1
|
Caraballo L, Zakzuk J, Acevedo N. Helminth-derived cystatins: the immunomodulatory properties of an Ascaris lumbricoides cystatin. Parasitology 2021; 148:1-13. [PMID: 33563346 DOI: 10.1017/s0031182021000214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Helminth infections such as ascariasis elicit a type 2 immune response resembling that involved in allergic inflammation, but differing to allergy, they are also accompanied with strong immunomodulation. This has stimulated an increasing number of investigations, not only to better understand the mechanisms of allergy and helminth immunity but to find parasite-derived anti-inflammatory products that could improve the current treatments of chronic non-communicable inflammatory diseases such as asthma. A great number of helminth-derived immunomodulators have been discovered and some of them extensively analysed, showing their potential use as anti-inflammatory drugs in clinical settings. Since Ascaris lumbricoides is one of the most successful parasites, several groups have focused on the immunomodulatory properties of this helminth. As a result, several excretory/secretory components and purified molecules have been analysed, revealing interesting anti-inflammatory activities potentially useful as therapeutic tools. One of these molecules is A. lumbricoides cystatin, whose genomic, cellular, molecular, and immunomodulatory properties are described in this review.
Collapse
Affiliation(s)
- Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia
| |
Collapse
|
2
|
Coronado S, Zakzuk J, Regino R, Ahumada V, Benedetti I, Angelina A, Palomares O, Caraballo L. Ascaris lumbricoides Cystatin Prevents Development of Allergic Airway Inflammation in a Mouse Model. Front Immunol 2019; 10:2280. [PMID: 31611876 PMCID: PMC6777510 DOI: 10.3389/fimmu.2019.02280] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
Severe helminth infections are negatively associated to allergic diseases like asthma; therefore, the immunomodulatory properties of parasite-derived components have been analyzed, raising the possibility of their use as anti-inflammatory molecules. We evaluated the immunomodulatory properties of Ascaris lumbricoides recombinant cysteine protease inhibitor (rAl-CPI) in a mouse model of allergic airway inflammation induced by the house dust mite (HDM) Blomia tropicalis and its effects on human monocyte-derived dendritic cells (HmoDCs). The B. tropicalis sensitized/challenged mice developed extensive cellular airway inflammatory response, which was significantly reduced upon treatment with rAl-CPI prior to B. tropicalis sensitization, affecting particularly the perivascular/peribronchial infiltrate cells, eosinophils/neutrophils, and goblet cells. A significant decrease of Th2 cytokines, total, and specific IgE antibodies was observed in rAl-CPI treated mice. The antibody response was biased to IgG, mainly IgG2a. Administration of rAl-CPI-alone and rAl-CPI before mite sensitization were associated with a significant increase of regulatory T cells (Tregs) in spleen and elevated IL-10 levels in BAL and splenocytes culture supernatants, which was partially affected by anti-IL10 receptor use. In vitro, rAl-CPI showed a modulatory effect on HmoDCs, lowering the expression of HLA-DR, CD83, and CD86, while inducing IL-10 and IL-6 production. This suggests an inhibition of HmoDC maturation and a possible link with the inhibition of the allergic response observed in the murine model.
Collapse
Affiliation(s)
- Sandra Coronado
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - Josefina Zakzuk
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - Ronald Regino
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - Velky Ahumada
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - Ines Benedetti
- Faculty of Medicine, Universidad de Cartagena, Cartagena, Colombia
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology, Chemistry School, Complutense University of Madrid, Madrid, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, Chemistry School, Complutense University of Madrid, Madrid, Spain
| | - Luis Caraballo
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| |
Collapse
|
3
|
Caraballo L, Zakzuk J, Lee BW, Acevedo N, Soh JY, Sánchez-Borges M, Hossny E, García E, Rosario N, Ansotegui I, Puerta L, Sánchez J, Cardona V. Particularities of allergy in the Tropics. World Allergy Organ J 2016; 9:20. [PMID: 27386040 PMCID: PMC4924335 DOI: 10.1186/s40413-016-0110-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/25/2016] [Indexed: 12/27/2022] Open
Abstract
Allergic diseases are distributed worldwide and their risk factors and triggers vary according to geographical and socioeconomic conditions. Allergies are frequent in the Tropics but aspects of their prevalence, natural history, risk factors, sensitizers and triggers are not well defined and some are expected to be different from those in temperate zone countries. The aim of this review is to investigate if allergic diseases in the Tropics have particularities that deserve special attention for research and clinical practice. Such information will help to form a better understanding of the pathogenesis, diagnosis and management of allergic diseases in the Tropics. As expected, we found particularities in the Tropics that merit further study because they strongly affect the natural history of common allergic diseases; most of them related to climate conditions that favor permanent exposure to mite allergens, helminth infections and stinging insects. In addition, we detected several unmet needs in important areas which should be investigated and solved by collaborative efforts led by the emergent research groups on allergy from tropical countries.
