1
|
Cho H, Kim KS. Characterization of Escherichia coli chaperonin GroEL as a ribonuclease. Int J Biol Macromol 2024; 281:136330. [PMID: 39370076 DOI: 10.1016/j.ijbiomac.2024.136330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Chaperonins are evolutionarily conserved proteins that facilitate polypeptide assemblies. The most extensively studied chaperonin is GroEL, which plays a crucial role in Escherichia coli. In addition to its chaperone activity, the RNA cleavage activity of GroEL has also been proposed. However, direct evidence of GroEL as a ribonuclease (RNase) and its physiological significance has not been fully elucidated. Here, we characterized the role of GroEL in E. coli as an RNase distinct from RNase E/G activity using in vivo reporter assays, in vitro cleavage assays with varying reaction times, divalent ions, and 5' phosphorylation status. GroEL bound to single-stranded RNA at nanomolar concentrations. Functional analysis of GroEL chaperonin-defective mutants and segments identified specific regions, and the chaperone active status of GroEL is not a necessary factor for RNase activity. Additionally, RNase activity of GroEL was attenuated by co-overexpression with GroES. Finally, we characterized potential transcripts regulated by GroEL and the conserved RNase activity of GroEL in Shigella flexneri. Our findings indicate that GroEL is a novel post-transcriptional regulator in bacteria.
Collapse
Affiliation(s)
- Hyejin Cho
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
2
|
Clarke JE, Sabharwal K, Kime L, McDowall KJ. The recognition of structured elements by a conserved groove distant from domains associated with catalysis is an essential determinant of RNase E. Nucleic Acids Res 2023; 51:365-379. [PMID: 36594161 PMCID: PMC9841416 DOI: 10.1093/nar/gkac1228] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/11/2022] [Accepted: 12/08/2022] [Indexed: 01/04/2023] Open
Abstract
RNase E is an endoribonuclease found in many bacteria, including important human pathogens. Within Escherichia coli, it has been shown to have a major role in both the maturation of all classes of RNA involved in translation and the initiation of mRNA degradation. Thus, knowledge of the major determinants of RNase E cleavage is central to our understanding and manipulation of bacterial gene expression. We show here that the binding of RNase E to structured RNA elements is crucial for the processing of tRNA, can activate catalysis and may be important in mRNA degradation. The recognition of structured elements by RNase E is mediated by a recently discovered groove that is distant from the domains associated with catalysis. The functioning of this groove is shown here to be essential for E. coli cell viability and may represent a key point of evolutionary divergence from the paralogous RNase G family, which we show lack amino acid residues conserved within the RNA-binding groove of members of the RNase E family. Overall, this work provides new insights into the recognition and cleavage of RNA by RNase E and provides further understanding of the basis of RNase E essentiality in E. coli.
Collapse
Affiliation(s)
| | | | - Louise Kime
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Kenneth J McDowall
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
3
|
Lodato PB. The effect of two ribonucleases on the production of Shiga toxin and stx-bearing bacteriophages in Enterohaemorrhagic Escherichia coli. Sci Rep 2021; 11:18372. [PMID: 34526533 PMCID: PMC8443680 DOI: 10.1038/s41598-021-97736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) comprise a group of intestinal pathogens responsible for a range of illnesses, including kidney failure and neurological compromise. EHEC produce critical virulence factors, Shiga toxin (Stx) 1 or 2, and the synthesis of Stx2 is associated with worse disease manifestations. Infected patients only receive supportive treatment because some conventional antibiotics enable toxin production. Shiga toxin 2 genes (stx2) are carried in λ-like bacteriophages (stx2-phages) inserted into the EHEC genome as prophages. Factors that cause DNA damage induce the lytic cycle of stx2-phages, leading to Stx2 production. The phage Q protein is critical for transcription antitermination of stx2 and phage lytic genes. This study reports that deficiency of two endoribonucleases (RNases), E and G, significantly delayed cell lysis and impaired production of both Stx2 and stx2-phages, unlike deficiency of either enzyme alone. Moreover, scarcity of both enzymes reduced the concentrations of Q and stx2 transcripts and slowed cell growth.
Collapse
Affiliation(s)
- Patricia B Lodato
- Department of Microbiology and Immunology, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, 63501, USA.
| |
Collapse
|
4
|
Benda M, Woelfel S, Faßhauer P, Gunka K, Klumpp S, Poehlein A, Kálalová D, Šanderová H, Daniel R, Krásný L, Stülke J. Quasi-essentiality of RNase Y in Bacillus subtilis is caused by its critical role in the control of mRNA homeostasis. Nucleic Acids Res 2021; 49:7088-7102. [PMID: 34157109 PMCID: PMC8266666 DOI: 10.1093/nar/gkab528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023] Open
Abstract
RNA turnover is essential in all domains of life. The endonuclease RNase Y (rny) is one of the key components involved in RNA metabolism of the model organism Bacillus subtilis. Essentiality of RNase Y has been a matter of discussion, since deletion of the rny gene is possible, but leads to severe phenotypic effects. In this work, we demonstrate that the rny mutant strain rapidly evolves suppressor mutations to at least partially alleviate these defects. All suppressor mutants had acquired a duplication of an about 60 kb long genomic region encompassing genes for all three core subunits of the RNA polymerase—α, β, β′. When the duplication of the RNA polymerase genes was prevented by relocation of the rpoA gene in the B. subtilis genome, all suppressor mutants carried distinct single point mutations in evolutionary conserved regions of genes coding either for the β or β’ subunits of the RNA polymerase that were not tolerated by wild type bacteria. In vitro transcription assays with the mutated polymerase variants showed a severe decrease in transcription efficiency. Altogether, our results suggest a tight cooperation between RNase Y and the RNA polymerase to establish an optimal RNA homeostasis in B. subtilis cells.
Collapse
Affiliation(s)
- Martin Benda
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Simon Woelfel
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Patrick Faßhauer
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Katrin Gunka
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Institute for the Dynamics of Complex Systems, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Debora Kálalová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Bechhofer DH, Deutscher MP. Bacterial ribonucleases and their roles in RNA metabolism. Crit Rev Biochem Mol Biol 2019; 54:242-300. [PMID: 31464530 PMCID: PMC6776250 DOI: 10.1080/10409238.2019.1651816] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Ribonucleases (RNases) are mediators in most reactions of RNA metabolism. In recent years, there has been a surge of new information about RNases and the roles they play in cell physiology. In this review, a detailed description of bacterial RNases is presented, focusing primarily on those from Escherichia coli and Bacillus subtilis, the model Gram-negative and Gram-positive organisms, from which most of our current knowledge has been derived. Information from other organisms is also included, where relevant. In an extensive catalog of the known bacterial RNases, their structure, mechanism of action, physiological roles, genetics, and possible regulation are described. The RNase complement of E. coli and B. subtilis is compared, emphasizing the similarities, but especially the differences, between the two. Included are figures showing the three major RNA metabolic pathways in E. coli and B. subtilis and highlighting specific steps in each of the pathways catalyzed by the different RNases. This compilation of the currently available knowledge about bacterial RNases will be a useful tool for workers in the RNA field and for others interested in learning about this area.
