1
|
Khan MZ, Hunt DM, Singha B, Kapoor Y, Singh NK, Prasad DVS, Dharmarajan S, Sowpati DT, de Carvalho LPS, Nandicoori VK. Divergent downstream biosynthetic pathways are supported by <sc>L</sc>-cysteine synthases of Mycobacterium tuberculosis. eLife 2024; 12:RP91970. [PMID: 39207917 PMCID: PMC11361707 DOI: 10.7554/elife.91970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Mycobacterium tuberculosis's (Mtb) autarkic lifestyle within the host involves rewiring its transcriptional networks to combat host-induced stresses. With the help of RNA sequencing performed under various stress conditions, we identified that genes belonging to Mtb sulfur metabolism pathways are significantly upregulated during oxidative stress. Using an integrated approach of microbial genetics, transcriptomics, metabolomics, animal experiments, chemical inhibition, and rescue studies, we investigated the biological role of non-canonical L-cysteine synthases, CysM and CysK2. While transcriptome signatures of RvΔcysM and RvΔcysK2 appear similar under regular growth conditions, we observed unique transcriptional signatures when subjected to oxidative stress. We followed pool size and labelling (34S) of key downstream metabolites, viz. mycothiol and ergothioneine, to monitor L-cysteine biosynthesis and utilization. This revealed the significant role of distinct L-cysteine biosynthetic routes on redox stress and homeostasis. CysM and CysK2 independently facilitate Mtb survival by alleviating host-induced redox stress, suggesting they are not fully redundant during infection. With the help of genetic mutants and chemical inhibitors, we show that CysM and CysK2 serve as unique, attractive targets for adjunct therapy to combat mycobacterial infection.
Collapse
Affiliation(s)
- Mehak Zahoor Khan
- National Institute of ImmunologyNew DelhiIndia
- CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
| | | | - Biplab Singha
- National Institute of ImmunologyNew DelhiIndia
- CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
| | - Yogita Kapoor
- CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | | | - D V Sai Prasad
- Department of Pharmacy, Birla Institute of Technology and Science-PilaniHyderabadIndia
| | - Sriram Dharmarajan
- Department of Pharmacy, Birla Institute of Technology and Science-PilaniHyderabadIndia
| | | | - Luiz Pedro S de Carvalho
- The Francis Crick InstituteLondonUnited Kingdom
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterUnited States
| | - Vinay Kumar Nandicoori
- National Institute of ImmunologyNew DelhiIndia
- CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
2
|
Priyanka, Sharma S, Sharma M. Role of PE/PPE proteins of Mycobacterium tuberculosis in triad of host mitochondria, oxidative stress and cell death. Microb Pathog 2024; 193:106757. [PMID: 38908454 DOI: 10.1016/j.micpath.2024.106757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The PE and PPE family proteins of Mycobacterium tuberculosis (Mtb) is exclusively found in pathogenic Mycobacterium species, comprising approximately 8-10 % of the Mtb genome. These emerging virulent factors have been observed to play pivotal roles in Mtb pathogenesis and immune evasion through various strategies. These immunogenic proteins are known to modulate the host immune response and cell-death pathways by targeting the powerhouse of the cell, the mitochondria to support Mtb survival. In this article, we are focused on how PE/PPE family proteins target host mitochondria to induce mitochondrial perturbations, modulate the levels of cellular ROS (Reactive oxygen species) and control cell death pathways. We observed that the time of expression of these proteins at different stages of infection is crucial for elucidating their impact on the cell death pathways and eventually on the outcome of infection. This article focuses on understanding the contributions of the PE/PPE proteins by unravelling the triad of host mitochondria, oxidative stress and cell death pathways that facilitate the Mtb persistence. Understanding the role of these proteins in host cellular pathways and the intricate mechanisms paves the way for the development of novel therapeutic strategies to combat TB infections.
Collapse
Affiliation(s)
- Priyanka
- DSKC BioDiscovery Laboratory, Miranda House, and Department of Zoology, University of Delhi, Delhi, 110007, India.
| | - Sadhna Sharma
- DSKC BioDiscovery Laboratory, Miranda House, and Department of Zoology, University of Delhi, Delhi, 110007, India.
| | - Monika Sharma
- DSKC BioDiscovery Laboratory, Miranda House, and Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
3
|
Xian X, Li L, Ye J, Mo W, Liang D, Huang M, Chang Y, Cui Z. Betaine and I-LG may have a predictive value for ATB: A causal study in a large European population. PLoS One 2024; 19:e0306752. [PMID: 38968285 PMCID: PMC11226055 DOI: 10.1371/journal.pone.0306752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024] Open
Abstract
PURPOSE To analyze the causal relationship between 486 human serum metabolites and the active tuberculosis (ATB) in European population. METHODS In this study, the causal relationship between human serum metabolites and the ATB was analyzed by integrating the genome-wide association study (GWAS). The 486 human serum metabolites were used as the exposure variable, three different ATB GWAS databases in the European population were set as outcome variables, and single nucleotide polymorphisms were used as instrumental variables for Mendelian Randomization. The inverse variance weighting was estimated causality, the MR-Egger intercept to estimate horizontal pleiotropy, and the combined effects of metabolites were also considered in the meta-analysis. Furthermore, the web-based MetaboAnalyst 6.0 was engaged for enrichment pathway analysis, while R (version 4.3.2) software and Review Manager 5.3 were employed for statistical analysis. RESULTS A total of 21, 17, and 19 metabolites strongly associated with ATB were found in the three databases after preliminary screening (P < 0.05). The intersecting metabolites across these databases included tryptophan, betaine, 1-linoleoylglycerol (1-monolinolein) (1-LG), 1-eicosatrienoylglycerophosphocholine, and oleoylcarnitine. Among them, betaine (I2 = 24%, P = 0.27) and 1-LG (I2 = 0%, P = 0.62) showed the lowest heterogeneity among the different ATB databases. In addition, the metabolic pathways of phosphatidylethanolamine biosynthesis (P = 0.0068), methionine metabolism (P = 0.0089), betaine metabolism (P = 0.0205) and oxidation of branched-chain fatty acids (P = 0.0309) were also associated with ATB. CONCLUSION Betaine and 1-LG may be biomarkers or auxiliary diagnostic tools for ATB. They may provide new guidance for medical practice in the early diagnosis and surveillance of ATB. In addition, by interfering with phosphatidylethanolamine biosynthesis, methionine metabolism, betaine metabolism, oxidation of branched-chain fatty acids, and other pathways, it is helpful to develop new anti-tuberculosis drugs and explore the virulence or pathogenesis of ATB at a deeper level, providing an effective reference for future studies.
Collapse
Affiliation(s)
- Xiaomin Xian
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Li Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Ye
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Key Discipline Platform of Tuberculosis Control, Guangxi Centre for Disease Control and Prevention, Nanning, Guangxi, China
| | - Wenxiu Mo
- School of Public Health and Management, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Dabin Liang
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Key Discipline Platform of Tuberculosis Control, Guangxi Centre for Disease Control and Prevention, Nanning, Guangxi, China
| | - Minying Huang
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Key Discipline Platform of Tuberculosis Control, Guangxi Centre for Disease Control and Prevention, Nanning, Guangxi, China
| | - Yue Chang
- School of Medicine and Health Management, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhezhe Cui
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Key Discipline Platform of Tuberculosis Control, Guangxi Centre for Disease Control and Prevention, Nanning, Guangxi, China
| |
Collapse
|
4
|
Orlova EA, Ogarkov OB, Kondratov IG, Sinkov VV, Belkova NL, Suzdalnitsky AE, Kirilchik SV, Nebesnykh AV, Kolesnikova LI. Analysis of the Diversity and Functional Potential of Bacterial Communities in Tuberculomas. Bull Exp Biol Med 2024; 177:140-146. [PMID: 38960962 DOI: 10.1007/s10517-024-06146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 07/05/2024]
Abstract
The dynamics of lung microbiota in tuberculosis remains poorly understood. Sequencing of variable regions of the 16S rRNA gene from surgically excised tuberculosis foci and biopsy specimens of normal lung tissue allowed characterization of the diversity and predictive potential of bacterial communities. Taxonomic diversity indices attested to differences in the structure of microbial communities between "healthy" lungs and tuberculomas. The microbial composition of "healthy" lungs varied in taxonomic diversity and was presented by both gram-positive and gram-negative bacteria with sufficiently similar metabolic potential. The microbiota of the examined tuberculomas consisted of Mycobacterium tuberculosis in 99.9% of cases. A significant part of the metabolic pathways predicted by PICRUSt2 included cholesterol catabolism, sulfate assimilation, and various pathways for the biosynthesis of cell wall components.
Collapse
Affiliation(s)
- E A Orlova
- Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia.
| | - O B Ogarkov
- Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - I G Kondratov
- Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - V V Sinkov
- Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - N L Belkova
- Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - A E Suzdalnitsky
- Irkutsk Regional Clinical Tuberculosis Hospital, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - S V Kirilchik
- Irkutsk Regional Cancer Center, Irkutsk, Russia
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | | | - L I Kolesnikova
- Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| |
Collapse
|
5
|
Commins N, Sullivan MR, McGowen K, Koch EM, Rubin EJ, Farhat M. Mutation rates and adaptive variation among the clinically dominant clusters of Mycobacterium abscessus. Proc Natl Acad Sci U S A 2023; 120:e2302033120. [PMID: 37216535 PMCID: PMC10235944 DOI: 10.1073/pnas.2302033120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Mycobacterium abscessus (Mab) is a multidrug-resistant pathogen increasingly responsible for severe pulmonary infections. Analysis of whole-genome sequences (WGS) of Mab demonstrates dense genetic clustering of clinical isolates collected from disparate geographic locations. This has been interpreted as supporting patient-to-patient transmission, but epidemiological studies have contradicted this interpretation. Here, we present evidence for a slowing of the Mab molecular clock rate coincident with the emergence of phylogenetic clusters. We performed phylogenetic inference using publicly available WGS from 483 Mab patient isolates. We implement a subsampling approach in combination with coalescent analysis to estimate the molecular clock rate along the long internal branches of the tree, indicating a faster long-term molecular clock rate compared to branches within phylogenetic clusters. We used ancestry simulation to predict the effects of clock rate variation on phylogenetic clustering and found that the degree of clustering in the observed phylogeny is more easily explained by a clock rate slowdown than by transmission. We also find that phylogenetic clusters are enriched in mutations affecting DNA repair machinery and report that clustered isolates have lower spontaneous mutation rates in vitro. We propose that Mab adaptation to the host environment through variation in DNA repair genes affects the organism's mutation rate and that this manifests as phylogenetic clustering. These results challenge the model that phylogenetic clustering in Mab is explained by person-to-person transmission and inform our understanding of transmission inference in emerging, facultative pathogens.