Collapse
Affiliation(s)
- Luis Caraballo
- />Institute for Immunological Research, University of Cartagena, Cra. 5 # 7-77, Cartagena, Colombia
| | - Josefina Zakzuk
- />Institute for Immunological Research, University of Cartagena, Cra. 5 # 7-77, Cartagena, Colombia
| | - Bee Wah Lee
- />Khoo Teck Puat- National University Children’s Medical Institute, National University Health System, Singapore, Singapore
- />Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nathalie Acevedo
- />Department of Medicine Solna, Karolinska Institutet, Translational Immunology Unit, Stockholm, Sweden
| | - Jian Yi Soh
- />Khoo Teck Puat- National University Children’s Medical Institute, National University Health System, Singapore, Singapore
- />Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mario Sánchez-Borges
- />Allergy and Clinical Immunology Department, Centro Médico- Docente La Trinidad and Clínica El Avila, Caracas, Venezuela
| | - Elham Hossny
- />Pediatric Allergy and Immunology Unit, Children’s Hospital, Ain Shams University, Cairo, Egypt
| | - Elizabeth García
- />Allergy Section, Fundación Santa Fe de Bogotá, Faculty of Medicine, Universidad de los Andes, Bogotá, Colombia
| | - Nelson Rosario
- />Federal University of Parana, Rua General Carneiro, Curitiba, Brazil
| | - Ignacio Ansotegui
- />Department of Allergy and Immunology, Hospital Quirón Bizkaia, Bilbao, Spain
| | - Leonardo Puerta
- />Institute for Immunological Research, University of Cartagena, Cra. 5 # 7-77, Cartagena, Colombia
| | - Jorge Sánchez
- />Department of Pediatrics, Graduate Program on Allergology, University of Antioquia, Medellín, Colombia
| | - Victoria Cardona
- />Allergy Section, Department of Internal Medicine, Hospital Vall d’Hebron, Barcelona, Spain
| |
Collapse
|
4
|
Vaccination of Gerbils with Bm-103 and Bm-RAL-2 Concurrently or as a Fusion Protein Confers Consistent and Improved Protection against Brugia malayi Infection. PLoS Negl Trop Dis 2016; 10:e0004586. [PMID: 27045170 PMCID: PMC4821550 DOI: 10.1371/journal.pntd.0004586] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/08/2016] [Indexed: 12/26/2022] Open
Abstract
Background The Brugia malayi Bm-103 and Bm-RAL-2 proteins are orthologous to Onchocerca volvulus Ov-103 and Ov-RAL-2, and which were selected as the best candidates for the development of an O. volvulus vaccine. The B. malayi gerbil model was used to confirm the efficacy of these Ov vaccine candidates on adult worms and to determine whether their combination is more efficacious. Methodology and Principle Findings Vaccine efficacy of recombinant Bm-103 and Bm-RAL-2 administered individually, concurrently or as a fusion protein were tested in gerbils using alum as adjuvant. Vaccination with Bm-103 resulted in worm reductions of 39%, 34% and 22% on 42, 120 and 150 days post infection (dpi), respectively, and vaccination with Bm-RAL-2 resulted in worm reductions of 42%, 22% and 46% on 42, 120 and 150 dpi, respectively. Vaccination with a fusion protein comprised of Bm-103 and Bm-RAL-2 resulted in improved efficacy with significant reduction of worm burden of 51% and 49% at 90 dpi, as did the concurrent vaccination with Bm-103 and Bm-RAL-2, with worm reduction of 61% and 56% at 90 dpi. Vaccination with Bm-103 and Bm-RAL-2 as a fusion protein or concurrently not only induced a significant worm reduction of 61% and 42%, respectively, at 150 dpi, but also significantly reduced the fecundity of female worms as determined by embryograms. Elevated levels of antigen-specific IgG were observed in all vaccinated gerbils. Serum from gerbils vaccinated with Bm-103 and Bm-RAL-2 individually, concurrently or as a fusion protein killed third stage larvae in vitro when combined with peritoneal exudate cells. Conclusion Although vaccination with Bm-103 and Bm-RAL-2 individually conferred protection against B. malayi infection in gerbils, a more consistent and enhanced protection was induced by vaccination with Bm-103 and Bm-RAL-2 fusion protein and when they were used