1
|
Glutaredoxin Interacts with GR and AhpC to Enhance Low-Temperature Tolerance of Antarctic Psychrophile Psychrobacter sp. ANT206. Int J Mol Sci 2022; 23:ijms23031313. [PMID: 35163237 PMCID: PMC8836231 DOI: 10.3390/ijms23031313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 02/05/2023] Open
Abstract
Glutaredoxin (Grx) is an important oxidoreductase to maintain the redox homoeostasis of cells. In our previous study, cold-adapted Grx from Psychrobacter sp. ANT206 (PsGrx) has been characterized. Here, we constructed an in-frame deletion mutant of psgrx (Δpsgrx). Mutant Δpsgrx was more sensitive to low temperature, demonstrating that psgrx was conducive to the growth of ANT206. Mutant Δpsgrx also had more malondialdehyde (MDA) and protein carbonylation content, suggesting that PsGrx could play a part in the regulation of tolerance against low temperature. A yeast two-hybrid system was adopted to screen interacting proteins of 26 components. Furthermore, two target proteins, glutathione reductase (GR) and alkyl hydroperoxide reductase subunit C (AhpC), were regulated by PsGrx under low temperature, and the interactions were confirmed via bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP). Moreover, PsGrx could enhance GR activity. trxR expression in Δpsgrx, Δahpc, and ANT206 were illustrated 3.7, 2.4, and 10-fold more than mutant Δpsgrx Δahpc, indicating that PsGrx might increase the expression of trxR by interacting with AhpC. In conclusion, PsGrx may participate in glutathione metabolism and ROS-scavenging by regulating GR and AhpC to protect the growth of ANT206. These findings preliminarily suggest the role of PsGrx in the regulation of oxidative stress, which could improve the low-temperature tolerance of ANT206.
Collapse
|
2
|
Muthunayake NS, Tomares DT, Childers WS, Schrader JM. Phase-separated bacterial ribonucleoprotein bodies organize mRNA decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1599. [PMID: 32445438 PMCID: PMC7554086 DOI: 10.1002/wrna.1599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/12/2023]
Abstract
In bacteria, mRNA decay is controlled by megadalton scale macromolecular assemblies called, "RNA degradosomes," composed of nucleases and other RNA decay associated proteins. Recent advances in bacterial cell biology have shown that RNA degradosomes can assemble into phase-separated structures, termed bacterial ribonucleoprotein bodies (BR-bodies), with many analogous properties to eukaryotic processing bodies and stress granules. This review will highlight the functional role that BR-bodies play in the mRNA decay process through its organization into a membraneless organelle in the bacterial cytoplasm. This review will also highlight the phylogenetic distribution of BR-bodies across bacterial species, which suggests that these phase-separated structures are broadly distributed across bacteria, and in evolutionarily related mitochondria and chloroplasts. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
| | - Dylan T Tomares
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jared M Schrader
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
3
|
Maes A, Gracia C, Innocenti N, Zhang K, Aurell E, Hajnsdorf E. Landscape of RNA polyadenylation in E. coli. Nucleic Acids Res 2017; 45:2746-2756. [PMID: 28426097 PMCID: PMC5389530 DOI: 10.1093/nar/gkw894] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 11/26/2022] Open
Abstract
Polyadenylation is thought to be involved in the degradation and quality control of bacterial RNAs but relatively few examples have been investigated. We used a combination of 5΄-tagRACE and RNA-seq to analyze the total RNA content from a wild-type strain and from a poly(A)polymerase deleted mutant. A total of 178 transcripts were either up- or down-regulated in the mutant when compared to the wild-type strain. Poly(A)polymerase up-regulates the expression of all genes related to the FliA regulon and several previously unknown transcripts, including numerous transporters. Notable down-regulation of genes in the expression of antigen 43 and components of the type 1 fimbriae was detected. The major consequence of the absence of poly(A)polymerase was the accumulation of numerous sRNAs, antisense transcripts, REP sequences and RNA fragments resulting from the processing of entire transcripts. A new algorithm to analyze the position and composition of post-transcriptional modifications based on the sequence of unencoded 3΄-ends, was developed to identify polyadenylated molecules. Overall our results shed new light on the broad spectrum of action of polyadenylation on gene expression and demonstrate the importance of poly(A) dependent degradation to remove structured RNA fragments.
