1
|
Chen BN, Humenick AG, Hibberd TJ, Yew WP, Wattchow DA, Dinning PG, Costa M, Spencer NJ, Brookes SJH. Characterization of viscerofugal neurons in human colon by retrograde tracing and multi-layer immunohistochemistry. Front Neurosci 2024; 17:1313057. [PMID: 38292899 PMCID: PMC10825022 DOI: 10.3389/fnins.2023.1313057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024] Open
Abstract
Background and Aims Viscerofugal neurons (VFNs) have cell bodies in the myenteric plexus and axons that project to sympathetic prevertebral ganglia. In animals they activate sympathetic motility reflexes and may modulate glucose metabolism and feeding. We used rapid retrograde tracing from colonic nerves to identify VFNs in human colon for the first time, using ex vivo preparations with multi-layer immunohistochemistry. Methods Colonic nerves were identified in isolated preparations of human colon and set up for axonal tracing with biotinamide. After fixation, labeled VFN cell bodies were subjected to multiplexed immunohistochemistry for 12 established nerve cell body markers. Results Biotinamide tracing filled 903 viscerofugal nerve cell bodies (n = 23), most of which (85%) had axons projecting orally before entering colonic nerves. Morphologically, 97% of VFNs were uni-axonal. Of 215 VFNs studied in detail, 89% expressed ChAT, 13% NOS, 13% calbindin, 9% enkephalin, 7% substance P and 0 of 123 VFNs expressed CART. Few VFNs contained calretinin, VIP, 5HT, CGRP, or NPY. VFNs were often surrounded by dense baskets of axonal varicosities, probably reflecting patterns of connectivity; VAChT+ (cholinergic), SP+ and ENK+ varicosities were most abundant around them. Human VFNs were diverse; showing 27 combinations of immunohistochemical markers, 4 morphological types and a wide range of cell body sizes. However, 69% showed chemical coding, axonal projections, soma-dendritic morphology and connectivity similar to enteric excitatory motor neurons. Conclusion Viscerofugal neurons are present in human colon and show very diverse combinations of features. High proportions express ChAT, consistent with cholinergic synaptic outputs onto postganglionic sympathetic neurons in prevertebral ganglia.
Collapse
Affiliation(s)
- Bao Nan Chen
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Adam G. Humenick
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Timothy James Hibberd
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Wai Ping Yew
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - David A. Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Phil G. Dinning
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Marcello Costa
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Nick J. Spencer
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Simon J. H. Brookes
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
2
|
Enteric Control of the Sympathetic Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:89-103. [PMID: 36587149 DOI: 10.1007/978-3-031-05843-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The autonomic nervous system that regulates the gut is divided into sympathetic (SNS), parasympathetic (PNS), and enteric nervous systems (ENS). They inhibit, permit, and coordinate gastrointestinal motility, respectively. A fourth pathway, "extrinsic sensory neurons," connect gut to the central nervous system, mediating sensation. The ENS resides within the gut wall and its activities are critical for life; ENS failure to populate the gut in development is lethal without intervention."Viscerofugal neurons" are a distinctive class of enteric neurons, being the only type that escapes the gut wall. They form a unique circuit: their axons project out of the gut wall and activate sympathetic neurons, which then project back to the gut, and inhibit gut movements.For 80 years viscerofugal/sympathetic circuits were thought to have a restricted role, mediating simple sensory-motor reflexes. New data shows viscerofugal and sympathetic neurons behaving unexpectedly, compelling a re-evaluation of these circuits: both viscerofugal and sympathetic neurons transmit higher order, synchronized firing patterns that originate within the ENS. This identifies them as driving long-range motility control between different gut regions.There is need for gut motor control over distances beyond the range of ENS circuits, yet no mechanism has been identified to date. The entero-sympathetic circuits are ideally suited to meet this need. Here we provide an overview of the structure and functions of these peripheral sympathetic circuits, including new data showing the firing patterns generated by enteric networks can transmit through sympathetic neurons.