Collapse
Affiliation(s)
- Nicoletta Commins
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Mark R. Sullivan
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Kerry McGowen
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Evan M. Koch
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Maha Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA02114
| |
Collapse
|
6
|
Kaur A, Lin W, Dovhalyuk V, Driutti L, Di Martino ML, Vujasinovic M, Löhr JM, Sellin ME, Globisch D. Chemoselective bicyclobutane-based mass spectrometric detection of biological thiols uncovers human and bacterial metabolites. Chem Sci 2023; 14:5291-5301. [PMID: 37234898 PMCID: PMC10207876 DOI: 10.1039/d3sc00224a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/05/2023] [Indexed: 05/28/2023] Open
Abstract
Sulfur is an essential element of life. Thiol-containing metabolites in all organisms are involved in the regulation of diverse biological processes. Especially, the microbiome produces bioactive metabolites or biological intermediates of this compound class. The analysis of thiol-containing metabolites is challenging due to the lack of specific tools, making these compounds difficult to investigate selectively. We have now developed a new methodology comprising bicyclobutane for chemoselective and irreversible capturing of this metabolite class. We utilized this new chemical biology tool immobilized onto magnetic beads for the investigation of human plasma, fecal samples, and bacterial cultures. Our mass spectrometric investigation detected a broad range of human, dietary and bacterial thiol-containing metabolites and we even captured the reactive sulfur species cysteine persulfide in both fecal and bacterial samples. The described comprehensive methodology represents a new mass spectrometric strategy for the discovery of bioactive thiol-containing metabolites in humans and the microbiome.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University 75124 Uppsala Sweden
| | - Weifeng Lin
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University 75124 Uppsala Sweden
| | - Vladyslav Dovhalyuk
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University 75124 Uppsala Sweden
| | - Léna Driutti
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University 75124 Uppsala Sweden
| | - Maria Letizia Di Martino
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University 75123 Uppsala Sweden
| | - Miroslav Vujasinovic
- Department for Digestive Diseases, Karolinska University Hospital Stockholm Sweden
| | - J-Matthias Löhr
- Department for Digestive Diseases, Karolinska University Hospital Stockholm Sweden
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute Stockholm Sweden
| | - Mikael E Sellin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University 75123 Uppsala Sweden
| | - Daniel Globisch
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University 75124 Uppsala Sweden
| |
Collapse
|
7
|
Jayasinghe YP, Banco MT, Lindenberger JJ, Favrot L, Palčeková Z, Jackson M, Manabe S, Ronning DR. The Mycobacterium tuberculosis mycothiol S-transferase is divalent metal-dependent for mycothiol binding and transfer. RSC Med Chem 2023; 14:491-500. [PMID: 36970142 PMCID: PMC10034076 DOI: 10.1039/d2md00401a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Mycothiol S-transferase (MST) (encoded by the rv0443 gene) was previously identified as the enzyme responsible for the transfer of Mycothiol (MSH) to xenobiotic acceptors in Mycobacterium tuberculosis (M.tb) during xenobiotic stress. To further characterize the functionality of MST in vitro and the possible roles in vivo, X-ray crystallographic, metal-dependent enzyme kinetics, thermal denaturation studies, and antibiotic MIC determination in rv0433 knockout strain were performed. The binding of MSH and Zn2+ increases the melting temperature by 12.9 °C as a consequence of the cooperative stabilization of MST by both MSH and metal. The co-crystal structure of MST in complex with MSH and Zn2+ to 1.45 Å resolution supports the specific utilization of MSH as a substrate as well as affording insights into the structural requirements of MSH binding and the metal-assisted catalytic mechanism of MST. Contrary to the well-defined role of MSH in mycobacterial xenobiotic responses and the ability of MST to bind MSH, cell-based studies with an M.tb rv0443 knockout strain failed to provide evidence for a role of MST in processing of rifampicin or isoniazid. These studies suggest the necessity of a new direction to identify acceptors of the enzyme and better define the biological role of MST in mycobacteria.
Collapse
Affiliation(s)
- Yahani P Jayasinghe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha Nebraska USA
| | - Michael T Banco
- Department of Chemistry and Biochemistry, University of Toledo Toledo Ohio USA
| | | | - Lorenza Favrot
- Department of Chemistry and Biochemistry, University of Toledo Toledo Ohio USA
| | - Zuzana Palčeková
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins Colorado USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins Colorado USA
| | - Shino Manabe
- Laboratory of Functional Molecule Chemistry, Pharmaceutical Department and Institute of Medicinal Chemistry, Hoshi University Tokyo Japan
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Tohoku University Miyagi Japan
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha Nebraska USA
| |
Collapse
|
8
|
Inflammation-mediated tissue damage in pulmonary tuberculosis and host-directed therapeutic strategies. Semin Immunol 2023; 65:101672. [PMID: 36469987 DOI: 10.1016/j.smim.2022.101672] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Treatment of tuberculosis (TB) involves the administration of anti-mycobacterial drugs for several months. The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb, the causative agent) together with increased disease severity in people with co-morbidities such as diabetes mellitus and HIV have hampered efforts to reduce case fatality. In severe disease, TB pathology is largely attributable to over-exuberant host immune responses targeted at controlling bacterial replication. Non-resolving inflammation driven by host pro-inflammatory mediators in response to high bacterial load leads to pulmonary pathology including cavitation and fibrosis. The need to improve clinical outcomes and reduce treatment times has led to a two-pronged approach involving the development of novel antimicrobials as well as host-directed therapies (HDT) that favourably modulate immune responses to Mtb. HDT strategies incorporate aspects of immune modulation aimed at downregulating non-productive inflammatory responses and augmenting antimicrobial effector mechanisms to minimise pulmonary pathology and accelerate symptom resolution. HDT in combination with existing antimycobacterial agents offers a potentially promising strategy to improve the long-term outcome for TB patients. In this review, we describe components of the host immune response that contribute to inflammation and tissue damage in pulmonary TB, including cytokines, matrix metalloproteinases, lipid mediators, and neutrophil extracellular traps. We then proceed to review HDT directed at these pathways.
Collapse
|
9
|
Structural Basis of Cysteine Ligase MshC Inhibition by Cysteinyl-Sulfonamides. Int J Mol Sci 2022; 23:ijms232315095. [PMID: 36499418 PMCID: PMC9736012 DOI: 10.3390/ijms232315095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Mycothiol (MSH), the major cellular thiol in Mycobacterium tuberculosis (Mtb), plays an essential role in the resistance of Mtb to various antibiotics and oxidative stresses. MshC catalyzes the ATP-dependent ligation of 1-O-(2-amino-2-deoxy-α-d-glucopyranosyl)-d-myo-inositol (GlcN-Ins) with l-cysteine (l-Cys) to form l-Cys-GlcN-Ins, the penultimate step in MSH biosynthesis. The inhibition of MshC is lethal to Mtb. In the present study, five new cysteinyl-sulfonamides were synthesized, and their binding affinity with MshC was evaluated using a thermal shift assay. Two of them bind the target with EC50 values of 219 and 231 µM. Crystal structures of full-length MshC in complex with these two compounds showed that they were bound in the catalytic site of MshC, inducing dramatic conformational changes of the catalytic site compared to the apo form. In particular, the observed closure of the KMSKS loop was not detected in the published cysteinyl-sulfamoyl adenosine-bound structure, the latter likely due to trypsin treatment. Despite the confirmed binding to MshC, the compounds did not suppress Mtb culture growth, which might be explained by the lack of adequate cellular uptake. Taken together, these novel cysteinyl-sulfonamide MshC inhibitors and newly reported full-length apo and ligand-bound MshC structures provide a promising starting point for the further development of novel anti-tubercular drugs targeting MshC.
Collapse
|
10
|
Parbhoo T, Mouton JM, Sampson SL. Phenotypic adaptation of Mycobacterium tuberculosis to host-associated stressors that induce persister formation. Front Cell Infect Microbiol 2022; 12:956607. [PMID: 36237425 PMCID: PMC9551238 DOI: 10.3389/fcimb.2022.956607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium tuberculosis exhibits a remarkable ability to interfere with the host antimicrobial response. The pathogen exploits elaborate strategies to cope with diverse host-induced stressors by modulating its metabolism and physiological state to prolong survival and promote persistence in host tissues. Elucidating the adaptive strategies that M. tuberculosis employs during infection to enhance persistence is crucial to understanding how varying physiological states may differentially drive disease progression for effective management of these populations. To improve our understanding of the phenotypic adaptation of M. tuberculosis, we review the adaptive strategies employed by M. tuberculosis to sense and coordinate a physiological response following exposure to various host-associated stressors. We further highlight the use of animal models that can be exploited to replicate and investigate different aspects of the human response to infection, to elucidate the impact of the host environment and bacterial adaptive strategies contributing to the recalcitrance of infection.
Collapse
|
11
|
Nikitushkin V, Shleeva M, Loginov D, Dyčka F. F, Sterba J, Kaprelyants A. Shotgun proteomic profiling of dormant, ‘non-culturable’ Mycobacterium tuberculosis. PLoS One 2022; 17:e0269847. [PMID: 35944020 PMCID: PMC9362914 DOI: 10.1371/journal.pone.0269847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Dormant cells of Mycobacterium tuberculosis, in addition to low metabolic activity and a high level of drug resistance, are characterized by ‘non-culturability’–a specific reversible state of the inability of the cells to grow on solid media. The biochemical characterization of this physiological state of the pathogen is only superficial, pending clarification of the metabolic processes that may exist in such cells. In this study, applying LC-MS proteomic profiling, we report the analysis of proteins accumulated in dormant, ‘non-culturable’ M. tuberculosis cells in an in vitro model of self-acidification of mycobacteria in the post-stationary phase, simulating the in vivo persistence conditions—the raw data are available via ProteomeXchange with identifier PXD028849. This approach revealed the preservation of 1379 proteins in cells after 5 months of storage in dormancy; among them, 468 proteins were statistically different from those in the actively growing cells and bore a positive fold change (FC). Differential analysis revealed the proteins of the pH-dependent regulatory system PhoP and allowed the reconstruction of the reactions of central carbon/glycerol metabolism, as well as revealing the salvaged pathways of mycothiol and UMP biosynthesis, establishing the cohort of survival enzymes of dormancy. The annotated pathways mirror the adaptation of the mycobacterial metabolic machinery to life within lipid-rich macrophages: especially the involvement of the methyl citrate and glyoxylate pathways. Thus, the current in vitro model of M. tuberculosis self-acidification reflects the biochemical adaptation of these bacteria to persistence in vivo. Comparative analysis with published proteins displaying antigenic properties makes it possible to distinguish immunoreactive proteins among the proteins bearing a positive FC in dormancy, which may include specific antigens of latent tuberculosis. Additionally, the biotransformatory enzymes (oxidoreductases and hydrolases) capable of prodrug activation and stored up in the dormant state were annotated. These findings may potentially lead to the discovery of immunodiagnostic tests for early latent tuberculosis and trigger the discovery of efficient drugs/prodrugs with potency against non-replicating, dormant populations of mycobacteria.
Collapse
Affiliation(s)
- Vadim Nikitushkin
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow, Russia
- * E-mail: (VN); (FDF)
| | - Margarita Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Loginov
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
- BioCeV—Institute of Microbiology of the CAS, Vestec, Czech Republic
- Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
| | - Filip Dyčka F.
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
- * E-mail: (VN); (FDF)
| | - Jan Sterba
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| | - Arseny Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Wang Q, Zhou YM, Xing CY, Li WC, Shen Y, Yan P, Guo JS, Fang F, Chen YP. Encapsulins from Ca. Brocadia fulgida: An effective tool to enhance the tolerance of engineered bacteria (pET-28a-cEnc) to Zn 2. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128954. [PMID: 35462189 DOI: 10.1016/j.jhazmat.2022.128954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Zn2+ is largely discharged from many industries and poses a severe threat to the environment, making its remediation crucial. Encapsulins, proteinaceous nano-compartments, may protect cells against environmental stresses by sequestering toxic substances. To determine whether hemerythrin-containing encapsulins (cEnc) from anammox bacteria Ca. Brocadia fulgida can help cells deal with toxic substances such as Zn2+, we transferred cEnc into E.coli by molecular biology technologies for massive expression and then cultured them in media with increasing Zn2+ levels. The engineered bacteria (with cEnc) grew better and entered the apoptosis phase later, while wild bacteria showed poor survival. Furthermore, tandem mass tag-based quantitative proteomic analysis was used to reveal the underlying regulatory mechanism by which the genetically-engineered bacteria (with cEnc) adapted to Zn2+ stress. When Zn2+ was sequestered in cEnc as a transition, the engineered bacteria presented a complex network of regulatory systems against Zn2+-induced cytotoxicity, including functions related to ribosomes, sulfur metabolism, flagellar assembly, DNA repair, protein synthesis, and Zn2+ efflux. Our findings offer an effective and promising stress control strategy to enhance the Zn2+ tolerance of bacteria for Zn2+ remediation and provide a new application for encapsulins.
