1
|
Khairullin AE, Grishin SN, Ziganshin AU. P2 Receptor Signaling in Motor Units in Muscular Dystrophy. Int J Mol Sci 2023; 24:1587. [PMID: 36675094 PMCID: PMC9865441 DOI: 10.3390/ijms24021587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The purine signaling system is represented by purine and pyrimidine nucleotides and nucleosides that exert their effects through the adenosine, P2X and P2Y receptor families. It is known that, under physiological conditions, P2 receptors play only a minor role in modulating the functions of cells and systems; however, their role significantly increases under some pathophysiological conditions, such as stress, ischemia or hypothermia, when they can play a dominant role as a signaling molecule. The diversity of P2 receptors and their wide distribution in the body make them very attractive as a target for the pharmacological action of drugs with a new mechanism of action. The review is devoted to the involvement of P2 signaling in the development of pathologies associated with a loss of muscle mass. The contribution of adenosine triphosphate (ATP) as a signal molecule in the pathogenesis of a number of muscular dystrophies (Duchenne, Becker and limb girdle muscular dystrophy 2B) is considered. To understand the processes involving the purinergic system, the role of the ATP and P2 receptors in several models associated with skeletal muscle degradation is also discussed.
Collapse
Affiliation(s)
- Adel E. Khairullin
- Department of Biochemistry, Kazan State Medical University, 420012 Kazan, Russia
- Research Laboratory of Mechanobiology, Kazan Federal University, 420008 Kazan, Russia
| | - Sergey N. Grishin
- Department of Medicinal Physics, Kazan State Medical University, 420012 Kazan, Russia
| | - Ayrat U. Ziganshin
- Department of Pharmacology, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
2
|
Chen W, Nyasha MR, Koide M, Tsuchiya M, Suzuki N, Hagiwara Y, Aoki M, Kanzaki M. In vitro exercise model using contractile human and mouse hybrid myotubes. Sci Rep 2019; 9:11914. [PMID: 31417107 PMCID: PMC6695424 DOI: 10.1038/s41598-019-48316-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/02/2019] [Indexed: 01/24/2023] Open
Abstract
Contraction of cultured myotubes with application of electric pulse stimulation (EPS) has been utilized for investigating cellular responses associated with actual contractile activity. However, cultured myotubes derived from human subjects often exhibit relatively poor EPS-evoked contractile activity, resulting in minimal contraction-inducible responses (i.e. myokine secretion). We herein describe an “in vitro exercise model”, using hybrid myotubes comprised of human myoblasts and murine C2C12 myoblasts, exhibiting vigorous contractile activity in response to EPS. Species-specific analyses including RT-PCR and the BioPlex assay allowed us to separately evaluate contraction-inducible gene expressions and myokine secretions from human and mouse constituents of hybrid myotubes. The hybrid myotubes, half of which had arisen from primary human satellite cells obtained from biopsy samples, exhibited remarkable increases in the secretions of human cytokines (myokines) including interleukins (IL-6, IL-8, IL-10, and IL16), CXC chemokines (CXCL1, CXCL2, CXCL5, CXCL6, CXCL10), CC chemokines (CCL1, CCL2, CCL7, CCL8, CCL11, CCL13, CCL16, CCL17, CCL19, CCL20, CCL21, CCL22, CCL25, CCL27), and IFN-γ in response to EPS-evoked contractile activity. Together, these results indicate that inadequacies arising from human muscle cells are effectively overcome by fusing them with murine C2C12 cells, thereby supporting the development of contractility and the resulting cellular responses of human-origin muscle cells. Our approach, using hybrid myotubes, further expands the usefulness of the “in vitro exercise model”.