Collapse
Affiliation(s)
- Alexandre Maes
- CNRS UMR8261 (previously FRE3630) associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue P. et M. Curie, 75005 Paris, France
| | - Céline Gracia
- CNRS UMR8261 (previously FRE3630) associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue P. et M. Curie, 75005 Paris, France
| | - Nicolas Innocenti
- Department of Computational Biology, KTH Royal Institute of Technology, AlbaNova University Center, Roslagstullsbacken 17, SE-10691 Stockholm, Sweden
- Combient AB, Nettovägen 6, SE-175 41 Järfälla, Sweden
| | - Kaiyang Zhang
- Systems Biology Laboratory, Research Programs Unit,Genome-Scale Biology, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finlandepts of Computer Science and Applied Physics, Aalto University, Konemiehentie 2, FI-02150 Espoo, Finland
| | - Erik Aurell
- Department of Computational Biology, KTH Royal Institute of Technology, AlbaNova University Center, Roslagstullsbacken 17, SE-10691 Stockholm, Sweden
- Departments of Computer Science and Applied Physics, AaltoUniversity, Konemiehentie 2, FI-02150 Espoo, Finlandombient AB, Nettovägen 6, SE-175 41 Järfälla, Sweden
| | - Eliane Hajnsdorf
- CNRS UMR8261 (previously FRE3630) associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue P. et M. Curie, 75005 Paris, France
| |
Collapse
|
4
|
Initiation of mRNA decay in bacteria. Cell Mol Life Sci 2013; 71:1799-828. [PMID: 24064983 PMCID: PMC3997798 DOI: 10.1007/s00018-013-1472-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 12/24/2022]
Abstract
The instability of messenger RNA is fundamental to the control of gene expression. In bacteria, mRNA degradation generally follows an "all-or-none" pattern. This implies that if control is to be efficient, it must occur at the initiating (and presumably rate-limiting) step of the degradation process. Studies of E. coli and B. subtilis, species separated by 3 billion years of evolution, have revealed the principal and very disparate enzymes involved in this process in the two organisms. The early view that mRNA decay in these two model organisms is radically different has given way to new models that can be resumed by "different enzymes-similar strategies". The recent characterization of key ribonucleases sheds light on an impressive case of convergent evolution that illustrates that the surprisingly similar functions of these totally unrelated enzymes are of general importance to RNA metabolism in bacteria. We now know that the major mRNA decay pathways initiate with an endonucleolytic cleavage in E. coli and B. subtilis and probably in many of the currently known bacteria for which these organisms are considered representative. We will discuss here the different pathways of eubacterial mRNA decay, describe the major players and summarize the events that can precede and/or favor nucleolytic inactivation of a mRNA, notably the role of the 5' end and translation initiation. Finally, we will discuss the role of subcellular compartmentalization of transcription, translation, and the RNA degradation machinery.
Collapse
|
5
|
Rochat T, Bouloc P, Repoila F. Gene expression control by selective RNA processing and stabilization in bacteria. FEMS Microbiol Lett 2013; 344:104-13. [PMID: 23617839 DOI: 10.1111/1574-6968.12162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 11/27/2022] Open
Abstract
RNA maturation is a key event regulating genes at post-transcriptional level. In bacteria, it is employed to adjust the amounts of proteins and functional RNAs, often in response to environmental constraints. During the process of RNA maturation, enzymes and factors that would otherwise promote RNA degradation convert a labile RNA into a stable and biologically functional molecule.