Collapse
Affiliation(s)
- Que Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Yue-Ming Zhou
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Chong-Yang Xing
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligence Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Wen-Chao Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Yu Shen
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
13
|
Bandyopadhyay P, Pramanick I, Biswas R, PS S, Sreedharan S, Singh S, Rajmani RS, Laxman S, Dutta S, Singh A. S-Adenosylmethionine-responsive cystathionine β-synthase modulates sulfur metabolism and redox balance in Mycobacterium tuberculosis. SCIENCE ADVANCES 2022; 8:eabo0097. [PMID: 35749503 PMCID: PMC9232105 DOI: 10.1126/sciadv.abo0097] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/09/2022] [Indexed: 05/10/2023]
Abstract
Methionine and cysteine metabolisms are important for the survival and pathogenesis of Mycobacterium tuberculosis (Mtb). The transsulfuration pathway converts methionine to cysteine and represents an important link between antioxidant and methylation metabolism in diverse organisms. Using a combination of biochemistry and cryo-electron microscopy, we characterized the first enzyme of the transsulfuration pathway, cystathionine β-synthase (MtbCbs) in Mtb. We demonstrated that MtbCbs is a heme-less, pyridoxal-5'-phosphate-containing enzyme, allosterically activated by S-adenosylmethionine (SAM). The atomic model of MtbCbs in its native and SAM-bound conformations revealed a unique mode of SAM-dependent allosteric activation. Further, SAM stabilized MtbCbs by sterically occluding proteasomal degradation, which was crucial for supporting methionine and redox metabolism in Mtb. Genetic deficiency of MtbCbs reduced Mtb survival upon homocysteine overload in vitro, inside macrophages, and in mice coinfected with HIV. Thus, the MtbCbs-SAM axis constitutes an important mechanism of coordinating sulfur metabolism in Mtb.
Collapse
Affiliation(s)
- Parijat Bandyopadhyay
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Ishika Pramanick
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rupam Biswas
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sabarinath PS
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, Karnataka 560065, India
| | - Sreesa Sreedharan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, Karnataka 560065, India
| | - Shalini Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Raju S. Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, Karnataka 560065, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
14
|
Molecular Connectivity between Extracytoplasmic Sigma Factors and PhoP Accounts for Coupled Mycobacterial Stress Response. J Bacteriol 2022; 204:e0011022. [PMID: 35608366 DOI: 10.1128/jb.00110-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis encounters numerous stress conditions within the host, but how it is able to mount a coupled stress response remains unknown. Growing evidence suggests that under acidic pH, M. tuberculosis modulates redox homeostasis. In an attempt to dissect the mechanistic details of responses to multiple stress conditions, here we studied the significance of connectivity of extracytoplasmic sigma factors with PhoP. We show that PhoP impacts the mycothiol redox state, and the H37Rv ΔphoP deletion mutant strain displays a significantly higher susceptibility to redox stress than the wild-type bacilli. To probe how the two regulators PhoP and redox-active sigma factor SigH contribute to redox homeostasis, we show that SigH controls expression of redox-active thioredoxin genes, a major mycobacterial antioxidant system, and under redox stress, SigH, but not PhoP, is recruited at the target promoters. Consistent with these results, interaction between PhoP and SigH fails to impact redox-dependent gene expression. This is in striking contrast to our previous results showing PhoP-dependent SigE recruitment within acid-inducible mycobacterial promoters to maintain pH homeostasis. Our subsequent results demonstrate reduced PhoP-SigH interaction in the presence of diamide and enhanced PhoP-SigE interaction under low pH. These contrasting results uncover the underlying mechanism of the mycobacterial adaptive program, coupling low pH with maintenance of redox homeostasis. IMPORTANCE M. tuberculosis encounters reductive stress under acidic pH. To investigate the mechanism of coupled stress response, we show that PhoP plays a major role in mycobacterial redox stress response. We observed a strong correlation of phoP-dependent redox-active expression of thioredoxin genes, a major mycobacterial antioxidant system. Further probing of functioning of regulators revealed that while PhoP controls pH homeostasis via its interaction with SigE, direct recruitment of SigH, but not PhoP-SigH interaction, controls expression of thioredoxin genes. These strikingly contrasting results showing enhanced PhoP-SigE interaction under acidic pH and reduced PhoP-SigH interaction under redox conditions uncover the underlying novel mechanism of the mycobacterial adaptive program, coupling low pH with maintenance of redox homeostasis.
Collapse
|
15
|
Thakur N, Sharma AN, Hade MD, Chhaya A, Kumar A, Jolly RS, Dikshit KL. New Insights Into the Function of Flavohemoglobin in Mycobacterium tuberculosis: Role as a NADPH-Dependent Disulfide Reductase and D-Lactate-Dependent Mycothione Reductase. Front Cell Infect Microbiol 2022; 11:796727. [PMID: 35237528 PMCID: PMC8883573 DOI: 10.3389/fcimb.2021.796727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) produces an unconventional flavohemoglobin (MtbFHb) that carries a FAD-binding site similar to D-lactate dehydrogenases (D-LDH) and oxidizes D-lactate into pyruvate. The molecular mechanism by which MtbFHb functions in Mtb remains unknown. We discovered that the D-LDH-type FAD-binding site in MtbFHb overlaps with another FAD-binding motif similar to thioredoxin reductases and reduces DTNB in the presence of NADPH similar to trxB of Mtb. These results suggested that MtbFHb is functioning as a disulfide oxidoreductase. Interestingly, D-lactate created a conformational change in MtbFHb and attenuated its ability to oxidize NADPH. Mass spectroscopy demonstrated that MtbFHb reduces des-myo-inositol mycothiol in the presence of D-lactate unlike NADPH, indicating that D-lactate changes the specificity of MtbFHb from di-thiol to di-mycothiol. When M. smegmatis carrying deletion in the fhbII gene (encoding a homolog of MtbFHb) was complemented with the fhb gene of Mtb, it exhibited four- to fivefold reductions in lipid peroxidation and significant enhancement in the cell survival under oxidative stress. These results were corroborated by reduced lipid peroxidation and enhanced cell survival of wild-type M. smegmatis after overexpression of the fhb gene of Mtb. Since D-lactate is a by-product of lipid peroxidation and MtbFHb is a membrane-associated protein, D-lactate-mediated reduction of mycothiol disulfide by MtbFHb may uniquely equip Mtb to relieve the toxicity of D-lactate accumulation and protect the cell from oxidative damage, simultaneously balancing the redox environment under oxidative stress that may be vital for the pathogenesis of Mtb.
Collapse
Affiliation(s)
- Naveen Thakur
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | | | - Ajay Chhaya
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Ashwani Kumar
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Kanak L. Dikshit
- CSIR-Institute of Microbial Technology, Chandigarh, India
- Department of Biotechnology, Panjab University, Chandigarh, India
- *Correspondence: Kanak L. Dikshit,
| |
Collapse
|
16
|
Saito K, Mishra S, Warrier T, Cicchetti N, Mi J, Weber E, Jiang X, Roberts J, Gouzy A, Kaplan E, Brown CD, Gold B, Nathan C. Oxidative damage and delayed replication allow viable Mycobacterium tuberculosis to go undetected. Sci Transl Med 2021; 13:eabg2612. [PMID: 34818059 DOI: 10.1126/scitranslmed.abg2612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kohta Saito
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Saurabh Mishra
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Thulasi Warrier
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nico Cicchetti
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jianjie Mi
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Elaina Weber
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexandre Gouzy
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ellen Kaplan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christopher D Brown
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
17
|
Serral F, Castello FA, Sosa EJ, Pardo AM, Palumbo MC, Modenutti C, Palomino MM, Lazarowski A, Auzmendi J, Ramos PIP, Nicolás MF, Turjanski AG, Martí MA, Fernández Do Porto D. From Genome to Drugs: New Approaches in Antimicrobial Discovery. Front Pharmacol 2021; 12:647060. [PMID: 34177572 PMCID: PMC8219968 DOI: 10.3389/fphar.2021.647060] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/17/2021] [Indexed: 01/31/2023] Open
Abstract
Decades of successful use of antibiotics is currently challenged by the emergence of increasingly resistant bacterial strains. Novel drugs are urgently required but, in a scenario where private investment in the development of new antimicrobials is declining, efforts to combat drug-resistant infections become a worldwide public health problem. Reasons behind unsuccessful new antimicrobial development projects range from inadequate selection of the molecular targets to a lack of innovation. In this context, increasingly available omics data for multiple pathogens has created new drug discovery and development opportunities to fight infectious diseases. Identification of an appropriate molecular target is currently accepted as a critical step of the drug discovery process. Here, we review how diverse layers of multi-omics data in conjunction with structural/functional analysis and systems biology can be used to prioritize the best candidate proteins. Once the target is selected, virtual screening can be used as a robust methodology to explore molecular scaffolds that could act as inhibitors, guiding the development of new drug lead compounds. This review focuses on how the advent of omics and the development and application of bioinformatics strategies conduct a "big-data era" that improves target selection and lead compound identification in a cost-effective and shortened timeline.
Collapse
Affiliation(s)
- Federico Serral
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florencia A Castello
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel J Sosa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Agustín M Pardo
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Miranda Clara Palumbo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Modenutti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - María Mercedes Palomino
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Departamento de Bioquímica Clínica, Instituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jerónimo Auzmendi
- Departamento de Bioquímica Clínica, Instituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pablo Ivan P Ramos
- Centro de Integração de Dados e Conhecimentos para Saúde (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Marisa F Nicolás
- Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Brazil
| | - Adrián G Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Marcelo A Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Darío Fernández Do Porto
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
18
|
Feliciano P, Carroll KS, Drennan CL. Crystal Structure of the [4Fe-4S] Cluster-Containing Adenosine-5'-phosphosulfate Reductase from Mycobacterium tuberculosis. ACS OMEGA 2021; 6:13756-13765. [PMID: 34095667 PMCID: PMC8173546 DOI: 10.1021/acsomega.1c01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Tuberculosis (TB) is the deadliest infectious disease in the world. In Mycobacterium tuberculosis, the first committed step in sulfate assimilation is the reductive cleavage of adenosine-5'-phosphosulfate (APS) to form adenosine-5'-phosphate (AMP) and sulfite by the enzyme APS reductase (APSR). The vital role of APSR in the production of essential reduced-sulfur-containing metabolites and the absence of a homologue enzyme in humans makes APSR a potential target for therapeutic interventions. Here, we present the crystal structure of the [4Fe-4S] cluster-containing APSR from M. tuberculosis (MtbAPSR) and compare it to previously determined structures of sulfonucleotide reductases. We further present MtbAPSR structures with substrate APS and product AMP bound in the active site. Our structures at a 3.1 Å resolution show high structural similarity to other sulfonucleotide reductases and reveal that APS and AMP have similar binding modes. These studies provide structural data for structure-based drug design aimed to combat TB.