Collapse
Affiliation(s)
- Weijian Chen
- Graduate School of Biomedical Engineering, Tohoku University, 980-8579, 6-6-04 Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Mazvita R Nyasha
- Graduate School of Biomedical Engineering, Tohoku University, 980-8579, 6-6-04 Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Masashi Koide
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, 980-8575, Sendai, Japan
| | - Masahiro Tsuchiya
- Department of Nursing, Tohoku Fukushi University, 981-8522, Sendai, Japan
| | - Naoki Suzuki
- Department of Neuroscience, Tohoku University Graduate School of Medicine, 980-8575, Sendai, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, 980-8575, Sendai, Japan
| | - Masashi Aoki
- Department of Neuroscience, Tohoku University Graduate School of Medicine, 980-8575, Sendai, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, 980-8579, 6-6-04 Aoba, Aramaki, Aoba-ku, Sendai, Japan.
| |
Collapse
|
3
|
Kang LHD, Rughani A, Walker ML, Bestak R, Hoh JFY. Expression of masticatory-specific isoforms of myosin heavy-chain, myosin-binding protein-C and tropomyosin in muscle fibers and satellite cell cultures of cat masticatory muscle. J Histochem Cytochem 2010; 58:623-34. [PMID: 20354144 DOI: 10.1369/jhc.2010.955419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We test the hypothesis that cat jaw satellite cells belong to a distinct lineage preprogrammed to express masticatory-specific isoforms of myosin heavy-chain (m-MyHC), myosin-binding protein-C (m-MBP-C), and tropomyosin (m-Tm) during myogenesis in vitro. A monoclonal antibody (MAb) against m-MyHC and MAbs raised here against cat m-MBP-C and m-Tm were used to stain cryostat sections of cat masseter muscle and cultured myotubes derived from satellite cells of cat temporalis and limb muscles, using peroxidase immunohistochemistry. MAbs against m-MBP-C bound purified m-MBP-C in Western blots. MAbs against m-Tm failed to react with m-Tm in Western blots, but reacted with native m-Tm in gel electrophoresis-derived ELISA. In cat masseter sections, MAbs against m-MyHC, m-MBP-C, and m-Tm stained all masticatory fibers, but not the jaw-slow fibers. Cat jaw and limb muscle cultures mature significantly more slowly relative to rodent cultures. However, at 3 weeks, all three MAbs extensively stained temporalis myotubes, whereas they apparently stained isolated myotubes weakly in cat limb and rat jaw cultures. We conclude that satellite cells of masticatory fibers are preprogrammed to express these isoforms during myogenesis in vitro. These results consolidate the notion that masticatory and limb muscle allotypes are distinct.
Collapse
|
4
|
Fang TC, Poulsom R. Cell-based therapies for birth defects: a role for adult stem cell plasticity? ACTA ACUST UNITED AC 2004; 69:238-49. [PMID: 14671777 DOI: 10.1002/bdrc.10019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell therapy can offer a reasonable approach to the treatment of specific birth defects, particularly those for which hematopoietic stem cells (HSCs) can be used to restore (even partially) the number of cells, protein levels, or enzyme activity. Relatively few clinical experiences have been published on this subject, but when a natural selective advantage exists for the cell graft, a degree of "rescue" is possible. Strategies have been developed to confer a selective advantage through genetic engineering of donor cells, and this approach may prove valuable in the treatment of birth defects, as it is in hematological malignancy. Stem cell (SC) plasticity, or transdifferentiation, may offer another route for delivery of cells to established or developing organs. A wide variety of studies support the concept that adult tissue-specific SCs can, if displaced from their normal niche to another, be reprogrammed to produce cell types appropriate to their new environment. Clinical observations reveal that persistent tissue microchimerism develops not only in blood lineages after transfusion, but also in thyroid follicular epithelium via transplacental exchange. In addition, hepatic and renal parenchyma also become chimeric following allografts or bone marrow transplantation (BMT). Experimental models indicate that a renal glomerulosclerosis phenotype can be transferred by grafting whole BM, and that a severe liver disorder in fah-/- mice can be overcome by grafting HSCs and then exerting a selection pressure. It may be possible in the future to exploit the ability of adult SCs to contribute to diverse tissues; however, our understanding of the processes involved is at a very early stage.
Collapse
Affiliation(s)
- Te-Chao Fang
- Histopathology Unit, Cancer Resarch UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | |
Collapse
|