concurrently. Further characterization and optimization of these filarial vaccines are warranted. Onchocerciasis and Lymphatic filariasis (LF) are debilitating neglected tropical diseases (NTDs). Practical challenges in implementation of mass drug administration (MDA) such as prolonged treatment regime requirements and the possible emergence of drug resistance will likely impede the elimination of these NTDs. Hence, the availability of an efficacious prophylactic vaccine would be an invaluable tool. The objective of the present studies was to use the B. malayi-gerbil model of filariasis as a surrogate system to test the efficacy of filarial molecules as vaccine targets for an onchocerciasis vaccine. The vaccine efficacy of Onchocerca volvulus recombinant proteins Ov-RAL-2 and Ov-103 was recently demonstrated using a mouse diffusion chamber model. In this communication, we provide encouraging results on the vaccine efficacy of Bm-RAL-2 and Bm-103, individually or in combination. Our data demonstrate that vaccination with Bm-RAL-2 and Bm-103 concurrently and as a fusion protein confers not only a consistent and significant protection against B. malayi infection in gerbils, but also reduces the fecundity of female worms as demonstrated in embryogram analyses. Our results support the contention that Ov-RAL-2 and Ov-103 are excellent onchocerciasis vaccine candidates and that further investigations leading to their development as a vaccine are warranted.
Collapse
|
5
|
Babayan SA, Allen JE, Taylor DW. Future prospects and challenges of vaccines against filariasis. Parasite Immunol 2012; 34:243-53. [PMID: 22150082 DOI: 10.1111/j.1365-3024.2011.01350.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Filarial infections remain a major public health and socio-economic problem across the tropics, despite considerable effort to reduce disease burden or regionally eliminate the infection with mass drug administration programmes. The sustainability of these programmes is now open to question owing to a range of issues, not least of which is emerging evidence for drug resistance. Vaccination, if developed appropriately, remains the most cost-effective means of long-term disease control. The rationale for the feasibility of vaccination against filarial parasites including onchocerciasis (river blindness, Onchocerca volvulus) and lymphatic filariasis (Wuchereria bancrofti or Brugia malayi) is founded on evidence from both humans and animal models for the development of protective immunity. Nonetheless, enormous challenges need to be faced in terms of overcoming parasite-induced suppression without inducing pathology as well as the need to both recognize and tackle evolutionary and ecological obstacles to successful vaccine development. Nonetheless, new technological advances in addition to systems biology approaches offer hope that optimal immune responses can be induced that will prevent infection, disease and/or transmission.
Collapse
Affiliation(s)
- Simon A Babayan
- Institute of Immunology and Infection Research, and Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
6
|
Cadman ET, Lawrence RA. Granulocytes: effector cells or immunomodulators in the immune response to helminth infection? Parasite Immunol 2010; 32:1-19. [PMID: 20042003 DOI: 10.1111/j.1365-3024.2009.01147.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Granulocytes are effector cells in defence against helminth infections. We review the current evidence for the role of granulocytes in protective immunity against different helminth infections and note that for each parasite species the role of granulocytes as effector cells can vary. Emerging evidence also points to granulocytes as immunomodulatory cells able to produce many cytokines, chemokines and modulatory factors which can bias the immune response in a particular direction. Thus, the role of granulocytes in an immunomodulatory context is discussed including the most recent data that points to an important role for basophils under this guise.