Collapse
Affiliation(s)
- Patricia
R. Feliciano
- Howard
Hughes Medical Institute, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Kate S. Carroll
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Catherine L. Drennan
- Howard
Hughes Medical Institute, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Parker HA, Dickerhof N, Forrester L, Ryburn H, Smyth L, Messens J, Aung HL, Cook GM, Kettle AJ, Hampton MB. Mycobacterium smegmatis Resists the Bactericidal Activity of Hypochlorous Acid Produced in Neutrophil Phagosomes. THE JOURNAL OF IMMUNOLOGY 2021; 206:1901-1912. [PMID: 33753427 DOI: 10.4049/jimmunol.2001084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/03/2021] [Indexed: 12/22/2022]
Abstract
Neutrophils are often the major leukocyte at sites of mycobacterial infection, yet little is known about their ability to kill mycobacteria. In this study we have investigated whether the potent antibacterial oxidant hypochlorous acid (HOCl) contributes to killing of Mycobacterium smegmatis when this bacterium is phagocytosed by human neutrophils. We found that M. smegmatis were ingested by neutrophils into intracellular phagosomes but were killed slowly. We measured a t 1/2 of 30 min for the survival of M. smegmatis inside neutrophils, which is 5 times longer than that reported for Staphylococcus aureus and 15 times longer than Escherichia coli Live-cell imaging indicated that neutrophils generated HOCl in phagosomes containing M. smegmatis; however, inhibition of HOCl production did not alter the rate of bacterial killing. Also, the doses of HOCl that are likely to be produced inside phagosomes failed to kill isolated bacteria. Lethal doses of reagent HOCl caused oxidation of mycothiol, the main low-m.w. thiol in this bacterium. In contrast, phagocytosed M. smegmatis maintained their original level of reduced mycothiol. Collectively, these findings suggest that M. smegmatis can cope with the HOCl that is produced inside neutrophil phagosomes. A mycothiol-deficient mutant was killed by neutrophils at the same rate as wild-type bacteria, indicating that mycothiol itself is not the main driver of M. smegmatis resistance. Understanding how M. smegmatis avoids killing by phagosomal HOCl could provide new opportunities to sensitize pathogenic mycobacteria to destruction by the innate immune system.
Collapse
Affiliation(s)
- Heather A Parker
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand;
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Lorna Forrester
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Heath Ryburn
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand.,Department of Microbiology and Immunology, Otago School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Leon Smyth
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Joris Messens
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, 1050 Brussels, Belgium.,Brussels Center for Redox Biology, 1050 Brussels, Belgium; and.,Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Htin L Aung
- Department of Microbiology and Immunology, Otago School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, Otago School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand;
| |
Collapse
|
20
|
Bouz G, Zitko J. Inhibitors of aminoacyl-tRNA synthetases as antimycobacterial compounds: An up-to-date review. Bioorg Chem 2021; 110:104806. [PMID: 33799176 DOI: 10.1016/j.bioorg.2021.104806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 11/26/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are crucial for the correct assembly of amino acids to cognate tRNA to maintain the fidelity of proteosynthesis. AaRSs have become a hot target in antimicrobial research. Three aaRS inhibitors are already in clinical practice; antibacterial mupirocin inhibits the synthetic site of isoleucyl-tRNA synthetase, antifungal tavaborole inhibits the editing site of leucyl-tRNA synthetase, and antiprotozoal halofuginone inhibits proline-tRNA synthetase. According to the World Health Organization, tuberculosis globally remains the leading cause of death from a single infectious agent. The rising incidence of multidrug-resistant tuberculosis is alarming and urges the search for new antimycobacterial compounds, preferably with yet unexploited mechanism of action. In this literature review, we have covered the up-to-date state in the field of inhibitors of mycobacterial aaRSs. The most studied aaRS in mycobacteria is LeuRS with at least four structural types of inhibitors, followed by TyrRS and AspRS. Inhibitors of MetRS, LysRS, and PheRS were addressed in a single significant study each. In many cases, the enzyme inhibition activity translated into micromolar or submicromolar inhibition of growth of mycobacteria. The most promising aaRS inhibitor as an antimycobacterial compound is GSK656 (compound 8), the only aaRS inhibitor in clinical trials (Phase IIa) for systemic use against tuberculosis. GSK656 is orally available and shares the oxaborole tRNA-trapping mechanism of action with antifungal tavaborole.
Collapse
Affiliation(s)
- Ghada Bouz
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Charles University
| | - Jan Zitko
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Charles University.
| |
Collapse
|
21
|
Bonavita R, Laukkanen MO. Common Signal Transduction Molecules Activated by Bacterial Entry into a Host Cell and by Reactive Oxygen Species. Antioxid Redox Signal 2021; 34:486-503. [PMID: 32600071 DOI: 10.1089/ars.2019.7968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: An increasing number of pathogens are acquiring resistance to antibiotics. Efficient antimicrobial drug regimens are important even for the most advanced therapies, which range from cutting-edge invasive clinical protocols, such as robotic surgeries, to the treatment of harmless bacterial diseases and to minor scratches to the skin. Therefore, there is an urgent need to survey alternative antimicrobial drugs that can reinforce or replace existing antibiotics. Recent Advances: Bacterial proteins that are critical for energy metabolism, promising novel anticancer thiourea derivatives, and the use of synthetic molecules that increase the sensitivity of currently used antibiotics are among the recently discovered antimicrobial drugs. Critical Issues: In the development of new drugs, serious consideration should be given to the previous bacterial evolutionary selection caused by antibiotics, by the high proliferation rate of bacteria, and by the simple prokaryotic structure of bacteria. Future Directions: The survey of drug targets has mainly focused on bacterial proteins, although host signaling molecules involved in the treatment of various pathologies may have unknown antimicrobial characteristics. Recent data have suggested that small molecule inhibitors might enhance the effect of antibiotics, for example, by limiting bacterial entry into host cells. Phagocytosis, the mechanism by which host cells internalize pathogens through β-actin cytoskeletal rearrangement, induces calcium signaling, small GTPase activation, and phosphorylation of the phosphatidylinositol 3-kinase-serine/threonine-specific protein kinase B pathway. Antioxid. Redox Signal. 34, 486-503.
Collapse
Affiliation(s)
- Raffaella Bonavita
- Experimental Institute of Endocrinology and Oncology G. Salvatore, IEOS CNR, Naples, Italy
| | | |
Collapse
|
22
|
Ferluga J, Yasmin H, Bhakta S, Kishore U. Vaccination Strategies Against Mycobacterium tuberculosis: BCG and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:217-240. [PMID: 34661897 DOI: 10.1007/978-3-030-67452-6_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tuberculosis (TB) is a highly contagious disease caused by Mycobacterium tuberculosis (Mtb) and is the major cause of morbidity and mortality across the globe. The clinical outcome of TB infection and susceptibility varies among individuals and even among different populations, contributed by host genetic factors such as polymorphism in the human leukocyte antigen (HLA) alleles as well as in cytokine genes, nutritional differences between populations, immunometabolism, and other environmental factors. Till now, BCG is the only vaccine available to prevent TB but the protection rendered by BCG against pulmonary TB is not uniform. To deliver a vaccine which can give consistent protection against TB is a great challenge with rising burden of drug-resistant TB. Thus, expectations are quite high with new generation vaccines that will improve the efficiency of BCG without showing any discordance for all forms of TB, effective for individual of all ages in all parts of the world. In order to enhance or improve the efficacy of BCG, different strategies are being implemented by considering the immunogenicity of various Mtb virulence factors as well as of the recombinant strains, co-administration with adjuvants and use of appropriate vehicle for delivery. This chapter discusses several such pre-clinical attempts to boost BCG with subunit vaccines tested in murine models and also highlights various recombinant TB vaccines undergoing clinical trials. Promising candidates include new generation of live recombinant BCG (rBCG) vaccines, VPM1002, which are deleted in one or two virulence genes. They encode for the mycobacteria-infected macrophage-inhibitor proteins of host macrophage apoptosis and autophagy, key events in killing and eradication of Mtb. These vaccines are rBCG- ΔureC::hly HMR, and rBCG-ΔureC::hly ΔnuoG. The former vaccine has passed phase IIb in clinical trials involving South African infants and adults. Thus, with an aim of elimination of TB by 2050, all these cumulative efforts to develop a better TB vaccine possibly is new hope for positive outcomes.
Collapse
Affiliation(s)
- Janez Ferluga
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
23
|
Peña-Ortiz L, Schlembach I, Lackner G, Regestein L. Impact of Oxygen Supply and Scale Up on Mycobacterium smegmatis Cultivation and Mycofactocin Formation. Front Bioeng Biotechnol 2020; 8:593781. [PMID: 33344432 PMCID: PMC7744413 DOI: 10.3389/fbioe.2020.593781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Mycofactocin (MFT) is a recently discovered glycosylated redox cofactor, which has been associated with the detoxification of antibiotics in pathogenic mycobacteria, and, therefore, of potential medical interest. The MFT biosynthetic gene cluster is commonly found in mycobacteria, including Mycobacterium tuberculosis, the causative agent of tuberculosis. Since the MFT molecule is highly interesting for basic research and could even serve as a potential drug target, large-scale production of the molecule is highly desired. However, conventional shake flask cultivations failed to produce enough MFT for further biochemical characterization like kinetic studies and structure elucidation, and a more comprehensive study of cultivation parameters is urgently needed. Being a redox cofactor, it can be hypothesized that the oxygen transfer rate (OTR) is a critical parameter for MFT formation. Using the non-pathogenic strain Mycobacterium smegmatis mc2 155, shake flask experiments with online measurement of the oxygen uptake and the carbon dioxide formation, were conducted under different levels of oxygen supply. Using liquid chromatography and high-resolution mass spectrometry, a 4-8 times increase of MFT production was identified under oxygen-limited conditions, in both complex and mineral medium. Moreover, the level of oxygen supply modulates not only the overall MFT formation but also the length of the glycosidic chain. Finally, all results were scaled up into a 7 L stirred tank reactor to elucidate the kinetics of MFT formation. Ultimately, this study enables the production of high amounts of these redox cofactors, to perform further investigations into the role and importance of MFTs.
Collapse
Affiliation(s)
- Luis Peña-Ortiz
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Ivan Schlembach
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany
| | - Gerald Lackner
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Lars Regestein
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| |
Collapse
|
24
|
Albors-Vaquer A, Rizvi A, Matzapetakis M, Lamosa P, Coelho AV, Patel AB, Mande SC, Gaddam S, Pineda-Lucena A, Banerjee S, Puchades-Carrasco L. Active and prospective latent tuberculosis are associated with different metabolomic profiles: clinical potential for the identification of rapid and non-invasive biomarkers. Emerg Microbes Infect 2020; 9:1131-1139. [PMID: 32486916 PMCID: PMC7448900 DOI: 10.1080/22221751.2020.1760734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/19/2020] [Indexed: 12/22/2022]
Abstract
Although 23% of world population is infected with Mycobacterium tuberculosis (M. tb), only 5-10% manifest the disease. Individuals surely exposed to M. tb that remain asymptomatic are considered potential latent TB (LTB) cases. Such asymptomatic M. tb.-exposed individuals represent a reservoir for active TB cases. Although accurate discrimination and early treatment of patients with active TB and asymptomatic M. tb.-exposed individuals are necessary to control TB, identifying those individuals at risk of developing active TB still remains a tremendous clinical challenge. This study aimed to characterize the differences in the serum metabolic profile specifically associated to active TB infected individuals or to asymptomatic M. tb.-exposed population. Interestingly, significant changes in a specific set of metabolites were shared when comparing either asymptomatic house-hold contacts of active TB patients (HHC-TB) or active TB patients (A-TB) to clinically healthy controls (HC). Furthermore, this analysis revealed statistically significant lower serum levels of aminoacids such as alanine, lysine, glutamate and glutamine, and citrate and choline in patients with A-TB, when compared to HHC-TB. The predictive ability of these metabolic changes was also evaluated. Although further validation in independent cohorts and comparison with other pulmonary infectious diseases will be necessary to assess the clinical potential, this analysis enabled the discrimination between HHC-TB and A-TB patients with an AUC value of 0.904 (confidence interval 0.81-1.00, p-value < 0.0001). Overall, the strategy described in this work could provide a sensitive, specific, and minimally invasive method that could eventually be translated into a clinical tool for TB control.