Collapse
Affiliation(s)
- David H. Bechhofer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Murray P. Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
6
|
Experimental Evolution of Escherichia coli K-12 in the Presence of Proton Motive Force (PMF) Uncoupler Carbonyl Cyanide m-Chlorophenylhydrazone Selects for Mutations Affecting PMF-Driven Drug Efflux Pumps. Appl Environ Microbiol 2019; 85:AEM.02792-18. [PMID: 30578262 DOI: 10.1128/aem.02792-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/06/2018] [Indexed: 01/10/2023] Open
Abstract
Experimental evolution of Escherichia coli K-12 with benzoate, a partial uncoupler of the proton motive force (PMF), selects for mutations that decrease antibiotic resistance. We conducted experimental evolution in the presence of carbonyl cyanide m-chlorophenylhydrazone (CCCP), a strong uncoupler. Cultures were serially diluted daily 1:100 in LBK medium containing 20 to 150 µM CCCP buffered at pH 6.5 or at pH 8.0. After 1,000 generations, the populations tolerated up to 150 µM CCCP. Sequenced isolates had mutations in mprA (emrR), which downregulates the EmrAB-TolC pump that exports CCCP. A mprA::kanR deletion conferred growth at 60 μM CCCP, though not at the higher levels resisted by evolved strains (150 µM). Some mprA mutant strains also had point mutations affecting emrA, but deletion of emrA abolished the CCCP resistance. Thus, CCCP-evolved isolates contained additional adaptations. One isolate lacked emrA or mprA mutations but had mutations in cecR (ybiH), whose product upregulates drug pumps YbhG and YbhFSR, and in gadE, which upregulates the multidrug pump MdtEF. A cecR::kanR deletion conferred partial resistance to CCCP. Other multidrug efflux genes that had mutations included ybhR and acrAB The acrB isolate was sensitive to the AcrAB substrates chloramphenicol and tetracycline. Other mutant genes in CCCP-evolved strains include rng (RNase G) and cyaA (adenylate cyclase). Overall, experimental evolution revealed a CCCP-dependent fitness advantage for mutations increasing CCCP efflux via EmrA and for mutations that may deactivate proton-driven pumps for drugs not present (cecR, gadE, acrAB, and ybhR). These results are consistent with our previous report of drug sensitivity associated with evolved benzoate tolerance.IMPORTANCE The genetic responses of bacteria to depletion of proton motive force (PMF), and their effects on drug resistance, are poorly understood. PMF drives export of many antibiotics, but the energy cost may decrease fitness when antibiotics are absent. Our evolution experiment reveals genetic mechanisms of adaptation to the PMF uncoupler CCCP, including selection for increased CCCP efflux but also against the expression of PMF-driven pumps for drugs not present. The results have implications for our understanding of the gut microbiome, which experiences high levels of organic acids that decrease PMF.
Collapse
|
7
|
Raymond-Bouchard I, Tremblay J, Altshuler I, Greer CW, Whyte LG. Comparative Transcriptomics of Cold Growth and Adaptive Features of a Eury- and Steno-Psychrophile. Front Microbiol 2018; 9:1565. [PMID: 30108551 PMCID: PMC6080646 DOI: 10.3389/fmicb.2018.01565] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Permafrost subzero environments harbor diverse, active communities of microorganisms. However, our understanding of the subzero growth, metabolisms, and adaptive properties of these microbes remains very limited. We performed transcriptomic analyses on two subzero-growing permafrost isolates with different growth profiles in order to characterize and compare their cold temperature growth and cold-adaptive strategies. The two organisms, Rhodococcus sp. JG3 (-5 to 30°C) and Polaromonas sp. Eur3 1.2.1 (-5 to 22°C), shared several common responses during low temperature growth, including induction of translation and ribosomal processes, upregulation of nutrient transport, increased oxidative and osmotic stress responses, and stimulation of polysaccharide capsule synthesis. Recombination appeared to be an important adaptive strategy for both isolates at low temperatures, likely as a mechanism to increase genetic diversity and the potential for survival in cold systems. While Rhodococcus sp. JG3 favored upregulating iron and amino acid transport, sustaining redox potential, and modulating fatty acid synthesis and composition during growth at -5°C compared to 25°C, Polaromonas sp. Eur3 1.2.1 increased the relative abundance of transcripts involved in primary energy metabolism and the electron transport chain, in addition to signal transduction and peptidoglycan synthesis at 0°C compared to 20°C. The increase in energy metabolism may explain why Polaromonas sp. Eur3 1.2.1 is able to sustain growth rates at 0°C comparable to those at higher temperatures. For Rhodococcus sp. JG3, flexibility in use of carbon sources, iron acquisition, control of membrane fatty acid composition, and modulating redox and co-factor potential may be ways in which this organism is able to sustain growth over a wider range of temperatures. Increasing our understanding of the microbes in these habitats helps us better understand active pathways and metabolisms in extreme environments. Identifying novel, thermolabile, and cold-active enzymes from studies such as this is also of great interest to the biotechnology and food industries.
Collapse
Affiliation(s)
| | - Julien Tremblay
- Biotechnology Research Institute, National Research Council of Canada, Montreal, QC, Canada
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Charles W Greer
- Biotechnology Research Institute, National Research Council of Canada, Montreal, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
8
|
Mohanty BK, Kushner SR. Enzymes Involved in Posttranscriptional RNA Metabolism in Gram-Negative Bacteria. Microbiol Spectr 2018; 6:10.1128/microbiolspec.RWR-0011-2017. [PMID: 29676246 PMCID: PMC5912700 DOI: 10.1128/microbiolspec.rwr-0011-2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Indexed: 02/08/2023] Open
Abstract
Gene expression in Gram-negative bacteria is regulated at many levels, including transcription initiation, RNA processing, RNA/RNA interactions, mRNA decay, and translational controls involving enzymes that alter translational efficiency. In this review, we discuss the various enzymes that control transcription, translation, and RNA stability through RNA processing and degradation. RNA processing is essential to generate functional RNAs, while degradation helps control the steady-state level of each individual transcript. For example, all the pre-tRNAs are transcribed with extra nucleotides at both their 5' and 3' termini, which are subsequently processed to produce mature tRNAs that can be aminoacylated. Similarly, rRNAs that are transcribed as part of a 30S polycistronic transcript are matured to individual 16S, 23S, and 5S rRNAs. Decay of mRNAs plays a key role in gene regulation through controlling the steady-state level of each transcript, which is essential for maintaining appropriate protein levels. In addition, degradation of both translated and nontranslated RNAs recycles nucleotides to facilitate new RNA synthesis. To carry out all these reactions, Gram-negative bacteria employ a large number of endonucleases, exonucleases, RNA helicases, and poly(A) polymerase, as well as proteins that regulate the catalytic activity of particular RNases. Under certain stress conditions, an additional group of specialized endonucleases facilitate the cell's ability to adapt and survive. Many of the enzymes, such as RNase E, RNase III, polynucleotide phosphorylase, RNase R, and poly(A) polymerase I, participate in multiple RNA processing and decay pathways.