Collapse
|
3
|
Mantilla CB, Zhan WZ, Gransee HM, Prakash YS, Sieck GC. Phrenic motoneuron structural plasticity across models of diaphragm muscle paralysis. J Comp Neurol 2018; 526:2973-2983. [PMID: 30411341 DOI: 10.1002/cne.24503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022]
Abstract
Structural plasticity in motoneurons may be influenced by activation history and motoneuron-muscle fiber interactions. The goal of this study was to examine the morphological adaptations of phrenic motoneurons following imposed motoneuron inactivity while controlling for diaphragm muscle inactivity. Well-characterized rat models were used including unilateral C2 spinal hemisection (SH; ipsilateral phrenic motoneurons and diaphragm muscle are inactive) and tetrodotoxin phrenic nerve blockade (TTX; ipsilateral diaphragm muscle is paralyzed while phrenic motoneuron activity is preserved). We hypothesized that inactivity of phrenic motoneurons would result in a decrease in motoneuron size, consistent with a homeostatic increase in excitability. Phrenic motoneurons were retrogradely labeled by ipsilateral diaphragm muscle injection of fluorescent dextrans or cholera toxin subunit B. Following 2 weeks of diaphragm muscle paralysis, morphological parameters of labeled ipsilateral phrenic motoneurons were assessed quantitatively using fluorescence confocal microscopy. Compared to controls, phrenic motoneuron somal volumes and surface areas decreased with SH, but increased with TTX. Total phrenic motoneuron surface area was unchanged by SH, but increased with TTX. Dendritic surface area was estimated from primary dendrite diameter using a power equation obtained from three-dimensional reconstructed phrenic motoneurons. Estimated dendritic surface area was not significantly different between control and SH, but increased with TTX. Similarly, TTX significantly increased total phrenic motoneuron surface area. These results suggest that ipsilateral phrenic motoneuron morphological adaptations are consistent with a normalization of motoneuron excitability following prolonged alterations in motoneuron activity. Phrenic motoneuron structural plasticity is likely more dependent on motoneuron activity (or descending input) than muscle fiber activity.
Collapse
Affiliation(s)
- Carlos B Mantilla
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Wen-Zhi Zhan
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Heather M Gransee
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
The influence of experimental inflammation and axotomy on leucine enkephalin (leuENK) distribution in intramural nervous structures of the porcine descending colon. BMC Vet Res 2018; 14:169. [PMID: 29793486 PMCID: PMC5968568 DOI: 10.1186/s12917-018-1496-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 05/14/2018] [Indexed: 12/13/2022] Open
Abstract
Background The enteric nervous system (ENS), located in the intestinal wall and characterized by considerable independence from the central nervous system, consists of millions of cells. Enteric neurons control the majority of functions of the gastrointestinal tract using a wide range of substances, which are neuromediators and/or neuromodulators. One of them is leucine–enkephalin (leuENK), which belongs to the endogenous opioid family. It is known that opioids in the gastrointestinal tract have various functions, including visceral pain conduction, intestinal motility and secretion and immune processes, but many aspects of distribution and function of leuENK in the ENS, especially during pathological states, remain unknown. Results During this experiment, the distribution of leuENK – like immunoreactive (leuENK-LI) nervous structures using the immunofluorescence technique were studied in the porcine colon in physiological conditions, during chemically-induced inflammation and after axotomy. The study included the circular muscle layer, myenteric (MP), outer submucous (OSP) and inner submucous plexus (ISP) and the mucosal layer. In control animals, the number of leuENK-LI neurons amounted to 4.86 ± 0.17%, 2.86 ± 0.28% and 1.07 ± 0.08% in the MP, OSP and ISP, respectively. Generally, both pathological stimuli caused an increase in the number of detected leuENK-LI cells, but the intensity of the observed changes depended on the factor studied and part of the ENS. The percentage of leuENK-LI perikarya amounted to 11.48 ± 0.96%, 8.71 ± 0.13% and 9.40 ± 0.76% during colitis, and 6.90 ± 0.52% 8.46 ± 12% and 4.48 ± 0.44% after axotomy in MP, OSP and ISP, respectively. Both processes also resulted in an increase in the number of leuENK-LI nerves in the circular muscle layer, whereas changes were less visible in the mucosa during inflammation and axotomy did not change the number of leuENK-LI mucosal fibers. Conclusions LeuENK in the ENS takes part in intestinal regulatory processes not only in physiological conditions, but also under pathological factors. The observed changes are probably connected with the participation of leuENK in sensory and motor innervation and the neuroprotective effects of this substance. Differences in the number of leuENK-LI neurons during inflammation and after axotomy may suggest that the exact functions of leuENK probably depend on the type of pathological factor acting on the intestine.