Collapse
Affiliation(s)
- A. Albors-Vaquer
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - A. Rizvi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | | | | | | | - S. C. Mande
- National Centre For Cell Science, Pune, India
- Council of Scientific and Industrial Research, New Delhi, India
| | - S. Gaddam
- Department of Immunology, Bhagwan Mahavir Medical Research Center, Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - A. Pineda-Lucena
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
| | - S. Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - L. Puchades-Carrasco
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
25
|
Mavi PS, Singh S, Kumar A. Reductive Stress: New Insights in Physiology and Drug Tolerance of Mycobacterium. Antioxid Redox Signal 2020; 32:1348-1366. [PMID: 31621379 DOI: 10.1089/ars.2019.7867] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance:Mycobacterium tuberculosis (Mtb) encounters reductive stress during its infection cycle. Notably, host-generated protective responses, such as acidic pH inside phagosomes and lysosomes, exposure to glutathione in alveolar hypophase (i.e., a thin liquid lining consisting of surfactant and proteins in the alveolus), and hypoxic environments inside granulomas are associated with the accumulation of reduced cofactors, such as nicotinamide adenine dinucleotide (reduced form), nicotinamide adenine dinucleotide phosphate, flavin adenine dinucleotide (reduced form), and nonprotein thiols (e.g., mycothiol), leading to reductive stress in Mtb cells. Dissipation of this reductive stress is important for survival of the bacterium. If reductive stress is not dissipated, it leads to generation of reactive oxygen species, which may be fatal for the cells. Recent Advances: This review focuses on mechanisms utilized by mycobacteria to sense and respond to reductive stress. Importantly, exposure of Mtb cells to reductive stress leads to growth inhibition, altered metabolism, modulation of virulence, and drug tolerance. Mtb is equipped with thiol buffering systems of mycothiol and ergothioneine to protect itself from various redox stresses. These systems are complemented by thioredoxin and thioredoxin reductase (TR) systems for maintaining cellular redox homeostasis. A diverse array of sensors is used by Mycobacterium for monitoring its intracellular redox status. Upon sensing reductive stress, Mtb uses a flexible and robust metabolic system for its dissipation. Branched electron transport chain allows Mycobacterium to function with different terminal electron acceptors and modulate proton motive force to fulfill energy requirements under diverse scenarios. Interestingly, Mtb utilizes variations in the tricarboxylic cycle and a number of dehydrogenases to dissipate reductive stress. Upon prolonged exposure to reductive stress, Mtb utilizes biosynthesis of storage and virulence lipids as a dissipative mechanism. Critical Issues: The mechanisms utilized by Mycobacterium for sensing and tackling reductive stress are not well characterized. Future Directions: The precise role of thiol buffering and TR systems in neutralizing reductive stress is not well defined. Genetic systems that respond to metabolic reductive stress and thiol reductive stress need to be mapped. Genetic screens could aid in identification of such systems. Given that management of reductive stress is critical for both actively replicating and persister mycobacteria, an improved understanding of the mechanisms used by mycobacteria for dissipation of reductive stress may lead to identification of vulnerable choke points that could be targeted for killing Mtb in vivo.
Collapse
Affiliation(s)
- Parminder Singh Mavi
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Shweta Singh
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Ashwani Kumar
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
26
|
Peña-Ortiz L, Graça AP, Guo H, Braga D, Köllner TG, Regestein L, Beemelmanns C, Lackner G. Structure elucidation of the redox cofactor mycofactocin reveals oligo-glycosylation by MftF. Chem Sci 2020; 11:5182-5190. [PMID: 33014324 PMCID: PMC7491314 DOI: 10.1039/d0sc01172j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/18/2020] [Indexed: 01/13/2023] Open
Abstract
Mycofactocin (MFT) is a redox cofactor belonging to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs) and is involved in alcohol metabolism of mycobacteria including Mycobacterium tuberculosis. A preliminary biosynthetic model had been established by bioinformatics and in vitro studies, while the structure of natural MFT and key biosynthetic steps remained elusive. Here, we report the discovery of glycosylated MFT by 13C-labeling metabolomics and establish a model of its biosynthesis in Mycolicibacterium smegmatis. Extensive structure elucidation including NMR revealed that MFT is decorated with up to nine β-1,4-linked glucose residues including 2-O-methylglucose. Dissection of biosynthetic genes demonstrated that the oligoglycosylation is catalyzed by the glycosyltransferase MftF. Furthermore, we confirm the redox cofactor function of glycosylated MFTs by activity-based metabolic profiling using the carveol dehydrogenase LimC and show that the MFT pool expands during cultivation on ethanol. Our results will guide future studies into the biochemical functions and physiological roles of MFT in bacteria.
Collapse
Affiliation(s)
- Luis Peña-Ortiz
- Junior Research Group Synthetic Microbiology , Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstr. 11a , 07745 Jena , Germany . .,Friedrich Schiller University , Beutenbergstr. 11a , 07745 Jena , Germany
| | - Ana Patrícia Graça
- Junior Research Group Synthetic Microbiology , Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstr. 11a , 07745 Jena , Germany . .,Friedrich Schiller University , Beutenbergstr. 11a , 07745 Jena , Germany
| | - Huijuan Guo
- Junior Research Group Chemical Biology of Microbe-Host Interactions , Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstr. 11a , 07745 Jena , Germany
| | - Daniel Braga
- Junior Research Group Synthetic Microbiology , Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstr. 11a , 07745 Jena , Germany . .,Friedrich Schiller University , Beutenbergstr. 11a , 07745 Jena , Germany
| | - Tobias G Köllner
- Department of Biochemistry , Max Planck Institute for Chemical Ecology , Hans-Knöll-Str. 8 , 07745 Jena , Germany
| | - Lars Regestein
- Bio Pilot Plant , Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstr. 11a , 07745 Jena , Germany
| | - Christine Beemelmanns
- Junior Research Group Chemical Biology of Microbe-Host Interactions , Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstr. 11a , 07745 Jena , Germany
| | - Gerald Lackner
- Junior Research Group Synthetic Microbiology , Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstr. 11a , 07745 Jena , Germany . .,Friedrich Schiller University , Beutenbergstr. 11a , 07745 Jena , Germany
| |
Collapse
|
27
|
Mycobacterium smegmatis moxifloxacin persister cells produce high levels of hydroxyl radical, generating genetic resisters selectable not only with moxifloxacin, but also with ethambutol and isoniazid. Microbiology (Reading) 2020; 166:180-198. [DOI: 10.1099/mic.0.000874] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
28
|
Díaz C, Pérez del Palacio J, Valero-Guillén PL, Mena García P, Pérez I, Vicente F, Martín C, Genilloud O, Sánchez Pozo A, Gonzalo-Asensio J. Comparative Metabolomics between Mycobacterium tuberculosis and the MTBVAC Vaccine Candidate. ACS Infect Dis 2019; 5:1317-1326. [PMID: 31099236 DOI: 10.1021/acsinfecdis.9b00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MTBVAC is a live attenuated M. tuberculosis vaccine constructed by genetic deletions in the phoP and fadD26 virulence genes. The MTBVAC vaccine is currently in phase 2 clinical trials with newborns and adults in South Africa, one of the countries with the highest incidence. Although MTBVAC has been extensively characterized by genomics, transcriptomics, lipidomics, and proteomics, its metabolomic profile is yet unknown. Accordingly, in this study we aim to identify differential metabolites between M. tuberculosis and MTBVAC. To this end, an untargeted metabolomics approach based on liquid chromatography coupled to high-resolution mass spectrometry was implemented in order to explore the main metabolic differences between M. tuberculosis and MTBVAC. As an outcome, we identified a set of 34 metabolites involved in diverse bacterial biosynthetic pathways. A consistent increase in the phosphatidylinositol species was observed in the vaccine candidate relative to its parental strain. This phenotype resulted in an increased production of phosphatidylinositol mannosides, a novel PhoP-regulated phenotype in the most widespread lineages of M. tuberculosis. This study represents a step ahead in our understanding of the MTBVAC vaccine, and some of the differential metabolites identified in this work might be used as potential vaccination biomarkers.
Collapse
Affiliation(s)
- Caridad Díaz
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento 34, 18016 Granada, Spain
| | - José Pérez del Palacio
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento 34, 18016 Granada, Spain
| | - Pedro Luis Valero-Guillén
- Departamento de Genética y Microbiología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Espinardo, 30100 Murcia, Spain
| | - Patricia Mena García
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento 34, 18016 Granada, Spain
| | - Irene Pérez
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, IIS Aragón,
C/Domingo Miral s/n, 50019 Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisca Vicente
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento 34, 18016 Granada, Spain
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, IIS Aragón,
C/Domingo Miral s/n, 50019 Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Miguel Servet, Paseo Isabel la Católica 1-3, 50009 Zaragoza, Spain
| | - Olga Genilloud
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento 34, 18016 Granada, Spain
| | - Antonio Sánchez Pozo
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad de Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Jesús Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, IIS Aragón,
C/Domingo Miral s/n, 50019 Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), C/Mariano Esquillor, Edificio I + D, Campus Río Ebro, 50018 Zaragoza, Spain
| |
Collapse
|
29
|
The role of low molecular weight thiols in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2019; 116:44-55. [PMID: 31153518 DOI: 10.1016/j.tube.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Low molecular weight (LMW) thiols are molecules with a functional sulfhydryl group that enable them to detoxify reactive oxygen species, reactive nitrogen species and other free radicals. Their roles range from their ability to modulate the immune system to their ability to prevent damage of biological molecules such as DNA and proteins by protecting against oxidative, nitrosative and acidic stress. LMW thiols are synthesized and found in both eukaryotes and prokaryotes. Due to their beneficial role to both eukaryotes and prokaryotes, their specific functions need to be elucidated, most especially in pathogenic prokaryotes such as Mycobacterium tuberculosis (M.tb), in order to provide a rationale for targeting their biosynthesis for drug development. Ergothioneine (ERG), mycothiol (MSH) and gamma-glutamylcysteine (GGC) are LMW thiols that have been shown to interplay to protect M.tb against cellular stress. Though ERG, MSH and GGC seem to have overlapping functions, studies are gradually revealing their unique physiological roles. Understanding their unique physiological role during the course of tuberculosis (TB) infection, would pave the way for the development of drugs that target their biosynthetic pathway. This review identifies the knowledge gap in the unique physiological roles of LMW thiols and proposes their mechanistic roles based on previous studies. In addition, it gives an update on identified inhibitors of their biosynthetic enzymes.
Collapse
|
30
|
Piacenza L, Trujillo M, Radi R. Reactive species and pathogen antioxidant networks during phagocytosis. J Exp Med 2019; 216:501-516. [PMID: 30792185 PMCID: PMC6400530 DOI: 10.1084/jem.20181886] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/04/2019] [Accepted: 02/04/2019] [Indexed: 11/23/2022] Open
Abstract
The generation of phagosomal cytotoxic reactive species (i.e., free radicals and oxidants) by activated macrophages and neutrophils is a crucial process for the control of intracellular pathogens. The chemical nature of these species, the reactions they are involved in, and the subsequent effects are multifaceted and depend on several host- and pathogen-derived factors that influence their production rates and catabolism inside the phagosome. Pathogens rely on an intricate and synergistic antioxidant armamentarium that ensures their own survival by detoxifying reactive species. In this review, we discuss the generation, kinetics, and toxicity of reactive species generated in phagocytes, with a focus on the response of macrophages to internalized pathogens and concentrating on Mycobacterium tuberculosis and Trypanosoma cruzi as examples of bacterial and parasitic infection, respectively. The ability of pathogens to deal with host-derived reactive species largely depends on the competence of their antioxidant networks at the onset of invasion, which in turn can tilt the balance toward pathogen survival, proliferation, and virulence over redox-dependent control of infection.