Collapse
Affiliation(s)
| | - Sidney R Kushner
- Department of Genetics
- Department of Microbiology, University of Georgia, Athens, GA 30602
| |
Collapse
|
9
|
Enzymatic activity necessary to restore the lethality due to Escherichia coli RNase E deficiency is distributed among bacteria lacking RNase E homologues. PLoS One 2017; 12:e0177915. [PMID: 28542621 PMCID: PMC5436854 DOI: 10.1371/journal.pone.0177915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli RNase E (Eco-RNase E), encoded by rne (Eco-rne), is considered the global RNA decay initiator. Although Eco-RNase E is an essential gene product in E. coli, some bacterial species, such as Bacillus subtilis, do not possess Eco-RNase E sequence homologues. B. subtilis instead possesses RNase J1/J2 (Bsu-RNase J1/J2) and RNase Y (Bsu-RNase Y) to execute RNA decay. Here we found that E. coli lacking the Eco-rne gene (Δrne E. coli) was viable conditional on M9 minimal media by introducing Bsu-RNase J1/J2 or Bsu-RNase Y. We also cloned an extremely short Eco-RNase E homologue (Wpi-RNase E) and a canonical sized Bsu-RNase J1/J2 homologue (Wpi-RNase J) from Wolbachia pipientis, an α-proteobacterial endosymbiont of arthropods. We found that Wpi-RNase J restored the colony-forming ability (CFA) of Δrne E. coli, whereas Wpi-RNase E did not. Unexpectedly, Wpi-RNase E restored defective CFA due to lack of Eco-RNase G, a paralogue of Eco-RNase E. Our results indicate that bacterial species that lack Eco-RNase E homologues or bacterial species that possess Eco-RNase E homologues which lack Eco-RNase E-like activities have a modest Eco-RNase E-like function using RNase J and/or RNase Y. These results suggest that Eco-RNase E-like activities might distribute among a wide array of bacteria and that functions of RNases may have changed dynamically during evolutionary divergence of bacterial lineages.
Collapse
|
10
|
Decreased Expression of Stable RNA Can Alleviate the Lethality Associated with RNase E Deficiency in Escherichia coli. J Bacteriol 2017; 199:JB.00724-16. [PMID: 28167522 DOI: 10.1128/jb.00724-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/28/2017] [Indexed: 11/20/2022] Open
Abstract
The endoribonuclease RNase E participates in mRNA degradation, rRNA processing, and tRNA maturation in Escherichia coli, but the precise reasons for its essentiality are unclear and much debated. The enzyme is most active on RNA substrates with a 5'-terminal monophosphate, which is sensed by a domain in the enzyme that includes residue R169; E. coli also possesses a 5'-pyrophosphohydrolase, RppH, that catalyzes conversion of 5'-terminal triphosphate to 5'-terminal monophosphate on RNAs. Although the C-terminal half (CTH), beyond residue approximately 500, of RNase E is dispensable for viability, deletion of the CTH is lethal when combined with an R169Q mutation or with deletion of rppH In this work, we show that both these lethalities can be rescued in derivatives in which four or five of the seven rrn operons in the genome have been deleted. We hypothesize that the reduced stable RNA levels under these conditions minimize the need of RNase E to process them, thereby allowing for its diversion for mRNA degradation. In support of this hypothesis, we have found that other conditions that are known to reduce stable RNA levels also suppress one or both lethalities: (i) alterations in relA and spoT, which are expected to lead to increased basal ppGpp levels; (ii) stringent rpoB mutations, which mimic high intracellular ppGpp levels; and (iii) overexpression of DksA. Lethality suppression by these perturbations was RNase R dependent. Our work therefore suggests that its actions on the various substrates (mRNA, rRNA, and tRNA) jointly contribute to the essentiality of RNase E in E. coliIMPORTANCE The endoribonuclease RNase E is essential for viability in many Gram-negative bacteria, including Escherichia coli Different explanations have been offered for its essentiality, including its roles in global mRNA degradation or in the processing of several tRNA and rRNA species. Our work suggests that, rather than its role in the processing of any one particular substrate, its distributed functions on all the different substrates (mRNA, rRNA, and tRNA) are responsible for the essentiality of RNase E in E. coli.
Collapse
|
11
|
Tamura M, Honda N, Fujimoto H, Cohen SN, Kato A. PpsA-mediated alternative pathway to complement RNase E essentiality in Escherichia coli. Arch Microbiol 2016; 198:409-21. [PMID: 26883538 DOI: 10.1007/s00203-016-1201-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
Escherichia coli cells require RNase E, encoded by the essential gene rne, to propagate. The growth properties on different carbon sources of E. coli cells undergoing suppression of RNase E production suggested that reduction in RNase E is associated with decreased expression of phosphoenolpyruvate synthetase (PpsA), which converts pyruvate to phosphoenolpyruvate during gluconeogenesis. Western blotting and genetic complementation confirmed the role of RNase E in PpsA expression. Adventitious ppsA overexpression from a multicopy plasmid was sufficient to restore colony formation of ∆rne E. coli on minimal media containing glycerol or succinate as the sole carbon source. Complementation of ∆rne by ppsA overproduction was observed during growth on solid media but was only partial, and bacteria showed slowed cell division and grew as filamentous chains. We found that restoration of colony-forming ability by ppsA complementation occurred independent of the presence of endogenous RNase G or second-site suppressors of RNase E essentiality. Our investigations demonstrate the role of phosphoryl transfer catalyzable by PpsA as a determinant of RNase E essentiality in E. coli.