Collapse
|
5
|
Hibberd TJ, Travis L, Wiklendt L, Costa M, Brookes SJH, Hu H, Keating DJ, Spencer NJ. Synaptic activation of putative sensory neurons by hexamethonium-sensitive nerve pathways in mouse colon. Am J Physiol Gastrointest Liver Physiol 2018; 314:G53-G64. [PMID: 28935683 DOI: 10.1152/ajpgi.00234.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gastrointestinal tract contains its own independent population of sensory neurons within the gut wall. These sensory neurons have been referred to as intrinsic primary afferent neurons (IPANs) and can be identified by immunoreactivity to calcitonin gene-related peptide (CGRP) in mice. A common feature of IPANs is a paucity of fast synaptic inputs observed during sharp microelectrode recordings. Whether this is observed using different recording techniques is of particular interest for understanding the physiology of these neurons and neural circuit modeling. Here, we imaged spontaneous and evoked activation of myenteric neurons in isolated whole preparations of mouse colon and correlated recordings with CGRP and nitric oxide synthase (NOS) immunoreactivity, post hoc. Calcium indicator fluo 4 was used for this purpose. Calcium responses were recorded in nerve cell bodies located 5-10 mm oral to transmural electrical nerve stimuli. A total of 618 recorded neurons were classified for CGRP or NOS immunoreactivity. Aboral electrical stimulation evoked short-latency calcium transients in the majority of myenteric neurons, including ~90% of CGRP-immunoreactive Dogiel type II neurons. Activation of Dogiel type II neurons had a time course consistent with fast synaptic transmission and was always abolished by hexamethonium (300 μM) and by low-calcium Krebs solution. The nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium iodide (during synaptic blockade) directly activated Dogiel type II neurons. The present study suggests that murine colonic Dogiel type II neurons receive prominent fast excitatory synaptic inputs from hexamethonium-sensitive neural pathways. NEW & NOTEWORTHY Myenteric neurons in isolated mouse colon were recorded using calcium imaging and then neurochemically defined. Short-latency calcium transients were detected in >90% of calcitonin gene-related peptide-immunoreactive neurons to electrical stimulation of hexamethonium-sensitive pathways. Putative sensory Dogiel type II calcitonin gene-related peptide-immunoreactive myenteric neurons may receive widespread fast synaptic inputs in mouse colon.
Collapse
Affiliation(s)
- Timothy J Hibberd
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Lee Travis
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Lukasz Wiklendt
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Marcello Costa
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Simon J H Brookes
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Hongzhen Hu
- Department of Anesthesiology, Washington University , Saint Louis, Missouri
| | - Damien J Keating
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| |
Collapse
|
6
|
Palmer G, Hibberd TJ, Roose T, Brookes SJH, Taylor M. Measurement of strains experienced by viscerofugal nerve cell bodies during mechanosensitive firing using digital image correlation. Am J Physiol Gastrointest Liver Physiol 2016; 311:G869-G879. [PMID: 27514482 DOI: 10.1152/ajpgi.00397.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 08/02/2016] [Indexed: 01/31/2023]
Abstract
Mechanosensory neurons detect physical events in the local environments of the tissues that they innervate. Studies of mechanosensitivity of neurons or nerve endings in the gut have related their firing to strain, wall tension, or pressure. Digital image correlation (DIC) is a technique from materials engineering that can be adapted to measure the local physical environments of afferent neurons at high resolution. Flat-sheet preparations of guinea pig distal colon were set up with arrays of tissue markers in vitro. Firing of single viscerofugal neurons was identified in extracellular colonic nerve recordings. The locations of viscerofugal nerve cell bodies were inferred by mapping firing responses to focal application of the nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium iodide. Mechanosensory firing was recorded during load-evoked uniaxial or biaxial distensions. Distension caused movement of surface markers which was captured by video imaging. DIC tracked the markers, interpolating the mechanical state of the gut at the location of the viscerofugal nerve cell body. This technique revealed heterogeneous load-evoked strain within preparations. Local strains at viscerofugal nerve cell bodies were usually smaller than global strain measurements and correlated more closely with mechanosensitive firing. Both circumferential and longitudinal strain activated viscerofugal neurons. Simultaneous loading in circumferential and longitudinal axes caused the highest levels of viscerofugal neuron firing. Multiaxial strains, reflecting tissue shearing and changing area, linearly correlated with mechanosensory firing of viscerofugal neurons. Viscerofugal neurons were mechanically sensitive to both local circumferential and local longitudinal gut strain, and appear to lack directionality in their stretch sensitivity.
