenuation of trp operon transcription upon binding of the regulatory TRAP complex. Previously, endonucleolytic cleavage by ribonuclease RNase J1 in a 3'-proximal, single-stranded region was shown to be critical for initiation of trp leader RNA decay. RNase J1 is a dual-specificity enzyme, with both 5' exonucleolytic and endonucleolytic activities. Here, we provide in vivo and in vitro evidence that RNase J1 accesses its internal target site on trp leader RNA in a 5' end-independent manner. This has important implications for the role of RNase J1 in RNA decay. We also tested the involvement in trp leader RNA decay of the more recently discovered endonuclease RNase Y. Half-lives of several trp leader RNA constructs, which were designed to probe pathways of endonucleolytic versus exonucleolytic decay, were measured in an RNase Y-deficient mutant. Remarkably, the half-lives of these constructs were indistinguishable from their half-lives in an RNase J1-deficient mutant. These results suggest that lowering RNase Y concentration may affect RNA decay indirectly via an effect on RNase J1, which is thought to exist with RNase Y in a degradosome complex. To generalize our findings with trp leader RNA to other RNAs, we show that the mechanism of trp leader RNA decay is not dependent on TRAP binding.
Collapse
Affiliation(s)
- Gintaras Deikus
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | |
Collapse
|