1
|
Roesner LM, Farag AK, Pospich R, Traidl S, Werfel T. T-cell receptor sequencing specifies psoriasis as a systemic and atopic dermatitis as a skin-focused, allergen-driven disease. Allergy 2022; 77:2737-2747. [PMID: 35255168 DOI: 10.1111/all.15272] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/28/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) and psoriasis represent two of the most common inflammatory skin diseases in developed countries. A hallmark of both diseases is T-cell infiltration into the skin. However, it is still not clarified to what extent these infiltrating T cells are antigen-specific skin-homing T cells or unspecific heterogeneous bystander cells. METHODS To elucidate this, T cells from lesional skin and from blood of 9 AD and 10 psoriasis patients were compared by receptor (TCR) sequencing. Therefore, peripheral blood mononuclear cells (PBMC) were cell-sorted according to expression of the cutaneous leukocyte antigen (CLA) into skin-homing (CLA+ ) and non-skin-homing (CLA- ) subfractions. Aeroallergen-specific T-cell lines were grown from AD patients' PBMC in parallel. RESULTS Intra-individual comparison of TCRB CDR3 regions revealed that clonally expanded T cells in skin lesions of both AD and psoriasis patients corresponded to skin-homing circulating T cells. However, in psoriasis patients, these T-cell clones were also detectable to a larger extent among CLA- circulating T cells. Up to 28% of infiltrating cells in AD skin were identified as allergen-specific by overlapping TCR sequences. CONCLUSIONS Our data show that in line with the systemic nature of psoriasis, T-cell clones that infiltrate psoriatic skin lesions do not exclusively possess skin-homing ability and are therefore most probably specific to antigens that are not exclusively expressed or located in the skin. T cells driving AD skin inflammation appear to home nearly exclusively to the skin and are, to a certain extent, specific to aeroallergens.
Collapse
Affiliation(s)
- Lennart M Roesner
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Ahmed K Farag
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Rebecca Pospich
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Stephan Traidl
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Gattazzo C, Teramo A, Passeri F, De March E, Carraro S, Trimarco V, Frezzato F, Berno T, Barilà G, Martini V, Piazza F, Trentin L, Facco M, Semenzato G, Zambello R. Detection of monoclonal T populations in patients with KIR-restricted chronic lymphoproliferative disorder of NK cells. Haematologica 2014; 99:1826-33. [PMID: 25193965 DOI: 10.3324/haematol.2014.105726] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The etiology of chronic large granular lymphocyte proliferations is largely unknown. Although these disorders are characterized by the expansion of different cell types (T and natural killer) with specific genetic features and abnormalities, several lines of evidence suggest a common pathogenetic mechanism. According to this interpretation, we speculated that in patients with natural killer-type chronic lymphoproliferative disorder, together with natural killer cells, also T lymphocytes undergo a persistent antigenic pressure, possibly resulting in an ultimate clonal T-cell selection. To strengthen this hypothesis, we evaluated whether clonal T-cell populations were detectable in 48 patients with killer immunoglobulin-like receptor-restricted natural killer-type chronic lymphoproliferative disorder. At diagnosis, in half of the patients studied, we found a clearly defined clonal T-cell population, despite the fact that all cases presented with a well-characterized natural killer disorder. Follow-up analysis confirmed that the TCR gamma rearrangements were stable over the time period evaluated; furthermore, in 7 patients we demonstrated the appearance of a clonal T subset that progressively matures, leading to a switch between killer immunoglobulin-like receptor-restricted natural killer-type disorder to a monoclonal T-cell large granular lymphocytic leukemia. Our results support the hypothesis that a common mechanism is involved in the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Cristina Gattazzo
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | | | - Francesca Passeri
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Elena De March
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine
| | - Samuela Carraro
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine
| | - Valentina Trimarco
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Federica Frezzato
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Tamara Berno
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine
| | - Gregorio Barilà
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine
| | - Veronica Martini
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Francesco Piazza
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Monica Facco
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Renato Zambello
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| |
Collapse
|
3
|
Darabi K, Hostetler SG, Bechtel MA, Zirwas M. The role of Malassezia in atopic dermatitis affecting the head and neck of adults. J Am Acad Dermatol 2008; 60:125-36. [PMID: 18834647 DOI: 10.1016/j.jaad.2008.07.058] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 03/25/2008] [Accepted: 07/21/2008] [Indexed: 11/25/2022]
Abstract
Atopic dermatitis is a common chronic skin condition. A subset of patients with head and neck dermatitis may have a reaction to Malassezia flora fueling their disease. Although there are no documented differences in Malassezia species colonization, patients with head and neck atopic dermatitis are more likely to have positive skin prick test results and Malassezia-specific IgE compared with healthy control subjects and patients with atopy without head and neck dermatitis. There is no clear relationship with atopy patch testing. The reaction to Malassezia is likely related to both humoral- and cell-mediated immunity. Clinically, Malassezia allergy may be suspected in patients with atopic dermatitis and: (1) head and neck lesions; (2) exacerbations during adolescence or young adulthood; (3) severe lesions recalcitrant to conventional therapy; and (4) other atopic diseases. There is literature to suggest that these patients will benefit from a 1- to 2-month course of daily itraconazole or ketoconazole followed by long-term weekly treatment.