Collapse
Affiliation(s)
- Gwen Palmer
- Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom
| | - Timothy J Hibberd
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia; and
| | - Tiina Roose
- Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom
| | - Simon J H Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia; and
| | - Mark Taylor
- School of Computer Science, Engineering and Mathematics, Flinders University, Adelaide, Australia
| |
Collapse
|
7
|
Chen BN, Sharrad DF, Hibberd TJ, Zagorodnyuk VP, Costa M, Brookes SJ. Neurochemical characterization of extrinsic nerves in myenteric ganglia of the guinea pig distal colon. J Comp Neurol 2014; 523:742-56. [DOI: 10.1002/cne.23704] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Bao Nan Chen
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Dale F. Sharrad
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Timothy J. Hibberd
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Vladimir P. Zagorodnyuk
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Marcello Costa
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Simon J.H. Brookes
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| |
Collapse
|
8
|
Hibberd T, Spencer N, Zagorodnyuk V, Chen B, Brookes S. Targeted electrophysiological analysis of viscerofugal neurons in the myenteric plexus of guinea-pig colon. Neuroscience 2014; 275:272-84. [DOI: 10.1016/j.neuroscience.2014.04.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/15/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
|
9
|
Gonkowski S. Substance P as a neuronal factor in the enteric nervous system of the porcine descending colon in physiological conditions and during selected pathogenic processes. Biofactors 2013; 39:542-51. [PMID: 24155273 DOI: 10.1002/biof.1097] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/23/2013] [Indexed: 12/16/2022]
Abstract
The present investigation pertains to changes in substance P-like immunoreactive (SP-LI) nerve structures of the enteric nervous system (ENS) in the porcine descending colon, caused by chemically-induced inflammation and nerve injury (axotomy). The distribution pattern of SP-LI structures was studied using the double immunofluorescence technique in the myenteric (MP), outer submucous (OSP) and inner submucous (ISP) plexuses, as well as in the circular muscle and mucosal layers. Under physiological conditions, SP-LI neurons have been shown to constitute 4.13 ± 0.24%, 3.36 ± 0.26%, and 7.92 ± 0.16% in the MP, OSP, and ISP, respectively. Changes in SP-immunoreactivity depended on the pathological factor studied. The numbers of the SP-LI perikarya amounted to 7.89 ± 0.34, 5.56 ± 0.30, and 19.96 ± 0.57 in chemically-induced colitis, and 4.28 ± 0.13%, 7.18 ± 20%, and 11.62 ± 0.48% after axotomy in MP, OSP, and ISP, respectively. The both studied processes generally resulted in an increase in the number of SP-LI nerve fibers in the circular muscle and mucosal layers. The obtained results suggest that SP-LI nerve structures of the ENS may participate in various pathological processes in the porcine descending colon and exact functions of SP probably depend on the type of the pathological factor.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
10
|
Abstract
Intestinofugal neurons sense and receive information regarding mechanical distension of the bowel and transmit this information to postganglionic sympathetic neurons in the prevertebral ganglia. Previous studies have demonstrated that trinitrobenzene sulfonic acid (TNBS)-induced colitis is associated with a loss of myenteric neurons that occurs within the first 12 h following the inflammatory insult. The purpose of this study was to test the hypothesis that intestinofugal neurons are among the myenteric neurons lost during TNBS-induced colitis. The retrograde tracing dye Fast Blue was used to label intestinofugal neurons, and immunohistochemical staining for the RNA-binding proteins HuC/D was used to count all myenteric neurons. Ongoing synaptic input to neurons in the guinea pig inferior mesenteric ganglion (IMG) was recorded via conventional intracellular electrophysiology. In control preparations, intestinofugal neurons account for 0.25% of myenteric neurons. In the distal colon of TNBS-treated animals, the proportion of intestinofugal neurons was reduced to 0.05% (an 80% reduction) within the region of inflammation where 20-25% of myenteric neurons were lost. Neither intestinofugal neurons specifically nor myenteric neurons were reduced in more proximal uninflamed regions. There is a reduction in the frequency of ongoing synaptic potentials in visceromotor neurons of the IMG at 12 and 24 h and 6 and 56 days after TNBS. Collectively, the results of this study suggest that intestinofugal neurons are among the myenteric neurons lost during inflammation and may be selectively targeted. Because intestinofugal neurons are a major driver of sympathetic output to the gut, the loss of intestinofugal neurons may have a profound pathophysiological significance.