Collapse
Affiliation(s)
- Tatiana Rochat
- INRA, UR892, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | | | | |
Collapse
|
6
|
Régnier P, Hajnsdorf E. The interplay of Hfq, poly(A) polymerase I and exoribonucleases at the 3' ends of RNAs resulting from Rho-independent termination: A tentative model. RNA Biol 2013; 10:602-9. [PMID: 23392248 DOI: 10.4161/rna.23664] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Discovered in eukaryotes as a modification essential for mRNA function, polyadenylation was then identified as a means used by all cells to destabilize RNA. In Escherichia coli, most accessible 3' RNA extremities are believed to be potential targets of poly(A) polymerase I. However, some RNAs might be preferentially adenylated. After a short statement of the current knowledge of poly(A) metabolism, we discuss how Hfq could affect recognition and polyadenylation of RNA terminated by Rho-independent terminators. Comparison of RNA terminus leads to the proposal that RNAs harboring 3' terminal features required for Hfq binding are not polyadenylated, whereas those lacking these structural elements can gain the oligo(A) tails that initiate exonucleolytic degradation. We also speculate that Hfq stimulates the synthesis of longer tails that could be used as Hfq-binding sites involved in non-characterized functions of Hfq-dependent sRNAs.
Collapse
Affiliation(s)
- Philippe Régnier
- University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France.
| | | |
Collapse
|
7
|
Maes A, Gracia C, Hajnsdorf E, Régnier P. Search for poly(A) polymerase targets in E. coli reveals its implication in surveillance of Glu tRNA processing and degradation of stable RNAs. Mol Microbiol 2011; 83:436-51. [PMID: 22142150 DOI: 10.1111/j.1365-2958.2011.07943.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyadenylation is a universal post-transcriptional modification involved in degradation and quality control of bacterial RNAs. In Escherichia coli, it is admitted that any accessible RNA 3' end can be tagged by a poly(A) tail for decay. However, we do not have yet an overall view of the population of polyadenylated molecules. The sampling of polyadenylated RNAs presented here demonstrates that rRNA fragments and tRNA precursors originating from the internal spacer regions of the rrn operons, in particular, rrnB are abundant poly(A) polymerase targets. Focused analysis showed that Glu tRNA precursors originating from the rrnB and rrnG transcripts exhibit long 3' trailers that are primarily removed by PNPase and to a lesser extent by RNase II and poly(A) polymerase. Moreover, 3' trimming by exoribonucleases precedes 5' end maturation by RNase P. Interestingly, characterization of RNA fragments that accumulate in a PNPase deficient strain showed that Glu tRNA precursors still harbouring the 5' leader can be degraded by a 3' to 5' quality control pathway involving poly(A) polymerase. This demonstrates that the surveillance of tRNA maturation described for a defective tRNA also applies to a wild-type tRNA.
Collapse
Affiliation(s)
- Alexandre Maes
- CNRS UPR9073, associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
8
|
Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, Moreira RN, Pobre V, Reis FP, Saramago M, Silva IJ, Viegas SC. The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev 2010; 34:883-923. [PMID: 20659169 DOI: 10.1111/j.1574-6976.2010.00242.x] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The continuous degradation and synthesis of prokaryotic mRNAs not only give rise to the metabolic changes that are required as cells grow and divide but also rapid adaptation to new environmental conditions. In bacteria, RNAs can be degraded by mechanisms that act independently, but in parallel, and that target different sites with different efficiencies. The accessibility of sites for degradation depends on several factors, including RNA higher-order structure, protection by translating ribosomes and polyadenylation status. Furthermore, RNA degradation mechanisms have shown to be determinant for the post-transcriptional control of gene expression. RNases mediate the processing, decay and quality control of RNA. RNases can be divided into endonucleases that cleave the RNA internally or exonucleases that cleave the RNA from one of the extremities. Just in Escherichia coli there are >20 different RNases. RNase E is a single-strand-specific endonuclease critical for mRNA decay in E. coli. The enzyme interacts with the exonuclease polynucleotide phosphorylase (PNPase), enolase and RNA helicase B (RhlB) to form the degradosome. However, in Bacillus subtilis, this enzyme is absent, but it has other main endonucleases such as RNase J1 and RNase III. RNase III cleaves double-stranded RNA and family members are involved in RNA interference in eukaryotes. RNase II family members are ubiquitous exonucleases, and in eukaryotes, they can act as the catalytic subunit of the exosome. RNases act in different pathways to execute the maturation of rRNAs and tRNAs, and intervene in the decay of many different mRNAs and small noncoding RNAs. In general, RNases act as a global regulatory network extremely important for the regulation of RNA levels.