Collapse
Affiliation(s)
- Kamruz Darabi
- Division of Dermatology, Ohio State University Medical Center, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
4
|
Bang K, Lund M, Mogensen SC, Thestrup-Pedersen K. In vitro culture of skin-homing T lymphocytes from inflammatory skin diseases. Exp Dermatol 2005; 14:391-7. [PMID: 15854134 DOI: 10.1111/j.0906-6705.2005.00294.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We, in this study, describe how T lymphocytes in a skin biopsy can proliferate in vitro for up to 3 months by using T-cell growth factors - interleukin-2 (IL-2) and IL-4 yielding approximately 100-160 million T lymphocytes within 1 month. We established cell lines from three tuberculin skin tests, four positive patch tests, 15 of 16 biopsies from atopic dermatitis (AD), 15 of 19 biopsies from mycosis fungoides (MF), 12 of 24 biopsies from psoriasis vulgaris, which was significantly less than AD (P < 0.05), and with a reduced cumulative number of lymphocytes (P < 0.05). Omitting IL-2 and IL-4 led to immediate halt of proliferation. Blood mononuclear cells from patients and biopsies from healthy persons never gave cell lines. All cells were T lymphocytes expressing CD45RO+, HLA-DR+ and CD150. The CD7 expression was significantly increased in cell lines from AD (P < 0.05). T-cell receptor beta-chain studies by using reverse transcription-polymerase chain reaction showed that all T lymphocytes had access to the skin compartment. Single-stranded conformational analysis showed clonally expanded T cells numbering between 40 and 60 clones. After approximately 2 months of growth, the mean CD4+ : CD8+ ratio was for AD 1.20, MF 0.65 and psoriasis 0.85. Patients with AD treated with cyclosporin-A had almost no growth of CD8+ cells in vitro. Our findings indicate a changed homeostasis among skin-homing lymphocytes for in vitro culture. Our culture system of skin-homing T lymphocytes leads to a prominent cellular expansion allowing for a range of studies of in vivo activated skin T lymphocytes.
Collapse
Affiliation(s)
- Karen Bang
- Department of Dermatology, Aarhus University Hospital, Aarhus C, Denmark.
| | | | | | | |
Collapse
|
5
|
Chen TA, Hill PB. The biology of Malassezia organisms and their ability to induce immune responses and skin disease. Vet Dermatol 2005; 16:4-26. [PMID: 15725101 DOI: 10.1111/j.1365-3164.2005.00424.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tai-An Chen
- Division of Veterinary Clinical Studies, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| | | |
Collapse
|
6
|
Abstract
Atopic dermatitis (AD) is a chronic, itching, inflammatory skin disease which is associated with asthma and/or hay fever and a familial occurrence of these conditions. Genetic factors are important in the development of AD, but the exact hereditary pathway is still unknown. Dry skin and the weakened barrier function in patients with AD is very important for the patient's reactions to irritants and other external trigger factors including microorganisms. The standard treatments are topical corticosteroids, topical immunomodulating agents, and emollients. If AD cannot be controlled by this type of treatment, systemic immunomodulating agents may be used. UVB, UVA, or psoralen-UVA may also be used for widespread severe lesions. However, some patients do not respond to these standard treatment, and then it is important to consider the role of microorganisms, house dust mites or food. The role of the Malassezia yeasts in AD, especially AD located to the head and neck region, is now documented in several papers. There are also several papers indicating the role of Candida as an aggravating factor in AD. Patients with AD also develop chronic dermatophyte infections more easily, and patients with AD and chronic dermatophyte infections may show improvement in their AD when treated with antifungal drugs.