Collapse
Affiliation(s)
- David R. Linden
- Department of Physiology and Biomedical Engineering and Enteric NeuroScience Program, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
11
|
Hibberd TJ, Zagorodnyuk VP, Spencer NJ, Brookes SJH. Viscerofugal neurons recorded from guinea-pig colonic nerves after organ culture. Neurogastroenterol Motil 2012; 24:1041-e548. [PMID: 22809172 DOI: 10.1111/j.1365-2982.2012.01979.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Enteric viscerofugal neurons provide cholinergic synaptic inputs to prevertebral sympathetic neurons, forming reflex circuits that control motility and secretion. Extracellular recordings of identified viscerofugal neurons have not been reported. METHODS Preparations of guinea pig distal colon were maintained in organotypic culture for 4-6 days (n = 12), before biotinamide tracing, immunohistochemistry, or extracellular electrophysiological recordings from colonic nerves. KEY RESULTS After 4-6 days in organ culture, calcitonin gene-related peptide and tyrosine hydroxylase immunoreactivity in enteric ganglia was depleted, and capsaicin-induced firing (0.4 μmol L(-1) ) was not detected, indicating that extrinsic sympathetic and sensory axons degenerate in organ culture. Neuroanatomical tracing of colonic nerves revealed that viscerofugal neurons persist and increase as a proportion of surviving axons. Extracellular recordings of colonic nerves revealed ongoing action potentials. Interestingly, synchronous bursts of action potentials were seen in 10 of 12 preparations; bursts were abolished by hexamethonium, which also reduced firing rate (400 μmol L(-1) , P < 0.01, n = 7). DMPP (1,1-dimethyl-4-phenylpiperazinium; 10(-4) mol L(-1) ) evoked prolonged action potential discharge. Increased firing preceded both spontaneous and stretch-evoked contractions (χ(2) = 11.8, df = 1, P < 0.001). Firing was also modestly increased during distensions that did not evoke reflex contractions. All single units (11/11) responded to von Frey hairs (100-300 mg) in hexamethonium or Ca(2+) -free solution. CONCLUSIONS & INFERENCES Action potentials recorded from colonic nerves in organ cultured preparations originated from viscerofugal neurons. They receive nicotinic input, which coordinates ongoing burst firing. Large bursts preceded spontaneous and reflex-evoked contractions, suggesting their synaptic inputs may arise from enteric circuitry that also drives motility. Viscerofugal neurons were directly mechanosensitive to focal compression by von Frey hairs.