Collapse
Affiliation(s)
- Masaru Tamura
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Naoko Honda
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hirofumi Fujimoto
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Stanley N Cohen
- Departments of Genetics and Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Atsushi Kato
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| |
Collapse
|
12
|
Kumar A, Beloglazova N, Bundalovic-Torma C, Phanse S, Deineko V, Gagarinova A, Musso G, Vlasblom J, Lemak S, Hooshyar M, Minic Z, Wagih O, Mosca R, Aloy P, Golshani A, Parkinson J, Emili A, Yakunin AF, Babu M. Conditional Epistatic Interaction Maps Reveal Global Functional Rewiring of Genome Integrity Pathways in Escherichia coli. Cell Rep 2016; 14:648-661. [PMID: 26774489 DOI: 10.1016/j.celrep.2015.12.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/08/2015] [Accepted: 12/10/2015] [Indexed: 11/27/2022] Open
Abstract
As antibiotic resistance is increasingly becoming a public health concern, an improved understanding of the bacterial DNA damage response (DDR), which is commonly targeted by antibiotics, could be of tremendous therapeutic value. Although the genetic components of the bacterial DDR have been studied extensively in isolation, how the underlying biological pathways interact functionally remains unclear. Here, we address this by performing systematic, unbiased, quantitative synthetic genetic interaction (GI) screens and uncover widespread changes in the GI network of the entire genomic integrity apparatus of Escherichia coli under standard and DNA-damaging growth conditions. The GI patterns of untreated cultures implicated two previously uncharacterized proteins (YhbQ and YqgF) as nucleases, whereas reorganization of the GI network after DNA damage revealed DDR roles for both annotated and uncharacterized genes. Analyses of pan-bacterial conservation patterns suggest that DDR mechanisms and functional relationships are near universal, highlighting a modular and highly adaptive genomic stress response.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Computer Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Natalia Beloglazova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Cedoljub Bundalovic-Torma
- Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G OX4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sadhna Phanse
- Terrence Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Viktor Deineko
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Alla Gagarinova
- Terrence Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Gabriel Musso
- Department of Medicine, Harvard Medical School and Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - James Vlasblom
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Sofia Lemak
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Mohsen Hooshyar
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Zoran Minic
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Omar Wagih
- Terrence Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Roberto Mosca
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, c/Baldiri i Reixac 10-12, Barcelona, 08028, Catalonia, Spain
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, c/Baldiri i Reixac 10-12, Barcelona, 08028, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Catalonia, Spain
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - John Parkinson
- Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G OX4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrew Emili
- Terrence Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
13
|
Abstract
This review provides a description of the known Escherichia coli ribonucleases (RNases), focusing on their structures, catalytic properties, genes, physiological roles, and possible regulation. Currently, eight E. coli exoribonucleases are known. These are RNases II, R, D, T, PH, BN, polynucleotide phosphorylase (PNPase), and oligoribonuclease (ORNase). Based on sequence analysis and catalytic properties, the eight exoribonucleases have been grouped into four families. These are the RNR family, including RNase II and RNase R; the DEDD family, including RNase D, RNase T, and ORNase; the RBN family, consisting of RNase BN; and the PDX family, including PNPase and RNase PH. Seven well-characterized endoribonucleases are known in E. coli. These are RNases I, III, P, E, G, HI, and HII. Homologues to most of these enzymes are also present in Salmonella. Most of the endoribonucleases cleave RNA in the presence of divalent cations, producing fragments with 3'-hydroxyl and 5'-phosphate termini. RNase H selectively hydrolyzes the RNA strand of RNA?DNA hybrids. Members of the RNase H family are widely distributed among prokaryotic and eukaryotic organisms in three distinct lineages, RNases HI, HII, and HIII. It is likely that E. coli contains additional endoribonucleases that have not yet been characterized. First of all, endonucleolytic activities are needed for certain known processes that cannot be attributed to any of the known enzymes. Second, homologues of known endoribonucleases are present in E. coli. Third, endonucleolytic activities have been observed in cell extracts that have different properties from known enzymes.
Collapse
|
14
|
Aït-Bara S, Carpousis AJ. RNA degradosomes in bacteria and chloroplasts: classification, distribution and evolution of RNase E homologs. Mol Microbiol 2015; 97:1021-135. [PMID: 26096689 DOI: 10.1111/mmi.13095] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 11/29/2022]
Abstract
Ribonuclease E (RNase E) of Escherichia coli, which is the founding member of a widespread family of proteins in bacteria and chloroplasts, is a fascinating enzyme that still has not revealed all its secrets. RNase E is an essential single-strand specific endoribonuclease that is involved in the processing and degradation of nearly every transcript in E. coli. A striking enzymatic property is a preference for substrates with a 5' monophosphate end although recent work explains how RNase E can overcome the protection afforded by the 5' triphosphate end of a primary transcript. Other features of E. coli RNase E include its interaction with enzymes involved in RNA degradation to form the multienzyme RNA degradosome and its localization to the inner cytoplasmic membrane. The N-terminal catalytic core of the RNase E protomer associates to form a tetrameric holoenzyme. Each RNase E protomer has a large C-terminal intrinsically disordered (ID) noncatalytic region that contains sites for interactions with protein components of the RNA degradosome as well as RNA and phospholipid bilayers. In this review, RNase E homologs have been classified into five types based on their primary structure. A recent analysis has shown that type I RNase E in the γ-proteobacteria forms an orthologous group of proteins that has been inherited vertically. The RNase E catalytic core and a large ID noncatalytic region containing an RNA binding motif and a membrane targeting sequence are universally conserved features of these orthologs. Although the ID noncatalytic region has low composition and sequence complexity, it is possible to map microdomains, which are short linear motifs that are sites of interaction with protein and other ligands. Throughout bacteria, the composition of the multienzyme RNA degradosome varies with species, but interactions with exoribonucleases (PNPase, RNase R), glycolytic enzymes (enolase, aconitase) and RNA helicases (DEAD-box proteins, Rho) are common. Plasticity in RNA degradosome composition is due to rapid evolution of RNase E microdomains. Characterization of the RNase E-PNPase interaction in α-proteobacteria, γ-proteobacteria and cyanobacteria suggests that it arose independently several times during evolution, thus conferring an advantage in control and coordination of RNA processing and degradation.
Collapse
Affiliation(s)
- Soraya Aït-Bara
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte, Institut, National de la Santé et de la Recherche Médicale & Université d'Auvergne, Clermont-Ferrand, 63001, France
| | - Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100, Centre National de la Recherche Scientifique et Université de Toulouse 3, Toulouse, 31062, France
| |
Collapse
|
15
|
Ghodge SV, Raushel FM. Discovery of a Previously Unrecognized Ribonuclease from Escherichia coli That Hydrolyzes 5'-Phosphorylated Fragments of RNA. Biochemistry 2015; 54:2911-8. [PMID: 25871919 DOI: 10.1021/acs.biochem.5b00192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
TrpH or YciV (locus tag b1266) from Escherichia coli is annotated as a protein of unknown function that belongs to the polymerase and histidinol phosphatase (PHP) family of proteins in the UniProt and NCBI databases. Enzymes from the PHP family have been shown to hydrolyze organophosphoesters using divalent metal ion cofactors at the active site. We found that TrpH is capable of hydrolyzing the 3'-phosphate from 3',5'-bis-phosphonucleotides. The enzyme will also sequentially hydrolyze 5'-phosphomononucleotides from 5'-phosphorylated RNA and DNA oligonucleotides, with no specificity toward the identity of the nucleotide base. The enzyme will not hydrolyze RNA or DNA oligonucleotides that are unphosphorylated at the 5'-end of the substrate, but it makes no difference whether the 3'-end of the oligonucleotide is phosphorylated. These results are consistent with the sequential hydrolysis of 5'-phosphorylated mononucleotides from oligonucleotides in the 5' → 3' direction. The catalytic efficiencies for hydrolysis of 3',5'-pAp, p(Ap)A, p(Ap)4A, and p(dAp)4dA were determined to be 1.8 × 10(5), 9.0 × 10(4), 4.6 × 10(4), and 2.9 × 10(3) M(-1) s(-1), respectively. TrpH was found to be more efficient at hydrolyzing RNA oligonucleotides than DNA oligonucleotides. This enzyme can also hydrolyze annealed DNA duplexes, albeit at a catalytic efficiency approximately 10-fold lower than that of the corresponding single-stranded oligonucleotides. TrpH is the first enzyme from E. coli that has been found to possess 5' → 3' exoribonuclease activity. We propose to name this enzyme RNase AM.
Collapse
|
16
|
Abstract
mRNA degradation is an important mechanism for controlling gene expression in bacterial cells. This process involves the orderly action of a battery of cellular endonucleases and exonucleases, some universal and others present only in certain species. These ribonucleases function with the assistance of ancillary enzymes that covalently modify the 5' or 3' end of RNA or unwind base-paired regions. Triggered by initiating events at either the 5' terminus or an internal site, mRNA decay occurs at diverse rates that are transcript specific and governed by RNA sequence and structure, translating ribosomes, and bound sRNAs or proteins. In response to environmental cues, bacteria are able to orchestrate widespread changes in mRNA lifetimes by modulating the concentration or specific activity of cellular ribonucleases or by unmasking the mRNA-degrading activity of cellular toxins.