Collapse
Affiliation(s)
- Jan Faergemann
- Department of Dermatology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
7
|
Johansson C, Eshaghi H, Linder MT, Jakobson E, Scheynius A. Positive atopy patch test reaction to Malassezia furfur in atopic dermatitis correlates with a T helper 2-like peripheral blood mononuclear cells response. J Invest Dermatol 2002; 118:1044-51. [PMID: 12060401 DOI: 10.1046/j.1523-1747.2002.01758.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The yeast Malassezia furfur belongs to the normal cutaneous flora, but is also a triggering allergen that can contribute to atopic dermatitis. To illuminate the effect of circulating allergen-specific T cells in atopic dermatitis, the peripheral mononuclear cell response was correlated with the in vivo skin prick test and atopy patch test reactivity to M. furfur. None of 16 healthy controls showed any positive in vivo reaction. The 40 atopic dermatitis patients, of whom 18 had serum IgE reactivity to M. furfur, were subdivided according to their in vivo reaction to M. furfur extract into three groups: skin prick test positive/atopy patch test positive (n = 12), skin prick test positive/atopy patch test negative (n = 12), and skin prick test negative/atopy patch test negative (n = 16). The skin prick test positive/atopy patch test positive and the skin prick test positive/atopy patch test negative groups had a significantly higher peripheral mononuclear cell stimulation index than the healthy controls. Interestingly, the stimulation index values in the skin prick test positive/atopy patch test positive group were significantly higher than in the skin prick test positive/atopy patch test negative group. In the M. furfur skin prick test positive atopic dermatitis patients (n = 24) a correlation was found between stimulation index and the M. furfur atopy patch test reactions, but not between stimulation index and M. furfur-specific serum IgE levels. Skin prick test positive and/or atopy patch test positive reactions to the recombinant M. furfur allergens rMal f 1, rMal f 5, and rMal f 6 were observed in 7, 14, and 16 of the 40 atopic dermatitis patients, respectively. Further, there was a correlation between production of the T helper 2-related cytokines interleukins 4, 5, and 13 and stimulation index to M. furfur extract, but not between the T helper 1-related interferon-gamma and stimulation index to M. furfur extract. Our data strongly suggest a relationship between circulating specific T cells with a T helper 2-like cytokine profile and positive atopy patch test reactions.
Collapse
Affiliation(s)
- Catharina Johansson
- Department of Medicine, Unit of Clinical Allergy Research, Karolinska Institutet & Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
8
|
Morris DO, Clayton DJ, Drobatz KJ, Felsburg PJ. Response to Malassezia pachydermatis by peripheral blood mononuclear cells from clinically normal and atopic dogs. Am J Vet Res 2002; 63:358-62. [PMID: 11911571 DOI: 10.2460/ajvr.2002.63.358] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the potential cell-mediated immune response of atopic dogs to the yeast Malassezia pachydermatis and to correlate it with the type-1 hypersensitivity (humoral) response of the same population of dogs. ANIMALS 16 clinically normal dogs, 15 atopic dogs with Malassezia dermatitis, 5 atopic dogs with Malassezia otitis, and 7 atopic control (ie, without Malassezia dermatitis or otitis) dogs. PROCEDURE A crude extract of M pachydermatis was extracted for use as an intradermal allergy testing reagent and for stimulation of isolated peripheral blood mononuclear cells in vitro. Flow cytometry was also used to assess cell surface antigenic determinants (CD3, CD4, CD8, CD14, CD21, CD45RA, surface immunoglobulin) on peripheral blood mononuclear cells. RESULTS Atopic dogs with cytologic evidence of Malassezia dermatitis had an increased lymphocyte blastogenic response to crude M pachydermatis extract, compared with clinically normal dogs and dogs with Malassezia otitis. Atopic control dogs did not differ significantly in their responses from atopic dogs with Malassezia dermatitis or otitis. A significant correlation was not found between the lymphocyte blastogenic response and the type-1 hypersensitivity response to M pachydermatis within any of the groups. CONCLUSIONS AND CLINICAL RELEVANCE Cell-mediated and humoral reactivities to M pachydermatis contribute to the pathogenesis of atopic dermatitis in dogs but are not directly correlated. Modification of the dysregulated immune response toward M pachydermatis may assist in the reduction of pathologic changes associated with an atopic dermatitis phenotype in dogs.