Collapse
Affiliation(s)
- T J Hibberd
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | | | | | | |
Collapse
|
12
|
Identification and mechanosensitivity of viscerofugal neurons. Neuroscience 2012; 225:118-29. [PMID: 22935724 DOI: 10.1016/j.neuroscience.2012.08.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/31/2012] [Accepted: 08/16/2012] [Indexed: 11/22/2022]
Abstract
Enteric viscerofugal neurons are interneurons with cell bodies in the gut wall; they project to prevertebral ganglia where they provide excitatory synaptic drive to sympathetic neurons which control intestinal motility and secretion. Here, we studied the mechanosensitivity and firing of single, identified viscerofugal neurons in guinea-pig distal colon. Flat sheet preparations of gut were set up in vitro and conventional extracellular recordings made from colonic nerve trunks. The nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) (1mM), was locally pressure ejected onto individual myenteric ganglia. In a few ganglia, DMPP promptly evoked firing in colonic nerves. Biotinamide filling of colonic nerves revealed that DMPP-responsive sites corresponded to viscerofugal nerve cell bodies. This provides a robust means to positively identify viscerofugal neuron firing. Of 15 single units identified in this way, none responded to locally-applied capsaicin (1 μM). Probing with von Frey hairs at DMPP-responsive sites reliably evoked firing in all identified viscerofugal neurons (18/18 units tested; 0.8-5 mN). Circumferential stretch of the preparation increased firing in all 14/14 units (1-5 g, p<0.05). Both stretch and von Frey hair responses persisted in Ca(2+)-free solution (6 mM Mg(2+), 1mM EDTA), indicating that viscerofugal neurons are directly mechanosensitive. To investigate their adequate stimulus, circular muscle tension and length were independently modulated (BAY K8644, 1 μM and 10 μM, respectively). Increases in intramural tension without changes in length did not affect firing. However, contraction-evoked shortening, under constant load, significantly decreased firing (p<0.001). In conclusion, viscerofugal neuron action potentials contribute to recordings from colonic nerve trunks, in vitro. They provide a significant primary afferent output from the colon, encoding circumferential length, largely independent of muscle tension. All viscerofugal neurons are directly mechanosensitive, although they have been reported to receive synaptic inputs. In short, viscerofugal neurons combine interneuronal function with length-sensitive mechanosensitivity.
Collapse
|
13
|
Zagorodnyuk VP, Kyloh M, Brookes SJ, Nicholas SJ, Spencer NJ. Firing patterns and functional roles of different classes of spinal afferents in rectal nerves during colonic migrating motor complexes in mouse colon. Am J Physiol Gastrointest Liver Physiol 2012; 303:G404-11. [PMID: 22628035 DOI: 10.1152/ajpgi.00047.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The functional role of the different classes of visceral afferents that innervate the large intestine is poorly understood. Recent evidence suggests that low-threshold, wide-dynamic-range rectal afferents play an important role in the detection and transmission of visceral pain induced by noxious colorectal distension in mice. However, it is not clear which classes of spinal afferents are activated during naturally occurring colonic motor patterns or during intense contractions of the gut smooth muscle. We developed an in vitro colorectum preparation to test how the major classes of rectal afferents are activated during spontaneous colonic migrating motor complex (CMMC) or pharmacologically induced contraction. During CMMCs, circular muscle contractions increased firing in low-threshold, wide-dynamic-range muscular afferents and muscular-mucosal afferents, which generated a mean firing rate of 1.53 ± 0.23 Hz (n = 8) under isotonic conditions and 2.52 ± 0.36 Hz (n = 17) under isometric conditions. These low-threshold rectal afferents were reliably activated by low levels of circumferential stretch induced by increases in length (1-2 mm) or load (1-3 g). In a small proportion of cases (5 of 34 units), some low-threshold muscular and muscular-mucosal afferents decreased their firing rate during the peak of the CMMC contractions. High-threshold afferents were never activated during spontaneous CMMC contractions or tonic contractions induced by bethanechol (100 μM). High-threshold rectal afferents were only activated by intense levels of circumferential stretch (10-20 g). These results show that, in the rectal nerves of mice, low-threshold, wide-dynamic-range muscular and muscular-mucosal afferents are excited during contraction of the circular muscle that occurs during spontaneous CMMCs. No activation of high-threshold rectal afferents was detected during CMMCs or intense contractile activity in naïve mouse colorectum.