Collapse
Affiliation(s)
- Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Le Derout J, Boni IV, Régnier P, Hajnsdorf E. Hfq affects mRNA levels independently of degradation. BMC Mol Biol 2010; 11:17. [PMID: 20167073 PMCID: PMC2834685 DOI: 10.1186/1471-2199-11-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 02/18/2010] [Indexed: 12/02/2022] Open
Abstract
Background The bacterial Lsm protein, Hfq, is an RNA chaperone involved in many reactions related to RNA metabolism, such as replication and stability, control of small RNA activity and polyadenylation. Despite this wide spectrum of known functions, the global role of Hfq is almost certainly undervalued; its capacity to bind DNA and to interact with many other proteins are only now beginning to be taken into account. Results The role of Hfq in the maturation and degradation of the rpsO mRNA of E. coli was investigated in vivo. The data revealed a decrease in rpsO mRNA abundance concomitant to an increase in its stability when Hfq is absent. This indicates that the change in mRNA levels in hfq mutants does not result from its modification of RNA stability. Moreover, a series of independent experiments have revealed that the decrease in mRNA level is not a consequence of a reduction of translation efficiency and that Hfq is not directly implicated in translational control of rpsO expression. Reduced steady-state mRNA levels in the absence of Hfq were also shown for rpsT, rpsB and rpsB-tsf, but not for lpp, pnp or tRNA transcripts. The abundance of chimeric transcripts rpsO-lacZ and rpsB-lacZ, whose expression was driven by rpsO and rpsB promoters, respectively, was also lower in the hfq null-mutants, while the β-galactosidase yield remained about the same as in the parent wild-type strain. Conclusions The data obtained suggest that alteration of rpsO, rpsT and rpsB-tsf transcript levels observed under conditions of Hfq deficiency is not caused by the post-transcriptional events, such as mRNA destabilization or changes in translation control, and may rather result from changes in transcriptional activity. So far, how Hfq affects transcription remains unclear. We propose that one of the likely mechanisms of Hfq-mediated modulation of transcription might operate early in the elongation step, when interaction of Hfq with a nascent transcript would help to overcome transcription pauses and to prevent preliminary transcript release.
Collapse
Affiliation(s)
- Jacques Le Derout
- UPR CNRS n degrees 9073, conventionnée avec l'Université Paris 7 - Denis Diderot Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
10
|
Bechhofer DH. Messenger RNA decay and maturation in Bacillus subtilis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:231-73. [PMID: 19215774 DOI: 10.1016/s0079-6603(08)00806-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Our understanding of the ribonucleases that act to process and turn over RNA in Bacillus subtilis, a model Gram-positive organism, has increased greatly in recent years. This chapter discusses characteristics of B. subtilis ribonucleases that have been shown to participate in messenger RNA maturation and decay. Distinct features of a recently discovered ribonuclease, RNase J1, are reviewed, and are put in the context of a mechanism for the mRNA decay process in B. subtilis that differs greatly from the classical model developed for E. coli. This chapter is divided according to three parts of an mRNA-5' end, body, and 3' end-that could theoretically serve as sites for initiation of decay. How 5'-proximal elements affect mRNA half-life, and especially how these elements interface with RNase J1, forms the basis for a set of "rules" that may be useful in predicting mRNA stability.
Collapse
Affiliation(s)
- David H Bechhofer
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA
| |
Collapse
|
11
|
The role of RNA chaperone Hfq in poly(A) metabolism methods to determine positions, abundance, and lengths of short oligo(A) tails. Methods Enzymol 2009. [PMID: 19161843 DOI: 10.1016/s0076-6879(08)02209-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Polyadenylation is a posttranscriptional modification of RNA occurring in prokaryotes, eukaryotes, and organelles. Long poly(A) tails help export eukaryotic mRNAs and promote mRNA stability and translation, whereas the short bacterial tails facilitate RNA decay. The scarcity of polyadenylated RNAs is one of the obstacles for investigators studying bacterial polyadenylation. The two methods described in this chapter were developed to determine how the poly(A) binding protein Hfq affects the polyadenylation of bacterial RNAs. The first is a 3'-RACE protocol specific to oligoadenylated RNA. This method was designed to rapidly collect a large amount of poly(A) containing 3'-terminal sequences to perform statistical analysis. The second method is an RNA sizing protocol to analyze the polyadenylation status of primary transcripts that were not efficiently detected by 3'-RACE. The latter procedure is based on Northern blot analysis of 3'-RNA fragments generated by RNase H. In the presence of a gene-specific methylated chimeric RNA-DNA oligonucleotide, the enzyme is directed to a unique cleavage site. The 3'-RNA fragments, differing by just one nucleotide at their 3'-ends, are then separated in polyacrylamide gels.