Collapse
Affiliation(s)
- Monica P Hui
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, NY 10016;
| | | | | |
Collapse
|
17
|
Initiation of mRNA decay in bacteria. Cell Mol Life Sci 2013; 71:1799-828. [PMID: 24064983 PMCID: PMC3997798 DOI: 10.1007/s00018-013-1472-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 12/24/2022]
Abstract
The instability of messenger RNA is fundamental to the control of gene expression. In bacteria, mRNA degradation generally follows an "all-or-none" pattern. This implies that if control is to be efficient, it must occur at the initiating (and presumably rate-limiting) step of the degradation process. Studies of E. coli and B. subtilis, species separated by 3 billion years of evolution, have revealed the principal and very disparate enzymes involved in this process in the two organisms. The early view that mRNA decay in these two model organisms is radically different has given way to new models that can be resumed by "different enzymes-similar strategies". The recent characterization of key ribonucleases sheds light on an impressive case of convergent evolution that illustrates that the surprisingly similar functions of these totally unrelated enzymes are of general importance to RNA metabolism in bacteria. We now know that the major mRNA decay pathways initiate with an endonucleolytic cleavage in E. coli and B. subtilis and probably in many of the currently known bacteria for which these organisms are considered representative. We will discuss here the different pathways of eubacterial mRNA decay, describe the major players and summarize the events that can precede and/or favor nucleolytic inactivation of a mRNA, notably the role of the 5' end and translation initiation. Finally, we will discuss the role of subcellular compartmentalization of transcription, translation, and the RNA degradation machinery.
Collapse
|
18
|
Abstract
Escherichia coli cells normally require RNase E activity to form colonies (colony-forming ability [CFA]). The CFA-defective phenotype of cells lacking RNase E is partly reversed by overexpression of the related endoribonuclease RNase G or by mutation of the gene encoding the RNA helicase DeaD. We found that the carbon source utilization by rne deaD doubly mutant bacteria differs from that of rne(+) cells and from that of cells mutated in deaD alone and that the loss of rne function in these bacteria limits conversion of the glycolytic pathway product phosphoenolpyruvate to the tricarboxylic acid (TCA) cycle intermediate oxaloacetic acid. We show that the mechanism underlying this effect is reduced production of the enzyme phosphoenolpyruvate carboxylase (PPC) and that adventitious overexpression of PPC, which facilitates phosphoenolpyruvate utilization and connects the glycolytic pathway with the TCA cycle, restored CFA to rne deaD mutant bacteria cultured on carbon sources that otherwise were unable to sustain growth. We further show that bacteria producing full-length RNase E, which allows formation of degradosomes, have nutritional requirements different from those of cells supplied with only the N-terminal catalytic region of RNase E and that mitigation of RNase E deficiency by overexpression of a related RNase, RNase G, is also affected by carbon source. Our results reveal previously unsuspected effects of RNase E deficiency and degradosome formation on nutrient utilization by E. coli cells.
Collapse
|
19
|
Manow R, Wang J, Wang Y, Zhao J, Garza E, Iverson A, Finan C, Grayburn S, Zhou S. Partial deletion of rng (RNase G)-enhanced homoethanol fermentation of xylose by the non-transgenic Escherichia coli RM10. J Ind Microbiol Biotechnol 2012; 39:977-85. [PMID: 22374228 DOI: 10.1007/s10295-012-1100-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 02/02/2012] [Indexed: 12/01/2022]
Abstract
Previously, a native homoethanol pathway was engineered in Escherichia coli B by deletions of competing pathway genes and anaerobic expression of pyruvate dehydrogenase (PDH encoded by aceEF-lpd). The resulting ethanol pathway involves glycolysis, PDH, and alcohol dehydrogenase (AdhE). The E. coli B-derived ethanologenic strain SZ420 was then further improved for ethanol tolerance (up to 40 g l(-1) ethanol) through adaptive evolution. However, the resulting ethanol tolerant mutant, SZ470, was still unable to complete fermentation of 75 g l(-1) xylose, even though the theoretical maximum ethanol titer would have been less than 40 g l(-1) should the fermentation have reached completion. In this study, the cra (encoding for a catabolite repressor activator) and the HSR2 region of rng (encoding for RNase G) were deleted from SZ470 in order to improve xylose fermentation. Deletion of the HSR2 domain resulted in significantly increased mRNA levels (47-fold to 409-fold) of multiple glycolytic genes (pgi, tpiA, gapA, eno), as well as the engineered ethanol pathway genes (aceEF-lpd, adhE) and the transcriptional regulator Fnr (fnr). The higher adhE mRNA level resulted in increased AdhE activity (>twofold). Although not measured, the increase of other mRNAs might also enhance expressions of their encoding proteins. The increased enzymes would then enable the resulting strain, RM10, to achieve increased cell growth and complete fermentation of 75 g l(-1) xylose with an 84% improved ethanol titer (35 g l(-1)), compared to that (19 g l(-1)) obtained by the parent, SZ470. However, deletion of cra resulted in a negative impact on cell growth and xylose fermentation, suggesting that Cra is important for long-term fermentative cell growth.
Collapse
Affiliation(s)
- Ryan Manow
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Second-site suppression of RNase E essentiality by mutation of the deaD RNA helicase in Escherichia coli. J Bacteriol 2012; 194:1919-26. [PMID: 22328678 DOI: 10.1128/jb.06652-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli cells normally require RNase E activity to propagate and form colonies. Using random Tn10 insertion mutagenesis, we screened for second-site suppressor mutations that restore colony-forming ability (CFA) to E. coli cells lacking RNase E function and found mutations in three separate chromosomal loci that had this phenotype. Restoration of CFA by mutations in two of the genes identified was observed only in nutrient-poor medium, whereas the effects of mutation of the ATP-dependent RNA helicase DeaD were medium independent. Suppression of the rne mutant phenotype by inactivation of deaD was partial, as rne deaD doubly mutant bacteria had a greatly prolonged generation time and grew as filamentous chains in liquid medium. Moreover, we found that CFA restoration by deaD inactivation requires normal expression of the endogenous rng gene in doubly mutant rne deaD cells. Second-site suppression by deaD mutation was attributable specifically to ablation of the helicase activity of DeaD and was reversed by adventitious expression of RhlE or RNase R, both of which can unwind double-stranded RNA. Our results suggest a previously unsuspected role for RNA secondary structure as a determinant of RNase E essentiality.