Collapse
Affiliation(s)
- Vladimir P Zagorodnyuk
- Discipline of Human Physiology and Centre for Neuroscience, Flinders Medical Science and Technology Cluster, Flinders University, South Australia, Australia
| | | | | | | | | |
Collapse
|
14
|
Gonkowski S, Całka J. Changes in pituitary adenylate cyclase-activating Peptide 27-like immunoreactive nervous structures in the porcine descending colon during selected pathological processes. J Mol Neurosci 2012; 48:777-87. [PMID: 22706710 DOI: 10.1007/s12031-012-9838-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 06/11/2012] [Indexed: 01/01/2023]
Abstract
This study reports on changes in the pituitary adenylate cyclase-activating peptide 27-like immunoreactive (PACAP-27-LI) nerve structures of the enteric nervous system (ENS) in the porcine descending colon, caused by chemically induced inflammation, nerve injury, and proliferative enteropathy (PE), which is a "natural" inflammation of the porcine digestive tract. The distribution pattern of PACAP-27-LI structures was studied using the immunofluorescence technique in the circular muscle layer, enteric plexuses (i.e., myenteric plexus (MP), outer submucous plexus (OSP), and inner submucous plexus (ISP)), and in the mucosal layer. Under physiological conditions, PACAP-27-LI perikarya have been shown to constitute 4.04 ± 0.66, 6.66 ± 0.77, and 11.19 ± 0.74 % in the MP, OSP, and ISP, respectively. Changes in PACAP-27 immunoreactivity depended on the pathological factor studied. The numbers of the PACAP-27-LI perikarya amounted to 12.26 ± 1.43, 12.28 ± 0.79, and 21.13 ± 1.19 % in chemically induced colitis, 17.83 ± 0.88, 9.03 ± 1.05, and 20.72 ± 1.35 % during PE and 10.65 ± 0.82, 6.88 ± 1.04, and 14.04 ± 1.09 % after axotomy in MP, OSP, and ISP, respectively. All of the studied processes generally resulted in an increase in the number of PACAP-27-LI nerve fibers in the circular muscle and mucosal layers. The obtained results suggest that PACAP-27-LI nerve structures of ENS may participate in various pathological states within the porcine descending colon, and their functions probably depend on the type of pathological factor.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Division of Clinical Physiology, University of Warmia and Mazury, Oczapowskiego Str. 13, 10957, Olsztyn, Poland.
| | | |
Collapse
|
15
|
Abstract
The fluorescent dye Lucifer yellow (LY) was introduced in 1978, and has been extremely useful in studying cell structure and communications. This dye has been used mostly for labelling cells by intracellular injection from microelectrodes. This review describes the numerous applications of LY, with emphasis on the enteric nervous system and interstitial cells of Cajal. Of particular importance is the dye coupling method, which enables the detection of cell coupling by gap junctions.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel.
| |
Collapse
|
16
|
Liu YA, Chen Y, Chiang AS, Peng SJ, Pasricha PJ, Tang SC. Optical clearing improves the imaging depth and signal-to-noise ratio for digital analysis and three-dimensional projection of the human enteric nervous system. Neurogastroenterol Motil 2011; 23:e446-57. [PMID: 21895876 DOI: 10.1111/j.1365-2982.2011.01773.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Due to the dispersed nature of neurites and fibers, the microtome-based 2-dimensional histology provides only a limited perspective of the enteric nervous system. To visualize the enteric plexus, we applied optical clearing to avoid scattering in the human ileum to facilitate photon penetration for 3-dimensional (3-D) microscopy of the neural tissue. METHODS Human ileal specimens were derived by trimming the donor bowel due to its excess length during the clinical trial of small intestinal transplantation. The pan-neuronal marker PGP9.5 was used as the immunostaining target to reveal the enteric plexuses. The labeled tissues were immersed in the optical-clearing solution prior to deep-tissue confocal microscopy. The serial sections were digitally analyzed and processed by reconstruction algorithms for 3-D visualization. KEY RESULTS Optical clearing of the ileal specimen led to less fluorescence signal decay along the focal path in the tissue and a higher signal-to-noise ratio of the confocal micrographs in comparison with the untreated saline control. Taking advantage of the high signal-to-noise ratio images, we applied software-based signal analysis to identify the presence of the nerve fibers and quantify the signal peaks. The image stacks derived from the serial anatomic micrographs created panoramic views of the gut wall innervations with their associated microstructures. CONCLUSIONS & INFERENCES We provide an optical approach to improve the imaging depth in 3-D neurohistology of the human ileum. This methodology has significant promise in facilitating our understanding of the enteric nervous system in health and disease.