Collapse
|
12
|
Andrade JM, Hajnsdorf E, Régnier P, Arraiano CM. The poly(A)-dependent degradation pathway of rpsO mRNA is primarily mediated by RNase R. RNA (NEW YORK, N.Y.) 2009; 15:316-326. [PMID: 19103951 PMCID: PMC2648712 DOI: 10.1261/rna.1197309] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 10/27/2008] [Indexed: 05/27/2023]
Abstract
Polyadenylation is an important factor controlling RNA degradation and RNA quality control mechanisms. In this report we demonstrate for the first time that RNase R has in vivo affinity for polyadenylated RNA and can be a key enzyme involved in poly(A) metabolism. RNase II and PNPase, two major RNA exonucleases present in Escherichia coli, could not account for all the poly(A)-dependent degradation of the rpsO mRNA. RNase II can remove the poly(A) tails but fails to degrade the mRNA as it cannot overcome the RNA termination hairpin, while PNPase plays only a modest role in this degradation. We now demonstrate that in the absence of RNase E, RNase R is the relevant factor in the poly(A)-dependent degradation of the rpsO mRNA. Moreover, we have found that the RNase R inactivation counteracts the extended degradation of this transcript observed in RNase II-deficient cells. Elongated rpsO transcripts harboring increasing poly(A) tails are specifically recognized by RNase R and strongly accumulate in the absence of this exonuclease. The 3' oligo(A) extension may stimulate the binding of RNase R, allowing the complete degradation of the mRNA, as RNase R is not susceptible to RNA secondary structures. Moreover, this regulation is shown to occur despite the presence of PNPase. Similar results were observed with the rpsT mRNA. This report shows that polyadenylation favors in vivo the RNase R-mediated pathways of RNA degradation.
Collapse
Affiliation(s)
- José M Andrade
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | |
Collapse
|
13
|
Régnier P, Hajnsdorf E. Poly(A)-assisted RNA decay and modulators of RNA stability. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:137-85. [PMID: 19215772 DOI: 10.1016/s0079-6603(08)00804-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In Escherichia coli, RNA degradation is orchestrated by the degradosome with the assistance of complementary pathways and regulatory cofactors described in this chapter. They control the stability of each transcript and regulate the expression of many genes involved in environmental adaptation. The poly(A)-dependent degradation machinery has diverse functions such as the degradation of decay intermediates generated by endoribonucleases, the control of the stability of regulatory non coding RNAs (ncRNAs) and the quality control of stable RNA. The metabolism of poly(A) and mechanism of poly(A)-assisted degradation are beginning to be understood. Regulatory factors, exemplified by RraA and RraB, control the decay rates of subsets of transcripts by binding to RNase E, in contrast to regulatory ncRNAs which, assisted by Hfq, target RNase E to specific transcripts. Destabilization is often consecutive to the translational inactivation of mRNA. However, there are examples where RNA degradation is the primary regulatory step.
Collapse
Affiliation(s)
- Philippe Régnier
- CNRS UPR9073, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
14
|
Carpousis AJ, Luisi BF, McDowall KJ. Endonucleolytic initiation of mRNA decay in Escherichia coli. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:91-135. [PMID: 19215771 DOI: 10.1016/s0079-6603(08)00803-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Instability is a fundamental property of mRNA that is necessary for the regulation of gene expression. In E. coli, the turnover of mRNA involves multiple, redundant pathways involving 3'-exoribonucleases, endoribonucleases, and a variety of other enzymes that modify RNA covalently or affect its conformation. Endoribonucleases are thought to initiate or accelerate the process of mRNA degradation. A major endoribonuclease in this process is RNase E, which is a key component of the degradative machinery amongst the Proteobacteria. RNase E is the central element in a multienzyme complex known as the RNA degradosome. Structural and functional data are converging on models for the mechanism of activation and regulation of RNase E and its paralog, RNase G. Here, we discuss current models for mRNA degradation in E. coli and we present current thinking on the structure and function of RNase E based on recent crystal structures of its catalytic core.