Collapse
Affiliation(s)
- Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
31
|
Johnson RM, McDonough KA. Cyclic nucleotide signaling in Mycobacterium tuberculosis: an expanding repertoire. Pathog Dis 2019; 76:4995197. [PMID: 29905867 DOI: 10.1093/femspd/fty048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most successful microbial pathogens, and currently infects over a quarter of the world's population. Mtb's success depends on the ability of the bacterium to sense and respond to dynamic and hostile environments within the host, including the ability to regulate bacterial metabolism and interactions with the host immune system. One of the ways Mtb senses and responds to conditions it faces during infection is through the concerted action of multiple cyclic nucleotide signaling pathways. This review will describe how Mtb uses cyclic AMP, cyclic di-AMP and cyclic di-GMP to regulate important physiological processes, and how these signaling pathways can be exploited for the development of novel thereapeutics and vaccines.
Collapse
Affiliation(s)
- Richard M Johnson
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY 12201-2002, USA
| | - Kathleen A McDonough
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY 12201-2002, USA.,Wadsworth Center, New York State Department of Health, Albany, NY 12201-2002, USA
| |
Collapse
|
32
|
Shur KV, Bekker OB, Zaichikova MV, Maslov DA, Akimova NI, Zakharevich NV, Chekalina MS, Danilenko VN. Genetic Aspects of Drug Resistance and Virulence in Mycobacterium tuberculosis. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418120141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Tung QN, Linzner N, Loi VV, Antelmann H. Application of genetically encoded redox biosensors to measure dynamic changes in the glutathione, bacillithiol and mycothiol redox potentials in pathogenic bacteria. Free Radic Biol Med 2018; 128:84-96. [PMID: 29454879 DOI: 10.1016/j.freeradbiomed.2018.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/28/2022]
Abstract
Gram-negative bacteria utilize glutathione (GSH) as their major LMW thiol. However, most Gram-positive bacteria do not encode enzymes for GSH biosynthesis and produce instead alternative LMW thiols, such as bacillithiol (BSH) and mycothiol (MSH). BSH is utilized by Firmicutes and MSH is the major LMW thiol of Actinomycetes. LMW thiols are required to maintain the reduced state of the cytoplasm, but are also involved in virulence mechanisms in human pathogens, such as Staphylococcus aureus, Mycobacterium tuberculosis, Streptococcus pneumoniae, Salmonella enterica subsp. Typhimurium and Listeria monocytogenes. Infection conditions often cause perturbations of the intrabacterial redox balance in pathogens, which is further affected under antibiotics treatments. During the last years, novel glutaredoxin-fused roGFP2 biosensors have been engineered in many eukaryotic organisms, including parasites, yeast, plants and human cells for dynamic live-imaging of the GSH redox potential in different compartments. Likewise bacterial roGFP2-based biosensors are now available to measure the dynamic changes in the GSH, BSH and MSH redox potentials in model and pathogenic Gram-negative and Gram-positive bacteria. In this review, we present an overview of novel functions of the bacterial LMW thiols GSH, MSH and BSH in pathogenic bacteria in virulence regulation. Moreover, recent results about the application of genetically encoded redox biosensors are summarized to study the mechanisms of host-pathogen interactions, persistence and antibiotics resistance. In particularly, we highlight recent biosensor results on the redox changes in the intracellular food-borne pathogen Salmonella Typhimurium as well as in the Gram-positive pathogens S. aureus and M. tuberculosis during infection conditions and under antibiotics treatments. These studies established a link between ROS and antibiotics resistance with the intracellular LMW thiol-redox potential. Future applications should be directed to compare the redox potentials among different clinical isolates of these pathogens in relation to their antibiotics resistance and to screen for new ROS-producing drugs as promising strategy to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Quach Ngoc Tung
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Nico Linzner
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Vu Van Loi
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany.
| |
Collapse
|
34
|
Sao Emani C, Williams MJ, Van Helden PD, Taylor MJC, Carolis C, Wiid IJ, Baker B. Generation and characterization of thiol-deficient Mycobacterium tuberculosis mutants. Sci Data 2018; 5:180184. [PMID: 30251996 PMCID: PMC6154287 DOI: 10.1038/sdata.2018.184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/03/2018] [Indexed: 12/23/2022] Open
Abstract
Mycothiol (MSH) and ergothioneine (ERG) are thiols able to compensate for each other to protect mycobacteria against oxidative stress. Gamma-glutamylcysteine (GGC), another thiol and an intermediate in ERG biosynthesis has detoxification abilities. Five enzymes are involved in ERG biosynthesis, namely EgtA, EgtB, EgtC, EgtD and EgtE. The role of these enzymes in the production of ERG had been unclear. On the other hand, the enzyme MshA is known to be essential for MSH biosynthesis. In this manuscript, we describe the raw data of the generation and characterization of Mycobacterium tuberculosis (M.tb) mutants harbouring a deletion of the gene coding for each of these enzymes, and the raw data of the phenotypic characterization of the obtained thiol-deficient M.tb mutants. High throughput screening (HTS) of off-patent drugs and natural compounds revealed few compounds that displayed a higher activity against the thiol-deficient mutants relative to the wild-type strain. The mode of action of these drugs was further investigated. Raw data displaying these results are described here.
Collapse
Affiliation(s)
- C Sao Emani
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 8000, Cape Town, South Africa.,Barcelona Biomedical Research Park, Centre for Genomic Regulation, Biomolecular Screening & Protein Technologies Unit, 88 Dr.aiguider, 08003 Barcelona, Spain
| | - M J Williams
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 8000, Cape Town, South Africa
| | - P D Van Helden
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 8000, Cape Town, South Africa
| | - M J C Taylor
- Central Analytical Facilities, Mass Spectrometry Unit, Stellenbosch University, Stellenbosch 7600, Cape Town, South Africa
| | - C Carolis
- Barcelona Biomedical Research Park, Centre for Genomic Regulation, Biomolecular Screening & Protein Technologies Unit, 88 Dr.aiguider, 08003 Barcelona, Spain
| | - I J Wiid
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 8000, Cape Town, South Africa
| | - B Baker
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 8000, Cape Town, South Africa
| |
Collapse
|
35
|
Trutneva K, Shleeva M, Nikitushkin V, Demina G, Kaprelyants A. Protein Composition of Mycobacterium smegmatis Differs Significantly Between Active Cells and Dormant Cells With Ovoid Morphology. Front Microbiol 2018; 9:2083. [PMID: 30233550 PMCID: PMC6131537 DOI: 10.3389/fmicb.2018.02083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/14/2018] [Indexed: 01/07/2023] Open
Abstract
Mycobacteria are able to form dormant cells, which survive for a long time without multiplication. The molecular mechanisms behind prolonged survival of dormant cells are not fully described. In particular, little information is known on biochemical processes which might take place in cells under dormancy. To gain insight into this problem, Mycobacterium smegmatis cells in deep dormant state were obtained after gradual acidification of the growth medium in prolonged stationary phase followed by 1 month of storage at room temperature. Such cells were characterized by low metabolic activity, including respiration, resistance to antibiotics, and altered morphology. The protein composition of cytoplasm and membrane fractions obtained from active and dormant cells were compared by 2D electrophoresis. Almost half of the proteins found in the proteome of dormant cells were absent in that of active cells. This result differs significantly from published results obtained in other studies employing different models of mycobacterium dormancy. This discrepancy could be explained by a deeper dormancy developed in the present model. A feature of a “dormant proteome” is high representation of enzymes involved in glycolysis and defense systems that inactivate or detoxify reactive oxygen and nitrogen species, aldehydes, and oxidized lipids. Dormant mycobacteria are enriched by degradative enzymes, which could eliminate damaged molecules, or the products of such degradation could be reutilized by the cell during prolonged storage. We suggest that some enzymes in dormant cells are inactive, having been used upon transition to the dormant state, or proteins stored in dormant cells for further cell reactivation. At the same time, some proteins could be functional and play roles in maintenance of cell metabolism, albeit at a very slow rate. This study provides a clue as to which biochemical processes could be active under dormancy to ensure long-term viability of dormant mycobacteria.
Collapse
Affiliation(s)
- Kseniya Trutneva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Margarita Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Vadim Nikitushkin
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Galina Demina
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Arseny Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
36
|
Imber M, Pietrzyk-Brzezinska AJ, Antelmann H. Redox regulation by reversible protein S-thiolation in Gram-positive bacteria. Redox Biol 2018; 20:130-145. [PMID: 30308476 PMCID: PMC6178380 DOI: 10.1016/j.redox.2018.08.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/09/2018] [Accepted: 08/23/2018] [Indexed: 12/21/2022] Open
Abstract
Low molecular weight (LMW) thiols play an important role as thiol-cofactors for many enzymes and are crucial to maintain the reduced state of the cytoplasm. Most Gram-negative bacteria utilize glutathione (GSH) as major LMW thiol. However, in Gram-positive Actinomycetes and Firmicutes alternative LMW thiols, such as mycothiol (MSH) and bacillithiol (BSH) play related roles as GSH surrogates, respectively. Under conditions of hypochlorite stress, MSH and BSH are known to form mixed disulfides with protein thiols, termed as S-mycothiolation or S-bacillithiolation that function in thiol-protection and redox regulation. Protein S-thiolations are widespread redox-modifications discovered in different Gram-positive bacteria, such as Bacillus and Staphylococcus species, Mycobacterium smegmatis, Corynebacterium glutamicum and Corynebacterium diphtheriae. S-thiolated proteins are mainly involved in cellular metabolism, protein translation, redox regulation and antioxidant functions with some conserved targets across bacteria. The reduction of protein S-mycothiolations and S-bacillithiolations requires glutaredoxin-related mycoredoxin and bacilliredoxin pathways to regenerate protein functions. In this review, we present an overview of the functions of mycothiol and bacillithiol and their physiological roles in protein S-bacillithiolations and S-mycothiolations in Gram-positive bacteria. Significant progress has been made to characterize the role of protein S-thiolation in redox-regulation and thiol protection of main metabolic and antioxidant enzymes. However, the physiological roles of the pathways for regeneration are only beginning to emerge as well as their interactions with other cellular redox systems. Future studies should be also directed to explore the roles of protein S-thiolations and their redox pathways in pathogenic bacteria under infection conditions to discover new drug targets and treatment options against multiple antibiotic resistant bacteria. Bacillithiol and mycothiol are major LMW thiols in many Gram-positive bacteria. HOCl leads to widespread protein S-mycothiolation and S-bacillithiolation which function in thiol-protection and redox regulation. Redox-sensitive metabolic and antioxidant enzymes are main targets for S-mycothiolation or S-bacillithiolation. Mycoredoxin and bacilliredoxin pathways mediate reduction of S-thiolations.
