1
|
Vaczy A, Reglodi D, Somoskeoy T, Kovacs K, Lokos E, Szabo E, Tamas A, Atlasz T. The Protective Role of PAC1-Receptor Agonist Maxadilan in BCCAO-Induced Retinal Degeneration. J Mol Neurosci 2016; 60:186-94. [PMID: 27566170 DOI: 10.1007/s12031-016-0818-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022]
Abstract
A number of studies have proven that pituitary adenylate cyclase activating polypeptide (PACAP) is protective in neurodegenerative diseases. Permanent bilateral common carotid artery occlusion (BCCAO) causes severe degeneration in the rat retina. In our previous studies, protective effects were observed with PACAP1-38, PACAP1-27, and VIP but not with their related peptides, glucagon, or secretin in BCCAO. All three PACAP receptors (PAC1, VPAC1, VPAC2) appear in the retina. Molecular and immunohistochemical analysis demonstrated that the retinoprotective effects are most probably mainly mediated by the PAC1 receptor. The aim of the present study was to investigate the retinoprotective effects of a selective PAC1-receptor agonist maxadilan in BCCAO-induced retinopathy. Wistar rats were used in the experiment. After performing BCCAO, the right eye was treated with intravitreal maxadilan (0.1 or 1 μM), while the left eye was injected with vehicle. Sham-operated rats received the same treatment. Two weeks after the operation, retinas were processed for standard morphometric and molecular analysis. Intravitreal injection of 0.1 or 1 μM maxadilan caused significant protection in the thickness of most retinal layers and the number of cells in the GCL compared to the BCCAO-operated eyes. In addition, 1 μM maxadilan application was more effective than 0.1 μM maxadilan treatment in the ONL, INL, IPL, and the entire retina (OLM-ILM). Maxadilan treatment significantly decreased cytokine expression (CINC-1, IL-1α, and L-selectin) in ischemia. In summary, our histological and molecular analysis showed that maxadilan, a selective PAC1 receptor agonist, has a protective role in BCCAO-induced retinal degeneration, further supporting the role of PAC1 receptor conveying the retinoprotective effects of PACAP.
Collapse
Affiliation(s)
- A Vaczy
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - D Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - T Somoskeoy
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - K Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
| | - E Lokos
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - E Szabo
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - A Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - T Atlasz
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary. .,Department of Sportbiology, University of Pecs, Ifjusag Street 6, Pecs, H-7624, Hungary. .,Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| |
Collapse
|
2
|
McDowell MA. Vector-transmitted disease vaccines: targeting salivary proteins in transmission (SPIT). Trends Parasitol 2015; 31:363-72. [PMID: 26003330 DOI: 10.1016/j.pt.2015.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 12/25/2022]
Abstract
More than half the population of the world is at risk for morbidity and mortality from vector-transmitted diseases, and emerging vector-transmitted infections are threatening new populations. Rising insecticide resistance and lack of efficacious vaccines highlight the need for novel control measures. One such approach is targeting the vector-host interface by incorporating vector salivary proteins in anti-pathogen vaccines. Debate remains about whether vector saliva exposure exacerbates or protects against more severe clinical manifestations, induces immunity through natural exposure or extends to all vector species and associated pathogens. Nevertheless, exploiting this unique biology holds promise as a viable strategy for the development of vaccines against vector-transmitted diseases.
Collapse
Affiliation(s)
- Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
3
|
New Insights on the Inflammatory Role of Lutzomyia longipalpis Saliva in Leishmaniasis. J Parasitol Res 2012; 2012:643029. [PMID: 22506098 PMCID: PMC3306990 DOI: 10.1155/2012/643029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 11/17/2022] Open
Abstract
When an haematophagous sand fly vector insect bites a vertebrate host, it introduces its mouthparts into the skin and lacerates blood vessels, forming a hemorrhagic pool which constitutes an intricate environment of cell interactions. In this scenario, the initial performance of host, parasite, and vector “authors” will heavily influence the course of Leishmania infection. Recent advances in vector-parasite-host interaction have elucidated “co-authors” and “new roles” not yet described. We review here the stimulatory role of Lutzomyia longipalpis saliva leading to inflammation and try to connect them in an early context of Leishmania infection.
Collapse
|
4
|
da Silva RAA, Tavares NM, Costa D, Pitombo M, Barbosa L, Fukutani K, Miranda JC, de Oliveira CI, Valenzuela JG, Barral A, Soto M, Barral-Netto M, Brodskyn C. DNA vaccination with KMP11 and Lutzomyia longipalpis salivary protein protects hamsters against visceral leishmaniasis. Acta Trop 2011; 120:185-90. [PMID: 21875567 DOI: 10.1016/j.actatropica.2011.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 08/02/2011] [Accepted: 08/12/2011] [Indexed: 01/14/2023]
Abstract
It was recently shown that immunization of hamsters with DNA plasmids coding LJM19, a sand fly salivary protein, partially protected against a challenge with Leishmania chagasi, whereas immunization with KMP11 DNA plasmid, a Leishmania antigen, induced protection against L. donovani infection. In the present study, we evaluated the protective effect of immunization with both LJM19 and KMP11 DNA plasmid together. Concerning the protection against an infection by L. chagasi, immunization with DNA plasmids coding LJM19 or KMP11, as well as with both plasmids combined, induced IFN-γ production in draining lymph nodes at 7, 14 and 21 days post-immunization. Immunized hamsters challenged with L. chagasi plus Salivary Gland Sonicate (SGS) from Lutzomyia longipalpis showed an enhancement of IFN-γ/IL-10 and IFN-γ/TGF-β in draining lymph nodes after 7 and 14 days of infection. Two and five months after challenge, immunized animals showed reduced parasite load in the liver and spleen, as well as increased IFN-γ/IL-10 and IFN-γ/TGF-β ratios in the spleen. Furthermore, immunized animals remained with a normal hematological profile even five months after the challenge, whereas L. chagasi in unimmunized hamsters lead to a significant anemia. The protection observed with LJM19 or KMP11 DNA plasmids used alone was very similar to the protection obtained by the combination of both plasmids.
Collapse
Affiliation(s)
- Robson A A da Silva
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Rua Waldemar Falcão 121, Salvador, Bahia, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Lutzomyia longipalpis is the most important vector of AmericanVisceral Leishmaniasis (AVL) due to Leishmania chagasi in the New World. Despite its importance, AVL, a disease primarily of rural areas, has increased its prevalence and became urbanized in some large cities in Brazil and other countries in Latin America. Although the disease is treatable, other control measures include elimination of infected dogs and the use of insecticides to kill the sand flies. A better understanding of vector biology could also account as one more tool for AVL control. A wide variety of papers about L. longipalpis have been published in the recent past years. This review summarizes our current information of this particular sand fly regarding its importance, biology, morphology, pheromones genetics, saliva, gut physiology and parasite interactions.
Collapse
Affiliation(s)
- Rodrigo P P Soares
- Department of Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA
| | | |
Collapse
|