Collapse
|
21
|
Anupama K, Leela JK, Gowrishankar J. Two pathways for RNase E action in Escherichia coli in vivo and bypass of its essentiality in mutants defective for Rho-dependent transcription termination. Mol Microbiol 2011; 82:1330-48. [PMID: 22026368 DOI: 10.1111/j.1365-2958.2011.07895.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The endonuclease RNase E of Escherichia coli is essential for viability, but deletion of its C-terminal half (CTH) is not lethal. RNase E preferentially acts on 5'-monophosphorylated RNA whose generation from primary transcripts is catalysed by RppH, but ΔRppH strains are viable. Here we show that the RNase E-ΔCTH ΔRppH combination is lethal, and that the lethality is suppressed by rho or nusG mutations impairing Rho-dependent transcription termination. Lethality was correlated with defects in bulk mRNA decay and tRNA processing, which were reversed by the rho suppressor. Lethality suppression was dependent on RNase H1 or the helicase UvsW of phage T4, both of which act to remove RNA-DNA hybrids (R-loops). The rho and nusG mutations also rescued inviability of a double alteration R169Q (that abolishes 5'-sensing) with ΔCTH in RNase E, as also that of conditional RNase E deficiency. We suggest that the ΔCTH alteration leads to loss of a second 5'-end-independent pathway of RNase E action. We further propose that an increased abundance of R-loops in the rho and nusG mutants, although ordinarily inimical to growth, contributes to rescue the lethality associated with loss of the two RNase E cleavage pathways by providing an alternative means of RNA degradation.
Collapse
Affiliation(s)
- K Anupama
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 001, India
| | | | | |
Collapse
|
22
|
Abstract
RNase E has an important role in mRNA turnover and stable RNA processing, although the reason for its essentiality is unknown. We isolated conditional mutants of RNase E to provide genetic tools to probe its essential function. In Salmonella enterica serovar Typhimurium, an extreme slow-growth phenotype caused by mutant EF-Tu (Gln125Arg, tufA499) can be rescued by mutants of RNase E that have reduced activity. We exploited this phenotype to select mutations in RNase E and screened these for temperature sensitivity (TS) for growth. Four different TS mutations were identified, all in the N-terminal domain of RNase E: Gly66→Cys, Ile207→Ser, Ile207→Asn, and Ala327→Pro. We also selected second-site mutations in RNase E that reversed temperature sensitivity. The complete set of RNase E mutations (53 primary mutations including the TS mutations, and 23 double mutations) were analyzed for their possible effects on the structure and function of RNase E by using the available three-dimensional (3-D) structures. Most single mutations were predicted to destabilize the structure, while second-site mutations that reversed the TS phenotype were predicted to restore stability to the structure. Three isogenic strain pairs carrying single or double mutations in RNase E (TS, and TS plus second-site mutation) were tested for their effects on the degradation, accumulation, and processing of mRNA, rRNA, and tRNA. The greatest defect was observed on rne mRNA autoregulation, and this correlated with the ability to rescue the tufA499-associated slow-growth phenotype. This is consistent with the RNase E mutants being defective in initial binding or subsequent cleavage of an mRNA critical for fast growth.
Collapse
|
23
|
Chung DH, Min Z, Wang BC, Kushner SR. Single amino acid changes in the predicted RNase H domain of Escherichia coli RNase G lead to complementation of RNase E deletion mutants. RNA (NEW YORK, N.Y.) 2010; 16:1371-1385. [PMID: 20507976 PMCID: PMC2885686 DOI: 10.1261/rna.2104810] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 04/12/2010] [Indexed: 05/29/2023]
Abstract
The endoribonuclease RNase E of Escherichia coli is an essential enzyme that plays a major role in all aspects of RNA metabolism. In contrast, its paralog, RNase G, seems to have more limited functions. It is involved in the maturation of the 5' terminus of 16S rRNA, the processing of a few tRNAs, and the initiation of decay of a limited number of mRNAs but is not required for cell viability and cannot substitute for RNase E under normal physiological conditions. Here we show that neither the native nor N-terminal extended form of RNase G can restore the growth defect associated with either the rne-1 or rneDelta1018 alleles even when expressed at very high protein levels. In contrast, two distinct spontaneously derived single amino acid substitutions within the predicted RNase H domain of RNase G, generating the rng-219 and rng-248 alleles, result in complementation of the growth defect associated with various RNase E mutants, suggesting that this region of the two proteins may help distinguish their in vivo biological activities. Analysis of rneDelta1018/rng-219 and rneDelta1018/rng-248 double mutants has provided interesting insights into the distinct roles of RNase E and RNase G in mRNA decay and tRNA processing.
Collapse
Affiliation(s)
- Dae-hwan Chung
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
24
|
Chapter 1 A Phylogenetic View of Bacterial Ribonucleases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:1-41. [DOI: 10.1016/s0079-6603(08)00801-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Carpousis AJ, Luisi BF, McDowall KJ. Endonucleolytic initiation of mRNA decay in Escherichia coli. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:91-135. [PMID: 19215771 DOI: 10.1016/s0079-6603(08)00803-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Instability is a fundamental property of mRNA that is necessary for the regulation of gene expression. In E. coli, the turnover of mRNA involves multiple, redundant pathways involving 3'-exoribonucleases, endoribonucleases, and a variety of other enzymes that modify RNA covalently or affect its conformation. Endoribonucleases are thought to initiate or accelerate the process of mRNA degradation. A major endoribonuclease in this process is RNase E, which is a key component of the degradative machinery amongst the Proteobacteria. RNase E is the central element in a multienzyme complex known as the RNA degradosome. Structural and functional data are converging on models for the mechanism of activation and regulation of RNase E and its paralog, RNase G. Here, we discuss current models for mRNA degradation in E. coli and we present current thinking on the structure and function of RNase E based on recent crystal structures of its catalytic core.
Collapse
Affiliation(s)
- Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS et Université Paul Sabatier, 31062 Toulouse, France
| | | | | |
Collapse
|
26
|
Perwez T, Hami D, Maples VF, Min Z, Wang BC, Kushner SR. Intragenic suppressors of temperature-sensitive rne mutations lead to the dissociation of RNase E activity on mRNA and tRNA substrates in Escherichia coli. Nucleic Acids Res 2008; 36:5306-18. [PMID: 18689439 PMCID: PMC2532720 DOI: 10.1093/nar/gkn476] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
RNase E of Escherichia coli is an essential endoribonuclease that is involved in many aspects of RNA metabolism. Point mutations in the S1 RNA-binding domain of RNase E (rne-1 and rne-3071) lead to temperature-sensitive growth along with defects in 5S rRNA processing, mRNA decay and tRNA maturation. However, it is not clear whether RNase E acts similarly on all kinds of RNA substrates. Here we report the isolation and characterization of three independent intragenic second-site suppressors of the rne-1 and rne-3071 alleles that demonstrate for the first time the dissociation of the in vivo activity of RNase E on mRNA versus tRNA and rRNA substrates. Specifically, tRNA maturation and 9S rRNA processing were restored to wild-type levels in each of the three suppressor mutants (rne-1/172, rne-1/186 and rne-1/187), while mRNA decay and autoregulation of RNase E protein levels remained as defective as in the rne-1 single mutant. Each single amino acid substitution (Gly→Ala at amino acid 172; Phe → Cys at amino acid 186 and Arg → Leu at amino acid 187) mapped within the 5′ sensor region of the RNase E protein. Molecular models of RNase E suggest how suppression may occur.