Collapse
Affiliation(s)
- E T Cadman
- Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | | |
Collapse
|
7
|
Audicana MT, Kennedy MW. Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity. Clin Microbiol Rev 2008; 21:360-79, table of contents. [PMID: 18400801 PMCID: PMC2292572 DOI: 10.1128/cmr.00012-07] [Citation(s) in RCA: 356] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infection of humans with the nematode worm parasite Anisakis simplex was first described in the 1960s in association with the consumption of raw or undercooked fish. During the 1990s it was realized that even the ingestion of dead worms in food fish can cause severe hypersensitivity reactions, that these may be more prevalent than infection itself, and that this outcome could be associated with food preparations previously considered safe. Not only may allergic symptoms arise from infection by the parasites ("gastroallergic anisakiasis"), but true anaphylactic reactions can also occur following exposure to allergens from dead worms by food-borne, airborne, or skin contact routes. This review discusses A. simplex pathogenesis in humans, covering immune hypersensitivity reactions both in the context of a living infection and in terms of exposure to its allergens by other routes. Over the last 20 years, several studies have concentrated on A. simplex antigen characterization and innate as well as adaptive immune response to this parasite. Molecular characterization of Anisakis allergens and isolation of their encoding cDNAs is now an active field of research that should provide improved diagnostic tools in addition to tools with which to enhance our understanding of pathogenesis and controversial aspects of A. simplex allergy. We also discuss the potential relevance of parasite products such as allergens, proteinases, and proteinase inhibitors and the activation of basophils, eosinophils, and mast cells in the induction of A. simplex-related immune hypersensitivity states induced by exposure to the parasite, dead or alive.
Collapse
Affiliation(s)
- M Teresa Audicana
- Allergy and Clinical Immunology Department, Santiago Apóstol Hospital, C/Olaguibel 29, 01004 Vitoria-Gasteiz, Basque Country, Spain.
| | | |
Collapse
|
8
|
Genomics of reproduction in nematodes: prospects for parasite intervention? Trends Parasitol 2008; 24:89-95. [PMID: 18182326 DOI: 10.1016/j.pt.2007.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Revised: 10/11/2007] [Accepted: 12/06/2007] [Indexed: 11/21/2022]
Abstract
Understanding reproductive processes in parasitic nematodes has the potential to lead to the informed design of new anthelmintics and control strategies. Little is known, however, about the molecular mechanisms underlying sex determination, gametogenesis and reproductive physiology for most parasitic nematodes. Together with comparative analyses of data for the free-living nematode Caenorhabditis elegans, molecular investigations are beginning to provide insights into the processes involved in reproduction and development in parasitic nematodes. Here, we review recent developments, focusing on technological aspects and on molecules associated with sex-specific differences in adult nematodes.