Collapse
Affiliation(s)
- Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS et Université Paul Sabatier, 31062 Toulouse, France
| | | | | |
Collapse
|
15
|
Andrade JM, Pobre V, Silva IJ, Domingues S, Arraiano CM. The role of 3'-5' exoribonucleases in RNA degradation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:187-229. [PMID: 19215773 DOI: 10.1016/s0079-6603(08)00805-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA degradation is a major process controlling RNA levels and plays a central role in cell metabolism. From the labile messenger RNA to the more stable noncoding RNAs (mostly rRNA and tRNA, but also the expanding class of small regulatory RNAs) all molecules are eventually degraded. Elimination of superfluous transcripts includes RNAs whose expression is no longer required, but also the removal of defective RNAs. Consequently, RNA degradation is an inherent step in RNA quality control mechanisms. Furthermore, it contributes to the recycling of the nucleotide pool in the cell. Escherichia coli has eight 3'-5' exoribonucleases, which are involved in multiple RNA metabolic pathways. However, only four exoribonucleases appear to accomplish all RNA degradative activities: polynucleotide phosphorylase (PNPase), ribonuclease II (RNase II), RNase R, and oligoribonuclease. Here, we summarize the available information on the role of bacterial 3'-5' exoribonucleases in the degradation of different substrates, highlighting the most recent data that have contributed to the understanding of the diverse modes of operation of these degradative enzymes.
Collapse
Affiliation(s)
- José M Andrade
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Qeiras, Portugal
| | | | | | | | | |
Collapse
|
16
|
Dreyfus M. Killer and protective ribosomes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:423-66. [PMID: 19215779 DOI: 10.1016/s0079-6603(08)00811-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In prokaryotes, translation influences mRNA decay. The breakdown of most Escherichia coli mRNAs is initiated by RNase E, a 5'-dependent endonuclease. Some mRNAs are protected by ribosomes even if these are located far upstream of cleavage sites ("protection at a distance"), whereas others require direct shielding of these sites. I argue that these situations reflect different modes of interaction of RNase E with mRNAs. Protection at a distance is most impressive in Bacilli, where ribosomes can protect kilobases of unstable downstream sequences. I propose that this protection reflects the role in mRNA decay of RNase J1, a 5'-->3' exonuclease with no E. coli equivalent. Finally, recent years have shown that besides their protective role, ribosomes can also cleave their mRNA under circumstances that cause ribosome stalling. The endonuclease associated with this "killing" activity, which has a eukaryotic counterpart ("no-go decay"), is not characterized; it may be borne by the distressed ribosome itself.
Collapse
|
17
|
Replication initiator protein mRNA of ColE2 plasmid and its antisense regulator RNA are under the control of different degradation pathways. Plasmid 2008; 59:102-10. [DOI: 10.1016/j.plasmid.2007.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 10/19/2007] [Accepted: 11/27/2007] [Indexed: 11/20/2022]
|
18
|
Abstract
The RNA degradosome of Escherichia coli is a multiprotein complex involved in the degradation of mRNA. The principal components are RNase E, PNPase, RhlB, and enolase. RNase E is a large multidomain protein with an N-terminal catalytic region and a C-terminal noncatalytic region that is mostly natively unstructured protein. The noncatalytic region contains sites for binding RNA and for protein-protein interactions with other components of the RNA degradosome. Several recent studies suggest that there are alternative forms of the RNA degradosome depending on growth conditions or other factors. These alternative forms appear to modulate RNase E activity in the degradation of mRNA. RNA degradosome-like complexes appear to be conserved throughout the Proteobacteria, but there is a surprising variability in composition that might contribute to the adaptation of these bacteria to the enormously wide variety of niches in which they live.