Collapse
Affiliation(s)
- Y-A Liu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
17
|
Spiny versus stubby: 3D reconstruction of human myenteric (type I) neurons. Histochem Cell Biol 2008; 131:1-12. [PMID: 18807064 DOI: 10.1007/s00418-008-0505-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2008] [Indexed: 10/21/2022]
Abstract
We have compared the three-dimensional (3D) morphology of stubby and spiny neurons derived from the human small intestine. After immunohistochemical triple staining for leu-enkephalin (ENK), vasoactive intestinal peptide (VIP) and neurofilament (NF), neurons were selected and scanned based on their immunoreactivity, whether ENK (stubby) or VIP (spiny). For the 3D reconstruction, we focused on confocal data pre-processing with intensity drop correction, non-blind deconvolution, an additional compression procedure in z-direction, and optimizing segmentation reliability. 3D Slicer software enabled a semi-automated segmentation based on an objective threshold (interrater and intrarater reliability, both 0.99). We found that most dendrites of stubby neurons emerged only from the somal circumference, whereas in spiny neurons, they also emerged from the luminal somal surface. In most neurons, the nucleus was positioned abluminally in its soma. The volumes of spiny neurons were significantly larger than those of stubby neurons (total mean of stubbies 806 +/- 128 mum(3), of spinies 2,316 +/- 545 mum(3)), and spiny neurons had more dendrites (26.3 vs. 11.3). The ratios of somal versus dendritic volumes were 1:1.2 in spiny and 1:0.3 in stubby neurons. In conclusion, 3D reconstruction revealed new differences between stubby and spiny neurons and allowed estimations of volumetric data of these neuron populations.
Collapse
|
18
|
Ermilov LG, Schmalz PF, Miller SM, Szurszewski JH. PACAP modulation of the colon-inferior mesenteric ganglion reflex in the guinea pig. J Physiol 2004; 560:231-47. [PMID: 15284351 PMCID: PMC1665214 DOI: 10.1113/jphysiol.2004.070060] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 07/27/2004] [Indexed: 11/08/2022] Open
Abstract
We investigated the effect of pituitary adenylate cyclase activating peptide (PACAP) on the colon-inferior mesenteric ganglion (IMG) reflex loop in vitro. PACAP27 and PACAP38 applied to the IMG caused a prolonged depolarization and intense generation of fast EPSPs and action potentials in IMG neurones. Activation of PACAP-preferring receptors (PAC1-Rs) with the selective agonist maxadilan or vasoactive intestinal peptide (VIP)/PACAP (VPAC) receptors with VIP produced similar effects whereas prior incubation of the IMG with selective PAC1-R antagonists PACAP6-38 and M65 inhibited the effects of PACAP. Colonic distension evoked a slow EPSP in IMG neurones that was reduced in amplitude by prolonged superfusion of the IMG with either PACAP27, maxidilan, PACAP6-38, M65 or VIP. Activation of IMG neurones by PACAP27 or maxadilan resulted in an inhibition of ongoing spontaneous colonic contractions. PACAP-LI was detected in nerve trunks attached to the IMG and in varicosities surrounding IMG neurones. Cell bodies with PACAP-LI were present in lumbar 2-3 dorsal root ganglia and in colonic myenteric ganglia. Colonic distension evoked release of PACAP peptides in the IMG as measured by radioimmunoassay. Volume reconstructed images showed that a majority of PACAP-LI, VIP-LI and VAChT-LI nerve endings making putative synaptic contact onto IMG neurones and a majority of putative receptor sites containing PAC1-R-LI and nAChR-LI on the neurones were distributed along secondary and tertiary dendrites. These results suggest involvement of a PACAP-ergic pathway, operated through PAC1-Rs, in controlling the colon-IMG reflex.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Action Potentials/drug effects
- Action Potentials/physiology
- Animals
- Colon/innervation
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Ganglia, Autonomic/cytology
- Ganglia, Autonomic/metabolism
- Guinea Pigs
- Immunohistochemistry
- Insect Proteins/pharmacology
- Male
- Membrane Transport Proteins/metabolism
- Nerve Growth Factors/metabolism
- Nerve Growth Factors/pharmacology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neuropeptides/metabolism
- Neuropeptides/pharmacology
- Neurotransmitter Agents/metabolism
- Neurotransmitter Agents/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Pressure
- Presynaptic Terminals/metabolism
- Receptors, Cell Surface/agonists
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Nicotinic/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Reflex/drug effects
- Reflex/physiology
- Vasoactive Intestinal Peptide/metabolism
- Vasoactive Intestinal Peptide/pharmacology
- Vesicular Acetylcholine Transport Proteins
Collapse
Affiliation(s)
- Leonid G Ermilov
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|