Collapse
Affiliation(s)
- Marcel Imber
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Agnieszka J Pietrzyk-Brzezinska
- Freie Universität Berlin, Laboratory of Structural Biochemistry, D-14195 Berlin, Germany; Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz 90-924, Poland
| | - Haike Antelmann
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany.
| |
Collapse
|
37
|
Chawla M, Mishra S, Anand K, Parikh P, Mehta M, Vij M, Verma T, Singh P, Jakkala K, Verma HN, AjitKumar P, Ganguli M, Narain Seshasayee AS, Singh A. Redox-dependent condensation of the mycobacterial nucleoid by WhiB4. Redox Biol 2018; 19:116-133. [PMID: 30149290 PMCID: PMC6111044 DOI: 10.1016/j.redox.2018.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/02/2018] [Accepted: 08/11/2018] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress response in bacteria is mediated through coordination between the regulators of oxidant-remediation systems (e.g. OxyR, SoxR) and nucleoid condensation (e.g. Dps, Fis). However, these genetic factors are either absent or rendered non-functional in the human pathogen Mycobacterium tuberculosis (Mtb). Therefore, how Mtb organizes genome architecture and regulates gene expression to counterbalance oxidative imbalance is unknown. Here, we report that an intracellular redox-sensor, WhiB4, dynamically links genome condensation and oxidative stress response in Mtb. Disruption of WhiB4 affects the expression of genes involved in maintaining redox homeostasis, central metabolism, and respiration under oxidative stress. Notably, disulfide-linked oligomerization of WhiB4 in response to oxidative stress activates the protein’s ability to condense DNA. Further, overexpression of WhiB4 led to hypercondensation of nucleoids, redox imbalance and increased susceptibility to oxidative stress, whereas WhiB4 disruption reversed this effect. In accordance with the findings in vitro, ChIP-Seq data demonstrated non-specific binding of WhiB4 to GC-rich regions of the Mtb genome. Lastly, data indicate that WhiB4 deletion affected the expression of ~ 30% of genes preferentially bound by the protein, suggesting both direct and indirect effects on gene expression. We propose that WhiB4 structurally couples Mtb’s response to oxidative stress with genome organization and transcription. Genome condensation is involved in the management of oxidative stress in bacteria. A relation between the genome condensation and oxidative stress is unclear in Mtb. A redox sensor WhiB4 calibrates genome-condensation and antioxidants in Mtb. Over-expression of WhiB4 hyper-condensed genome and induced killing by oxidants. WhiB4 deficiency delayed genome condensation and promoted oxidative stress survival.
Collapse
Affiliation(s)
- Manbeena Chawla
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Saurabh Mishra
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Kushi Anand
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Pankti Parikh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Mansi Mehta
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Manika Vij
- Department of Structural Biology, CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, New Delhi 110020, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | - Taru Verma
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India; Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bangalore 560012, India
| | - Parul Singh
- National Centre for Biological Science, Bangalore 560065, India; SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | - Kishor Jakkala
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - H N Verma
- Jaipur National University, Jagatpura, Jaipur 302017, India
| | - Parthasarathi AjitKumar
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Munia Ganguli
- Department of Structural Biology, CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, New Delhi 110020, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | | | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
38
|
Pacl HT, Reddy VP, Saini V, Chinta KC, Steyn AJC. Host-pathogen redox dynamics modulate Mycobacterium tuberculosis pathogenesis. Pathog Dis 2018; 76:4972762. [PMID: 29873719 PMCID: PMC5989597 DOI: 10.1093/femspd/fty036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/13/2018] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, encounters variable and hostile environments within the host. A major component of these hostile conditions is reductive and oxidative stresses induced by factors modified by the host immune response, such as oxygen tension, NO or CO gases, reactive oxygen and nitrogen intermediates, the availability of different carbon sources and changes in pH. It is therefore essential for Mtb to continuously monitor and appropriately respond to the microenvironment. To this end, Mtb has developed various redox-sensitive systems capable of monitoring its intracellular redox environment and coordinating a response essential for virulence. Various aspects of Mtb physiology are regulated by these systems, including drug susceptibility, secretion systems, energy metabolism and dormancy. While great progress has been made in understanding the mechanisms and pathways that govern the response of Mtb to the host's redox environment, many questions in this area remain unanswered. The answers to these questions are promising avenues for addressing the tuberculosis crisis.
Collapse
Affiliation(s)
- Hayden T Pacl
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Krishna C Chinta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
- Africa Health Research Institute, K-RITH Tower Building, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
39
|
Compounds with Potential Activity against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2018; 62:AAC.02236-17. [PMID: 29437626 DOI: 10.1128/aac.02236-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/01/2018] [Indexed: 12/26/2022] Open
Abstract
The high acquisition rate of drug resistance by Mycobacterium tuberculosis necessitates the ongoing search for new drugs to be incorporated in the tuberculosis (TB) regimen. Compounds used for the treatment of other diseases have the potential to be repurposed for the treatment of TB. In this study, a high-throughput screening of compounds against thiol-deficient Mycobacterium smegmatis strains and subsequent validation with thiol-deficient M. tuberculosis strains revealed that ΔegtA and ΔmshA mutants had increased susceptibility to azaguanine (Aza) and sulfaguanidine (Su); ΔegtB and ΔegtE mutants had increased susceptibility to bacitracin (Ba); and ΔegtA, ΔmshA, and ΔegtB mutants had increased susceptibility to fusaric acid (Fu). Further analyses revealed that some of these compounds were able to modulate the levels of thiols and oxidative stress in M. tuberculosis This study reports the activities of Aza, Su, Fu, and Ba against M. tuberculosis and provides a rationale for further investigations.
Collapse
|
40
|
Reyes AM, Pedre B, De Armas MI, Tossounian MA, Radi R, Messens J, Trujillo M. Chemistry and Redox Biology of Mycothiol. Antioxid Redox Signal 2018; 28:487-504. [PMID: 28372502 DOI: 10.1089/ars.2017.7074] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
SIGNIFICANCE Mycothiol (MSH, AcCys-GlcN-Ins) is the main low-molecular weight (LMW) thiol of most Actinomycetes, including the human pathogen Mycobacterium tuberculosis that affects millions of people worldwide. Strains with decreased MSH content show increased susceptibilities to hydroperoxides and electrophilic compounds. In M. tuberculosis, MSH modulates the response to several antituberculosis drugs. Enzymatic routes involving MSH could provide clues for specific drug design. Recent Advances: Physicochemical data argue against a rapid, nonenzymatic reaction of MSH with oxidants, disulfides, or electrophiles. Moreover, exposure of the bacteria to high concentrations of two-electron oxidants resulted in protein mycothiolation. The recently described glutaredoxin-like protein mycoredoxin-1 (Mrx-1) provides a route for catalytic reduction of mycothiolated proteins, protecting critical cysteines from irreversible oxidation. The description of MSH/Mrx-1-dependent activities of peroxidases helped to explain the higher susceptibility to oxidants observed in Actinomycetes lacking MSH. Moreover, the first mycothiol-S-transferase, member of the DinB superfamily of proteins, was described. In Corynebacterium, both the MSH/Mrx-1 and the thioredoxin pathways reduce methionine sulfoxide reductase A. A novel tool for in vivo imaging of the MSH/mycothiol disulfide (MSSM) status allows following changes in the mycothiol redox state during macrophage infection and its relationship with antibiotic sensitivity. CRITICAL ISSUES Redundancy of MSH with other LMW thiols is starting to be unraveled and could help to rationalize the differences in the reported importance of MSH synthesis observed in vitro versus in animal infection models. FUTURE DIRECTIONS Future work should be directed to establish the structural bases of the specificity of MSH-dependent enzymes, thus facilitating drug developments. Antioxid. Redox Signal. 28, 487-504.
Collapse
Affiliation(s)
- Aníbal M Reyes
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Brandán Pedre
- 3 Center for Structural Biology , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussels, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussels, Belgium
| | - María Inés De Armas
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Maria-Armineh Tossounian
- 3 Center for Structural Biology , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussels, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussels, Belgium
| | - Rafael Radi
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Joris Messens
- 3 Center for Structural Biology , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussels, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussels, Belgium
| | - Madia Trujillo
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
41
|
Sao Emani C, Williams M, Van Helden P, Taylor M, Wiid I, Baker B. Gamma-glutamylcysteine protects ergothioneine-deficient Mycobacterium tuberculosis mutants against oxidative and nitrosative stress. Biochem Biophys Res Commun 2018; 495:174-178. [DOI: 10.1016/j.bbrc.2017.10.163] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 10/29/2017] [Indexed: 11/15/2022]
|
42
|
Patel K, Song F, Andreana PR. Synthesis of substrate analogues as potential inhibitors for Mycobacterium tuberculosis enzyme MshC. Carbohydr Res 2017; 453-454:10-18. [PMID: 29107814 DOI: 10.1016/j.carres.2017.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 01/03/2023]
Abstract
Mycothiol cysteine ligase (MshC) is a key enzyme in the mycothiol (MSH) biosynthesis and a promising target for developing new anti-mycobacterial compounds. Herein, we report on the synthesis of substrate analogues, as potential inhibitors, for the MshC enzyme. The target molecules were synthesized employing a Schmidt glycosylation strategy using an enantiomerically pure inositol acceptor and 2-deoxy trichloroacetimidate glycosyl donors with glycosylation yields greater than 70% and overall yields >5%. The inositol acceptor was obtained via chiral resolution of (±)-myo-inositol.
Collapse
Affiliation(s)
- Krishnakant Patel
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Fengling Song
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Peter R Andreana
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States.
| |
Collapse
|
43
|
Monitoring global protein thiol-oxidation and protein S-mycothiolation in Mycobacterium smegmatis under hypochlorite stress. Sci Rep 2017; 7:1195. [PMID: 28446771 PMCID: PMC5430705 DOI: 10.1038/s41598-017-01179-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/24/2017] [Indexed: 11/16/2022] Open
Abstract
Mycothiol (MSH) is the major low molecular weight (LMW) thiol in Actinomycetes. Here, we used shotgun proteomics, OxICAT and RNA-seq transcriptomics to analyse protein S-mycothiolation, reversible thiol-oxidations and their impact on gene expression in Mycobacterium smegmatis under hypochlorite stress. In total, 58 S-mycothiolated proteins were identified under NaOCl stress that are involved in energy metabolism, fatty acid and mycolic acid biosynthesis, protein translation, redox regulation and detoxification. Protein S-mycothiolation was accompanied by MSH depletion in the thiol-metabolome. Quantification of the redox state of 1098 Cys residues using OxICAT revealed that 381 Cys residues (33.6%) showed >10% increased oxidations under NaOCl stress, which overlapped with 40 S-mycothiolated Cys-peptides. The absence of MSH resulted in a higher basal oxidation level of 338 Cys residues (41.1%). The RseA and RshA anti-sigma factors and the Zur and NrdR repressors were identified as NaOCl-sensitive proteins and their oxidation resulted in an up-regulation of the SigH, SigE, Zur and NrdR regulons in the RNA-seq transcriptome. In conclusion, we show here that NaOCl stress causes widespread thiol-oxidation including protein S-mycothiolation resulting in induction of antioxidant defense mechanisms in M. smegmatis. Our results further reveal that MSH is important to maintain the reduced state of protein thiols.
Collapse
|
44
|
Enhanced respiration prevents drug tolerance and drug resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2017; 114:4495-4500. [PMID: 28396391 DOI: 10.1073/pnas.1704376114] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Persistence, manifested as drug tolerance, represents a significant obstacle to global tuberculosis control. The bactericidal drugs isoniazid and rifampicin kill greater than 99% of exponentially growing Mycobacterium tuberculosis (Mtb) cells, but the remaining cells are persisters, cells with decreased metabolic rate, refractory to killing by these drugs, and able to generate drug-resistant mutants. We discovered that the combination of cysteine or other small thiols with either isoniazid or rifampicin prevents the formation of drug-tolerant and drug-resistant cells in Mtb cultures. This effect was concentration- and time-dependent, relying on increased oxygen consumption that triggered enhanced production of reactive oxygen species. In infected murine macrophages, the addition of N-acetylcysteine to isoniazid treatment potentiated the killing of Mtb Furthermore, we demonstrate that the addition of small thiols to Mtb drug treatment shifted the menaquinol/menaquinone balance toward a reduced state that stimulates Mtb respiration and converts persister cells to metabolically active cells. This prevention of both persister cell formation and drug resistance leads ultimately to mycobacterial cell death. Strategies to enhance respiration and initiate oxidative damage should improve tuberculosis chemotherapies.