Collapse
Affiliation(s)
- Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, Unité Mixte de Recherche 5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 31062 Toulouse, France.
| |
Collapse
|
19
|
Abstract
Transcription termination in the leader region of the Bacillus subtilis trp operon is regulated by binding of the 11-mer TRAP complex to nascent trp RNA, which results in formation of a terminator structure. Rapid decay of trp leader RNA, which is required to release the TRAP complex and maintain a sufficient supply of free TRAP, is mediated by polynucleotide phosphorylase (PNPase). Using purified B. subtilis PNPase, we showed that, when TRAP was present, PNPase binding to the 3' end of trp leader RNA and PNPase digestion of trp leader RNA from the 3' end were inefficient. These results suggested that initiation of trp leader RNA may begin with an endonuclease cleavage upstream of the transcription terminator structure. Such cleavage was observed in vivo. Mutagenesis of nucleotides at the cleavage site abolished processing and resulted in a 4-fold increase in trp leader RNA half-life. This is the first mapping of a decay-initiating endonuclease cleavage site on a native B. subtilis RNA.
Collapse
Affiliation(s)
- Gintaras Deikus
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA
| | | |
Collapse
|
20
|
Joanny G, Derout JL, Bréchemier-Baey D, Labas V, Vinh J, Régnier P, Hajnsdorf E. Polyadenylation of a functional mRNA controls gene expression in Escherichia coli. Nucleic Acids Res 2007; 35:2494-502. [PMID: 17395638 PMCID: PMC1885654 DOI: 10.1093/nar/gkm120] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Although usually implicated in the stabilization of mRNAs in eukaryotes, polyadenylation was initially shown to destabilize RNA in bacteria. All the data are consistent with polyadenylation being part of a quality control process targeting folded RNA fragments and non-functional RNA molecules to degradation. We report here an example in Escherichia coli, where polyadenylation directly controls the level of expression of a gene by modulating the stability of a functional transcript. Inactivation of poly(A)polymerase I causes overexpression of glucosamine–6-phosphate synthase (GlmS) and both the accumulation and stabilization of the glmS transcript. Moreover, we show that the glmS mRNA results from the processing of the glmU-glmS cotranscript by RNase E. Interestingly, the glmU-glmS cotranscript and the mRNA fragment encoding GlmU only slightly accumulated in the absence of poly(A)polymerase, suggesting that the endonucleolytically generated glmS mRNA harbouring a 5′ monophosphate and a 3′ stable hairpin is highly susceptible to poly(A)-dependent degradation.
Collapse
Affiliation(s)
- Géraldine Joanny
- Régulation de l’Expression Génétique chez les Microorganismes, UPR CNRS n° 9073, conventionnée avec l’Université Paris 7—Denis Diderot, Paris, France and Neurobiologie et Diversité Cellulaire, UMR CNRS n° 7637, Paris, France
| | - Jacques Le Derout
- Régulation de l’Expression Génétique chez les Microorganismes, UPR CNRS n° 9073, conventionnée avec l’Université Paris 7—Denis Diderot, Paris, France and Neurobiologie et Diversité Cellulaire, UMR CNRS n° 7637, Paris, France
| | - Dominique Bréchemier-Baey
- Régulation de l’Expression Génétique chez les Microorganismes, UPR CNRS n° 9073, conventionnée avec l’Université Paris 7—Denis Diderot, Paris, France and Neurobiologie et Diversité Cellulaire, UMR CNRS n° 7637, Paris, France
| | - Valérie Labas
- Régulation de l’Expression Génétique chez les Microorganismes, UPR CNRS n° 9073, conventionnée avec l’Université Paris 7—Denis Diderot, Paris, France and Neurobiologie et Diversité Cellulaire, UMR CNRS n° 7637, Paris, France
| | - Joelle Vinh
- Régulation de l’Expression Génétique chez les Microorganismes, UPR CNRS n° 9073, conventionnée avec l’Université Paris 7—Denis Diderot, Paris, France and Neurobiologie et Diversité Cellulaire, UMR CNRS n° 7637, Paris, France
| | - Philippe Régnier
- Régulation de l’Expression Génétique chez les Microorganismes, UPR CNRS n° 9073, conventionnée avec l’Université Paris 7—Denis Diderot, Paris, France and Neurobiologie et Diversité Cellulaire, UMR CNRS n° 7637, Paris, France