Collapse
Affiliation(s)
- Tariq Perwez
- Department of Genetics and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
27
|
Richards J, Sundermeier T, Svetlanov A, Karzai AW. Quality control of bacterial mRNA decoding and decay. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:574-82. [PMID: 18342642 DOI: 10.1016/j.bbagrm.2008.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 02/05/2008] [Indexed: 11/19/2022]
Abstract
Studies in eukaryotes and prokaryotes have revealed that gene expression is not only controlled through altering the rate of transcription but also through varying rates of translation and mRNA decay. Indeed, the expression level of a protein is strongly affected by the steady state level of its mRNA. RNA decay can, along with transcription, play an important role in regulating gene expression by fine-tuning the steady state level of a given transcript and affecting its subsequent decoding during translation. Alterations in mRNA stability can in turn have dramatic effects on cell physiology and as a consequence the fitness and survival of the organism. Recent evidence suggests that mRNA decay can be regulated in response to environmental cues in order to enable the organism to adapt to its changing surroundings. Bacteria have evolved unique post transcriptional control mechanisms to enact such adaptive responses through: 1) general mRNA decay, 2) differential mRNA degradation using small non-coding RNAs (sRNAs), and 3) selective mRNA degradation using the tmRNA quality control system. Here, we review our current understanding of these molecular mechanisms, gleaned primarily from studies of the model gram negative organism Escherichia coli, that regulate the stability and degradation of normal and defective transcripts.
Collapse
Affiliation(s)
- Jamie Richards
- Department of Biochemistry and Cell Biology, Center for Infectious Diseases of Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
28
|
Abstract
The RNA degradosome of Escherichia coli is a multiprotein complex involved in the degradation of mRNA. The principal components are RNase E, PNPase, RhlB, and enolase. RNase E is a large multidomain protein with an N-terminal catalytic region and a C-terminal noncatalytic region that is mostly natively unstructured protein. The noncatalytic region contains sites for binding RNA and for protein-protein interactions with other components of the RNA degradosome. Several recent studies suggest that there are alternative forms of the RNA degradosome depending on growth conditions or other factors. These alternative forms appear to modulate RNase E activity in the degradation of mRNA. RNA degradosome-like complexes appear to be conserved throughout the Proteobacteria, but there is a surprising variability in composition that might contribute to the adaptation of these bacteria to the enormously wide variety of niches in which they live.
Collapse
Affiliation(s)
- Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, Unité Mixte de Recherche 5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 31062 Toulouse, France.
| |
Collapse
|
29
|
Jourdan SS, McDowall KJ. Sensing of 5′ monophosphate by Escherichia coli RNase G can significantly enhance association with RNA and stimulate the decay of functional mRNA transcripts in vivo. Mol Microbiol 2007; 67:102-15. [DOI: 10.1111/j.1365-2958.2007.06028.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Mohanty BK, Kushner SR. Ribonuclease P processes polycistronic tRNA transcripts in Escherichia coli independent of ribonuclease E. Nucleic Acids Res 2007; 35:7614-25. [PMID: 17981836 PMCID: PMC2190699 DOI: 10.1093/nar/gkm917] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The first step in the current model for the processing and maturation of mono- and polycistronic tRNA precursors in Escherichia coli involves initial cleavages by RNase E 1-3 nt downstream of each chromosomally encoded CCA determinant. Subsequently, each mature 5' terminus is generated by single RNase P cleavage, while the 3' terminus undergoes exonucleolytic processing by a combination of 3' --> 5' exonucleases. Here we describe for the first time a previously unidentified pathway for the maturation of tRNAs in polycistronic operons (valV valW and leuQ leuP leuV) where the processing of the primary transcripts is independent of RNase E. Rather, RNase P cleavages separate the individual tRNA precursors with the concomitant formation of their mature 5' termini. Furthermore, both polynucleotide phosphorylase (PNPase) and RNase II are required for the removal of the 3' Rho-dependent terminator sequences. Our data indicate that RNase P substrate recognition is more complex than previously envisioned.
Collapse
Affiliation(s)
- Bijoy K Mohanty
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
31
|
Zeller ME, Csanadi A, Miczak A, Rose T, Bizebard T, Kaberdin V. Quaternary structure and biochemical properties of mycobacterial RNase E/G. Biochem J 2007; 403:207-15. [PMID: 17201693 PMCID: PMC1828891 DOI: 10.1042/bj20061530] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The RNase E/G family of endoribonucleases plays the central role in numerous post-transcriptional mechanisms in Escherichia coli and, presumably, in other bacteria, including human pathogens. To learn more about specific properties of RNase E/G homologues from pathogenic Gram-positive bacteria, a polypeptide comprising the catalytic domain of Mycobacterium tuberculosis RNase E/G (MycRne) was purified and characterized in vitro. In the present study, we show that affinity-purified MycRne has a propensity to form dimers and tetramers in solution and possesses an endoribonucleolytic activity, which is dependent on the 5'-phosphorylation status of RNA. Our data also indicate that the cleavage specificities of the M. tuberculosis RNase E/G homologue and its E. coli counterpart are only moderately overlapping, and reveal a number of sequence determinants within MycRne cleavage sites that differentially affect the efficiency of cleavage. Finally, we demonstrate that, similar to E. coli RNase E, MycRne is able to cleave in an intercistronic region of the putative 9S precursor of 5S rRNA, thus suggesting a common function for RNase E/G homologues in rRNA processing.
Collapse
Affiliation(s)
- Mirijam-Elisabeth Zeller
- *Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University Departments at the Vienna Biocenter, Dr. Bohrgasse 9/4, A-1030 Vienna, Austria
| | - Agnes Csanadi
- *Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University Departments at the Vienna Biocenter, Dr. Bohrgasse 9/4, A-1030 Vienna, Austria
- †Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Andras Miczak
- †Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Thierry Rose
- ‡Unité d'Immunogénétique Cellulaire, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Thierry Bizebard
- §Institut de Biologie Physico-chimique, UPR CNRS 9073, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Vladimir R. Kaberdin
- *Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University Departments at the Vienna Biocenter, Dr. Bohrgasse 9/4, A-1030 Vienna, Austria
- To whom correspondence should be addressed (email )
| |
Collapse
|
32
|
Sakai T, Nakamura N, Umitsuki G, Nagai K, Wachi M. Increased production of pyruvic acid by Escherichia coli RNase G mutants in combination with cra mutations. Appl Microbiol Biotechnol 2007; 76:183-92. [PMID: 17483940 DOI: 10.1007/s00253-007-1006-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/13/2007] [Accepted: 04/15/2007] [Indexed: 12/01/2022]
Abstract
The Escherichia coli RNase G is known as an endoribonuclease responsible for the 5'-end maturation of 16S rRNA and degradation of several specific mRNAs such as adhE and eno mRNAs. In this study, we found that an RNase G mutant derived from the MC1061 strain did not grow on a glucose minimal medium. Genetic analysis revealed that simultaneous defects of cra and ilvIH, encoding a transcriptional regulator of glycolysis/gluconeogenesis and one of isozymes of acetohydroxy acid synthase, respectively, were required for this phenomenon to occur. The results of additional experiments presented here indicate that the RNase G mutation, in combination with cra mutation, caused the increased production of pyruvic acid from glucose, which was then preferentially converted to valine due to the ilvIH mutation, resulting in depletion of isoleucine. In fact, the rng cra double mutant produced increased amount of pyruvate in the medium. These results suggest that the RNase G mutation could be applied in the breeding of producer strains of pyruvate and its derivatives such as valine.