Collapse
|
45
|
Ruecker N, Jansen R, Trujillo C, Puckett S, Jayachandran P, Piroli GG, Frizzell N, Molina H, Rhee KY, Ehrt S. Fumarase Deficiency Causes Protein and Metabolite Succination and Intoxicates Mycobacterium tuberculosis. Cell Chem Biol 2017; 24:306-315. [PMID: 28219662 DOI: 10.1016/j.chembiol.2017.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/07/2016] [Accepted: 01/19/2017] [Indexed: 12/22/2022]
Abstract
Enzymes of central carbon metabolism are essential mediators of Mycobacterium tuberculosis (Mtb) physiology and pathogenicity, but are often perceived to lack sufficient species selectivity to be pursued as potential drug targets. Fumarase (Fum) is an enzyme of the canonical tricarboxylic acid cycle and is dispensable in many organisms. Transposon mutagenesis studies in Mtb, however, indicate that Fum is required for optimal growth. Here, we report the generation and characterization of a genetically engineered Mtb strain in which Fum expression is conditionally regulated. This revealed that Fum deficiency is bactericidal in vitro and during both the acute and chronic phases of mouse infection. This essentiality is linked to marked accumulations of fumarate resulting in protein and metabolite succination, a covalent modification of cysteine thiol residues. These results identify Mtb Fum as a potentially species-specific drug target whose inactivation may kill Mtb through a covalently irreversible form of metabolic toxicity.
Collapse
Affiliation(s)
- Nadine Ruecker
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Robert Jansen
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Carolina Trujillo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Susan Puckett
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Pradeepa Jayachandran
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Gerardo G Piroli
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Norma Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Henrik Molina
- Proteomics Resource Center, Rockefeller University, New York, NY 10065, USA
| | - Kyu Y Rhee
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
46
|
Sebastian J, Swaminath S, Nair RR, Jakkala K, Pradhan A, Ajitkumar P. De Novo Emergence of Genetically Resistant Mutants of Mycobacterium tuberculosis from the Persistence Phase Cells Formed against Antituberculosis Drugs In Vitro. Antimicrob Agents Chemother 2017; 61:e01343-16. [PMID: 27895008 PMCID: PMC5278719 DOI: 10.1128/aac.01343-16] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022] Open
Abstract
Bacterial persisters are a subpopulation of cells that can tolerate lethal concentrations of antibiotics. However, the possibility of the emergence of genetically resistant mutants from antibiotic persister cell populations, upon continued exposure to lethal concentrations of antibiotics, remained unexplored. In the present study, we found that Mycobacterium tuberculosis cells exposed continuously to lethal concentrations of rifampin (RIF) or moxifloxacin (MXF) for prolonged durations showed killing, RIF/MXF persistence, and regrowth phases. RIF-resistant or MXF-resistant mutants carrying clinically relevant mutations in the rpoB or gyrA gene, respectively, were found to emerge at high frequency from the RIF persistence phase population. A Luria-Delbruck fluctuation experiment using RIF-exposed M. tuberculosis cells showed that the rpoB mutants were not preexistent in the population but were formed de novo from the RIF persistence phase population. The RIF persistence phase M. tuberculosis cells carried elevated levels of hydroxyl radical that inflicted extensive genome-wide mutations, generating RIF-resistant mutants. Consistent with the elevated levels of hydroxyl radical-mediated genome-wide random mutagenesis, MXF-resistant M. tuberculosis gyrA de novo mutants could be selected from the RIF persistence phase cells. Thus, unlike previous studies, which showed emergence of genetically resistant mutants upon exposure of bacteria for short durations to sublethal concentrations of antibiotics, our study demonstrates that continuous prolonged exposure of M. tuberculosis cells to lethal concentrations of an antibiotic generates antibiotic persistence phase cells that form a reservoir for the generation of genetically resistant mutants to the same antibiotic or another antibiotic. These findings may have clinical significance in the emergence of drug-resistant tubercle bacilli.
Collapse
Affiliation(s)
- Jees Sebastian
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sharmada Swaminath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rashmi Ravindran Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Kishor Jakkala
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Atul Pradhan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Parthasarathi Ajitkumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
47
|
Methylfolate Trap Promotes Bacterial Thymineless Death by Sulfa Drugs. PLoS Pathog 2016; 12:e1005949. [PMID: 27760199 PMCID: PMC5070874 DOI: 10.1371/journal.ppat.1005949] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/22/2016] [Indexed: 01/16/2023] Open
Abstract
The methylfolate trap, a metabolic blockage associated with anemia, neural tube defects, Alzheimer’s dementia, cardiovascular diseases, and cancer, was discovered in the 1960s, linking the metabolism of folate, vitamin B12, methionine and homocysteine. However, the existence or physiological significance of this phenomenon has been unknown in bacteria, which synthesize folate de novo. Here we identify the methylfolate trap as a novel determinant of the bacterial intrinsic death by sulfonamides, antibiotics that block de novo folate synthesis. Genetic mutagenesis, chemical complementation, and metabolomic profiling revealed trap-mediated metabolic imbalances, which induced thymineless death, a phenomenon in which rapidly growing cells succumb to thymine starvation. Restriction of B12 bioavailability, required for preventing trap formation, using an “antivitamin B12” molecule, sensitized intracellular bacteria to sulfonamides. Since boosting the bactericidal activity of sulfonamides through methylfolate trap induction can be achieved in Gram-negative bacteria and mycobacteria, it represents a novel strategy to render these pathogens more susceptible to existing sulfonamides. Sulfonamides were the first agents to successfully treat bacterial infections, but their use later declined due to the emergence of resistant organisms. Restoration of these drugs may be achieved through inactivation of molecular mechanisms responsible for resistance. A chemo-genomic screen first identified 50 chromosomal loci representing the whole-genome antifolate resistance determinants in Mycobacterium smegmatis. Interestingly, many determinants resembled components of the methylfolate trap, a metabolic blockage exclusively described in mammalian cells. Targeted mutagenesis, genetic and chemical complementation, followed by chemical analyses established the methylfolate trap as a novel mechanism of sulfonamide sensitivity, ubiquitously present in mycobacteria and Gram-negative bacterial pathogens. Furthermore, metabolomic analyses revealed trap-mediated interruptions in folate and related metabolic pathways. These metabolic imbalances induced thymineless death, which was reversible with exogenous thymine supplementation. Chemical restriction of vitamin B12, an important molecule required for prevention of the methylfolate trap, sensitized intracellular bacteria to sulfonamides. Thus, pharmaceutical promotion of the methylfolate trap represents a novel folate antagonistic strategy to render pathogenic bacteria more susceptible to available, clinically approved sulfonamides.
Collapse
|
48
|
Tierrafría VH, Licona-Cassani C, Maldonado-Carmona N, Romero-Rodríguez A, Centeno-Leija S, Marcellin E, Rodríguez-Sanoja R, Ruiz-Villafán B, Nielsen LK, Sánchez S. Deletion of the hypothetical protein SCO2127 of Streptomyces coelicolor allowed identification of a new regulator of actinorhodin production. Appl Microbiol Biotechnol 2016; 100:9229-9237. [PMID: 27604626 DOI: 10.1007/s00253-016-7811-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/10/2016] [Accepted: 08/26/2016] [Indexed: 01/19/2023]
Abstract
Although the specific function of SCO2127 remains elusive, it has been assumed that this hypothetical protein plays an important role in carbon catabolite regulation and therefore in antibiotic biosynthesis in Streptomyces coelicolor. To shed light on the functional relationship of SCO2127 to the biosynthesis of actinorhodin, a detailed analysis of the proteins differentially produced between the strain M145 and the Δsco2127 mutant of S. coelicolor was performed. The delayed morphological differentiation and impaired production of actinorhodin showed by the deletion strain were accompanied by increased abundance of gluconeogenic enzymes, as well as downregulation of both glycolysis and acetyl-CoA carboxylase. Repression of mycothiol biosynthetic enzymes was further observed in the absence of SCO2127, in addition to upregulation of hydroxyectoine biosynthetic enzymes and SCO0204, which controls nitrite formation. The data generated in this study reveal that the response regulator SCO0204 greatly contributes to prevent the formation of actinorhodin in the ∆sco2127 mutant, likely through the activation of some proteins associated with oxidative stress that include the nitrite producer SCO0216.
Collapse
Affiliation(s)
- Víctor H Tierrafría
- Instituto de Investigaciones Biomédicas. 3er Circuito Exterior s/n, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Cuauhtemoc Licona-Cassani
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, Australia
| | - Nidia Maldonado-Carmona
- Instituto de Investigaciones Biomédicas. 3er Circuito Exterior s/n, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Alba Romero-Rodríguez
- Instituto de Investigaciones Biomédicas. 3er Circuito Exterior s/n, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Sara Centeno-Leija
- Instituto de Investigaciones Biomédicas. 3er Circuito Exterior s/n, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, Australia
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas. 3er Circuito Exterior s/n, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Beatriz Ruiz-Villafán
- Instituto de Investigaciones Biomédicas. 3er Circuito Exterior s/n, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Lars K Nielsen
- Laboratorio de Bioingeniería, Universidad de Colima, Coquimatlán-, 28400, Colima, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas. 3er Circuito Exterior s/n, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico.
| |
Collapse
|
49
|
Nguyen L. Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch Toxicol 2016; 90:1585-604. [PMID: 27161440 DOI: 10.1007/s00204-016-1727-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
Abstract
Treatment of tuberculosis (TB) has been a therapeutic challenge because of not only the naturally high resistance level of Mycobacterium tuberculosis to antibiotics but also the newly acquired mutations that confer further resistance. Currently standardized regimens require patients to daily ingest up to four drugs under direct observation of a healthcare worker for a period of 6-9 months. Although they are quite effective in treating drug susceptible TB, these lengthy treatments often lead to patient non-adherence, which catalyzes for the emergence of M. tuberculosis strains that are increasingly resistant to the few available anti-TB drugs. The rapid evolution of M. tuberculosis, from mono-drug-resistant to multiple drug-resistant, extensively drug-resistant and most recently totally drug-resistant strains, is threatening to make TB once again an untreatable disease if new therapeutic options do not soon become available. Here, I discuss the molecular mechanisms by which M. tuberculosis confers its profound resistance to antibiotics. This knowledge may help in developing novel strategies for weakening drug resistance, thus enhancing the potency of available antibiotics against both drug susceptible and resistant M. tuberculosis strains.
Collapse
Affiliation(s)
- Liem Nguyen
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
50
|
Draft genome sequence of Kocuria sp. SM24M-10 isolated from coral mucus. GENOMICS DATA 2016; 7:121-3. [PMID: 26981384 PMCID: PMC4778616 DOI: 10.1016/j.gdata.2015.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/18/2015] [Indexed: 11/20/2022]
Abstract
Here, we describe the genomic features of the Actinobacteria Kocuria sp. SM24M-10 isolated from mucus of the Brazilian endemic coral Mussismilia hispida. The sequences are available under accession number LDNX01000000 (http://www.ncbi.nlm.nih.gov/nuccore/LDNX00000000). The genomic analysis revealed interesting information about the adaptation of bacteria to the marine environment (such as genes involved in osmotic and oxidative stress) and to the nutrient-rich environment provided by the coral mucus.
Collapse
|