| | - Eliane Hajnsdorf
- Régulation de l’Expression Génétique chez les Microorganismes, UPR CNRS n° 9073, conventionnée avec l’Université Paris 7—Denis Diderot, Paris, France and Neurobiologie et Diversité Cellulaire, UMR CNRS n° 7637, Paris, France
- *To whom correspondence should be addressed +33 1 58 41 51 26+33 1 58 41 50 20
| |
Collapse
|
21
|
Oussenko IA, Abe T, Ujiie H, Muto A, Bechhofer DH. Participation of 3'-to-5' exoribonucleases in the turnover of Bacillus subtilis mRNA. J Bacteriol 2005; 187:2758-67. [PMID: 15805522 PMCID: PMC1070398 DOI: 10.1128/jb.187.8.2758-2767.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four 3'-to-5' exoribonucleases have been identified in Bacillus subtilis: polynucleotide phosphorylase (PNPase), RNase R, RNase PH, and YhaM. Mutant strains were constructed that were lacking PNPase and one or more of the other three ribonucleases or that had PNPase alone. Analysis of the decay of mRNA encoded by seven small, monocistronic genes showed that PNPase was the major enzyme involved in mRNA turnover. Significant levels of decay intermediates, whose 5' ends were at the transcriptional start site and whose 3' ends were at various positions in the coding sequence, were detected only when PNPase was absent. A detailed analysis of rpsO mRNA decay showed that decay intermediates accumulated as the result of a block to 3'-to-5' processivity at the base of stem-loop structures. When RNase R alone was present, it was also capable of degrading mRNA, showing the involvement of this exonuclease in mRNA turnover. The degradative activity of RNase R was impaired when RNase PH or YhaM was also present. Extrapolation from the seven genes examined suggested that a large number of mRNA fragments was present in the PNPase-deficient mutant. Maintenance of the free ribosome pool in this strain would require a high level of activity on the part of the tmRNA trans translation system. A threefold increase in the level of peptide tagging was observed in the PNPase-deficient strain, and selective pressure for increased tmRNA activity was indicated by the emergence of mutant strains with elevated tmRNA transcription.
Collapse
Affiliation(s)
- Irina A Oussenko
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
22
|
Folichon M, Marujo PE, Arluison V, Le Derout J, Pellegrini O, Hajnsdorf E, Régnier P. Fate of mRNA extremities generated by intrinsic termination: detailed analysis of reactions catalyzed by ribonuclease II and poly(A) polymerase. Biochimie 2005; 87:819-26. [PMID: 15885870 DOI: 10.1016/j.biochi.2005.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 02/07/2005] [Accepted: 02/17/2005] [Indexed: 10/25/2022]
Abstract
In all living cells 3' ends of RNA are posttranscriptionally elongated or shortened by nucleotidyl transferases and ribonucleases. The detailed analysis of the rpsO mRNA of Escherichia coli presented here demonstrates that transcription terminates in vivo at two sites located seven and eight nucleotides downstream from the GC-rich hairpin of the intrinsic terminator and that primary transcripts can be shortened by RNase II. The shortest RNA identified in the cell result from nibbling of primary transcripts. Primary transcripts and nibbled molecules can also be adenylated by poly(A) polymerase I (PAP I). In addition, kinetics of decay performed in vitro demonstrate that RNase II rapidly degrades poly(A) tails longer than 7-8 As processively while it slowly nibbles shorter tails and non adenylated RNAs distributively. Comparison of the kinetics of nibbling of oligoadenylated rpsO mRNA in vivo and in vitro lead us to conclude that the rates of shortening and elongation of the oligo(A) tails detected in vivo are very slow: about 0.5-7 nucleotides per min. We finally speculate that the slowness of oligo(A) synthesis may explain why polyadenylation does not affect the stability of mRNAs whose degradation is controlled by RNase E.
Collapse
Affiliation(s)
- Marc Folichon
- Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|