Collapse
Affiliation(s)
- Taro Sakai
- Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | | | | | | | | |
Collapse
|
33
|
Abstract
This chapter discusses several topics relating to the mechanisms of mRNA decay. These topics include the following: important physical properties of mRNA molecules that can alter their stability; methods for determining mRNA half-lives; the genetics and biochemistry of proteins and enzymes involved in mRNA decay; posttranscriptional modification of mRNAs; the cellular location of the mRNA decay apparatus; regulation of mRNA decay; the relationships among mRNA decay, tRNA maturation, and ribosomal RNA processing; and biochemical models for mRNA decay. Escherichia coli has multiple pathways for ensuring the effective decay of mRNAs and mRNA decay is closely linked to the cell's overall RNA metabolism. Finally, the chapter highlights important unanswered questions regarding both the mechanism and importance of mRNA decay.
Collapse
|
34
|
Tamura M, Lee K, Miller CA, Moore CJ, Shirako Y, Kobayashi M, Cohen SN. RNase E maintenance of proper FtsZ/FtsA ratio required for nonfilamentous growth of Escherichia coli cells but not for colony-forming ability. J Bacteriol 2006; 188:5145-52. [PMID: 16816186 PMCID: PMC1539960 DOI: 10.1128/jb.00367-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inactivation or deletion of the RNase E-encoding rne gene of Escherichia coli results in the growth of bacterial cells as filamentous chains in liquid culture (K. Goldblum and D. Apirion, J. Bacteriol. 146:128-132, 1981) and the loss of colony-forming ability (CFA) on solid media. RNase E dysfunction is also associated with abnormal processing of ftsQAZ transcripts (K. Cam, G. Rome, H. M. Krisch, and J.-P. Bouché, Nucleic Acids Res. 24:3065-3070, 1996), which encode proteins having a central role in septum formation during cell division. We show here that RNase E regulates the relative abundances of FtsZ and FtsA proteins and that RNase E depletion results in decreased FtsZ, increased FtsA, and consequently an altered FtsZ/FtsA ratio. However, while restoration of the level of FtsZ to normal in rne null mutant bacteria reverses the filamentation phenotype, it does not restore CFA. Conversely, overexpression of a related RNase, RNase G, in rne-deleted bacteria restores CFA, as previously reported, without affecting FtsZ abundance. Our results demonstrate that RNase E activity is required to maintain a proper cellular ratio of the FtsZ and FtsA proteins in E. coli but that FtsZ deficiency does not account for the nonviability of cells lacking RNase E.
Collapse
Affiliation(s)
- Masaru Tamura
- Stanford University School of Medicine, Department of Genetics, 300 Pasteur Drive, Stanford, CA 94305-5120, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Takada A, Nagai K, Wachi M. A decreased level of FtsZ is responsible for inviability of RNase E-deficient cells. Genes Cells 2005; 10:733-41. [PMID: 15966903 DOI: 10.1111/j.1365-2443.2005.00872.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The endoribonuclease RNase E, encoded by the essential gene rne, plays a major role in cellular RNA metabolism, i.e. maturation of functional RNAs such as rRNA and tRNA, degradation of many mRNAs and processing of the ftsZ mRNA which encodes the essential cell division protein FtsZ. RNase E function is somehow regulated by the RNA binding protein Hfq. We found that temperature-sensitive colony formation of a rne-1 mutant was partially suppressed by introduction of a hfq::cat mutation. Neither accumulation of rRNA and tRNA(Phe) precursors nor incomplete processing of ftsZ mRNA in the rne-1 mutant was rescued by the hfq::cat mutation. However, the amount of FtsZ protein that was decreased in the rne-1 mutant was recovered up to a level similar to that of wild-type cells by the hfq::cat mutation. Overproduction of Hfq inhibited cell division because of decreased expression of FtsZ. Artificial expression of the FtsZ protein from a plasmid-borne ftsZ gene partially suppressed the temperature-sensitivity of the rne-1 mutant. These results suggest that the decreased level of FtsZ is, at least in part, responsible for the inviability of RNase E-deficient cells.
Collapse
Affiliation(s)
- Ayako Takada
- Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
36
|
Kim KS, Lee Y. Regulation of 6S RNA biogenesis by switching utilization of both sigma factors and endoribonucleases. Nucleic Acids Res 2004; 32:6057-68. [PMID: 15550566 PMCID: PMC534622 DOI: 10.1093/nar/gkh939] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Escherichia coli, 6S RNA functions as a modulator of RNA polymerase sigma70-holoenzyme activity, but its biosynthetic pathway remains uncharacterized. In this study, to further understand the regulatory circuit of 6S RNA biosynthesis for the modulation of Esigma70 activity, we have characterized the biogenesis of 6S RNA. We reveal that there are two different precursors, a long and a short molecule, which are transcribed from the distal P2 and proximal P1 promoter, respectively. Transcription from the P2 promoter is both sigma70- and sigmaS-dependent, whereas, in contrast, P1 transcription is sigma70- but not sigmaS-dependent. Both precursors are processed to generate the 5' end of 6S RNA, and while the long precursor is processed exclusively by RNase E, the short precursor is processed by both RNase G and RNase E. Our data indicate that the switching of the utilization of both sigma factors and endoribonucleases in the biogenesis of 6S RNA would play an essential role in modulating its levels in E.coli.
Collapse
Affiliation(s)
- Kwang-sun Kim
- Department of Chemistry and Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | |
Collapse
|
37
|
Jiang X, Belasco JG. Catalytic activation of multimeric RNase E and RNase G by 5'-monophosphorylated RNA. Proc Natl Acad Sci U S A 2004; 101:9211-6. [PMID: 15197283 PMCID: PMC438955 DOI: 10.1073/pnas.0401382101] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNase E is an endonuclease that plays a central role in RNA processing and degradation in Escherichia coli. Like its E. coli homolog RNase G, RNase E shows a marked preference for cleaving RNAs that bear a monophosphate, rather than a triphosphate or hydroxyl, at the 5' end. To investigate the mechanism by which 5'-terminal phosphorylation can influence distant cleavage events, we have developed fluorogenic RNA substrates that allow the activity of RNase E and RNase G to be quantified much more accurately and easily than before. Kinetic analysis of the cleavage of these substrates by RNase E and RNase G has revealed that 5' monophosphorylation accelerates the reaction not by improving substrate binding, but rather by enhancing the catalytic potency of these ribonucleases. Furthermore, the presence of a 5' monophosphate can increase the specificity of cleavage site selection within an RNA. Although monomeric forms of RNase E and RNase G can cut RNA, the ability of these enzymes to discriminate between RNA substrates on the basis of their 5' phosphorylation state requires the formation of protein multimers. Among the molecular mechanisms that could account for these properties are those in which 5'-end binding by one enzyme subunit induces a protein structural change that accelerates RNA cleavage by another subunit.
Collapse
Affiliation(s)
- Xunqing Jiang
- Skirball Institute of Biomolecular Medicine and Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|