Collapse
|
9
|
Rodriguez-Mahillo AI, Gonzalez-Muñoz M, Gomez-Aguado F, Rodriguez-Perez R, Corcuera MT, Caballero ML, Moneo I. Cloning and characterisation of the Anisakis simplex allergen Ani s 4 as a cysteine-protease inhibitor. Int J Parasitol 2007; 37:907-17. [PMID: 17324433 DOI: 10.1016/j.ijpara.2007.01.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 01/16/2007] [Accepted: 01/17/2007] [Indexed: 11/18/2022]
Abstract
Anisakis simplex is a nematode that can parasitise humans who eat raw or undercooked fish containing live L3s. Larvae invading the gastrointestinal mucosa excrete/secrete proteins implicated in the pathogenesis of anisakiasis that can induce IgE mediated symptoms. Misdiagnosis of anisakiasis, due to cross-reactivity, makes it necessary to develop new diagnostic tools. Recombinant allergens have proved to be useful for diagnosis of other parasitoses. Among the Anisakis allergens, Ani s 4 was considered to be a good potential diagnostic protein because of its heat resistance and its importance in the clinical history of sensitised patients. Therefore, the objective of this study was to clone and characterise the cDNA encoding this allergen. The Ani s 4 mRNA sequence was obtained using a PCR-based strategy. The Ani s 4 amino acid sequence contained the characteristic domains of cystatins. Mature recombinant Ani s 4 was expressed in a bacterial system as a His-tagged soluble protein. The recombinant Ani s 4 inhibited the cleavage of a peptide substrate by papain with a Ki value of 20.6 nM. Immunobloting, ELISA, a commercial fluorescence-enzyme-immunoassay and a basophil activation test were used to study the allergenic properties of rAni s 4, demonstrating that the recombinant allergen contained the same IgE epitopes as the native Ani s 4, and that it was a biologically active allergen since it activated basophils from patients with allergy to A. simplex in a specific concentration-dependent manner. Ani s 4 was localised by immunohistochemical methods, using a polyclonal anti-Ani s 4 anti-serum, in both the secretory gland and the basal layer of the cuticle of A. simplex L3. In conclusion, we believe that Ani s 4 is the first nematode cystatin that is a human allergen. The resulting rAni s 4 retains all allergenic properties of the natural allergen, and can therefore be used in immunodiagnosis of human anisakiasis.
Collapse
|
10
|
Abstract
The concept that parasites may utilize proteinase inhibitors to survive within the host has been with us for 100 years. Given that we now know that proteinases are involved in key areas of the host anti-parasite immune response including antigen presentation, effector cell function and tissue dissolution and remodelling, it is somewhat surprising that the proteinase inhibitors of parasite origin have not generally been the subject of intense research effort. There is now substantial evidence to show that nematode parasites utilize these inhibitors to protect themselves from degradation by host proteinases, to facilitate feeding and to manipulate the host response to the parasite. The diversity of the parasite-derived inhibitors is also being revealed and they target the four major proteinase classes, namely serine, cysteine, aspartic and metallo-proteinases. This review summarizes the information available on nematode-derived proteinase inhibitors and what is known of their putative functions. Their potential as targets for immunological control is also addressed.
Collapse
Affiliation(s)
- D P Knox
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian UK.
| |
Collapse
|
11
|
Abstract
Parasitic nematodes, living in the intestinal tract or within tissues of theirs hosts, are constantly exposed to an array of immune effector mechanisms. One strategy to cope with the immune response is the release of immunomodulatory components that block effector mechanisms or interact with the cytokine network. Among the secreted nematode immunomodulators, cysteine protease inhibitors (cystatins) are shown to be of major importance. Nematode cystatins inhibit, among others, proteases involved in antigen processing and presentation, which leads to a reduction of T cell responses. At the same time nematode cystatins modulate cytokine responses, the most prominent trait being the upregulation of IL-10, a Th2 cytokine, by macrophages. In this situation, IL-10 leads among others to downregulation of costimulatory surface molecules of macrophages. These properties contribute to induction of an anti-inflammatory environment, concomitant with a strong inhibition of cellular proliferation. This setting is believed to favour the survival of worms. An opposite activity of nematode cystatins is the upregulation of production of inducible nitric oxide by IFN-gamma activated macrophages, an intrinsic property of natural cysteine protease inhibitors. This shows that these proteins can act as proinflammatory molecules under certain circumstances. A comparison of the immunomodulatory effects of cystatins of filarial nematodes with homologous proteins of the free-living nematode Caenorhabditis elegans revealed distinct differences. Caenorhabditis elegans cystatins induce the production of the Th1 cytokine IL-12, in contrast to filarial cystatins that upregulate IL-10. Caenorhabditis elegans cystatins hardly inhibit cellular proliferation. These data suggest that cystatins of parasitic nematodes have multiple, specific capacities for immunomodulation, acting in parallel on different immune effector mechanisms. Elucidation of the mechanisms involved might be useful in the development of immunotherapeutic reagents in the future.
Collapse
Affiliation(s)
- S Hartmann
- Department of Molecular Parasitology, Humboldt University at Berlin, Philippstrasse 13, 10115, Berlin, Germany.
| | | |
Collapse
|