Collapse
Affiliation(s)
- Daniel O Morris
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Malassezia species are members of the human cutaneous commensal flora, in addition to causing a wide range of cutaneous and systemic diseases in suitably predisposed individuals. Studies examining cellular and humoral immune responses specific to Malassezia species in patients with Malassezia-associated diseases and healthy controls have generally been unable to define significant differences in their immune response. The use of varied antigenic preparations and strains from different Malassezia classifications may partly be responsible for this, although these problems can now be overcome by using techniques based on recent work defining some important antigens and also a new taxonomy for the genus. The finding that the genus Malassezia is immunomodulatory is important in understanding its ability to cause disease. Stimulation of the reticuloendothelial system and activation of the complement cascade contrasts with its ability to suppress cytokine release and downregulate phagocytic uptake and killing. The lipid-rich layer around the yeast appears to be pivotal in this alteration of phenotype. Defining the nonspecific immune response to Malassezia species and the way in which the organisms modulate it may well be the key to understanding how Malassezia species can exist as both commensals and pathogens.
Collapse
Affiliation(s)
- H Ruth Ashbee
- Mycology Reference Centre, Division of Microbiology, University of Leeds and Leeds General Infirmary, Leeds, United Kingdom.
| | | |
Collapse
|
10
|
DeBoer DJ, Marsella R. The ACVD task force on canine atopic dermatitis (XII): the relationship of cutaneous infections to the pathogenesis and clinical course of canine atopic dermatitis. Vet Immunol Immunopathol 2001; 81:239-49. [PMID: 11553386 DOI: 10.1016/s0165-2427(01)00345-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dogs and human beings with atopic dermatitis (AD) frequently exhibit concurrent skin infections with Staphylococcus sp. bacteria or Malassezia yeast, and treatment of such infections is an important facet of managing these patients. Staphylococci appear to colonize atopic skin readily, and bacterial products on the skin could augment cutaneous inflammation via immediate hypersensitivity responses to the bacteria, by superantigen-mediated lymphocyte activation, or other non-specific mechanisms. Similarly, skin colonization by Malassezia yeast could contribute to clinical signs of AD; yeast components could induce inflammation via non-specific mechanisms, such as alteration in mediator release, or via antigen-specific hypersensitivity reactions. Clinical and experimental evidence exists that secondary microbial infections can both initiate and perpetuate episodes of AD in dogs and humans, and could even participate in promotion of pro-allergic immunologic responses. Mechanistic details of these complex interactions are under extensive investigation in human beings; only a few observations have been extended to include dog with AD.
Collapse
Affiliation(s)
- D J DeBoer
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison, WI, USA.
| | | |
Collapse
|
11
|
Holm L, Bengtsson A, van Hage-Hamsten M, Ohman S, Scheynius A. Effectiveness of occlusive bedding in the treatment of atopic dermatitis--a placebo-controlled trial of 12 months' duration. Allergy 2001; 56:152-8. [PMID: 11167376 DOI: 10.1034/j.1398-9995.2001.056002152.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Several studies on avoidance of house-dust-mite (HDM) and cat allergens have been carried out, most of them in asthmatic patients and only a few in patients with atopic dermatitis (AD). No study so far has focused on which subgroup of AD patients benefits from avoidance measures. METHODS Forty adult patients with AD completed the 12-month avoidance study. They were divided into an active treatment (n = 22) and a placebo (n = 18) group. Active treatment comprised use of polyurethane-coated cotton encasings for bedding, and placebo use of cotton covers. Patients came for regular checkups during the 12-month period, when eczema severity was assessed and blood samples were analyzed for total IgE, HDM- and cat-specific IgE and soluble CD30 (sCD30) in serum. Dust samples were collected from mattresses before treatment and after 3, 6, and 12 months, and analyzed for content of HDM and cat allergen. RESULTS Eczema severity decreased significantly in both groups (P < 0.001), with a more pronounced decrease in patients with active covers. The HDM exposure decreased significantly in the active treatment group (P < 0.001), and the levels of HDM-specific IgE were reduced (P<0.05). Exposure to cat allergens was unchanged in the active treatment group but decreased, albeit not significantly (P=0.19), in the placebo group. sCD30 levels were significantly reduced in both groups (P<0.001). Patients not sensitized to HDM allergens benefited from the bedcovers as much as sensitized patients. CONCLUSIONS Occlusive bedding significantly reduced HDM exposure in bed (P<0.001) and eczema severity, and sCD30 levels decreased significantly (P<0.001). Patients not sensitized to HDM and not exposed to HDM allergens benefited equally from use of the bedcovers, a result which could be due to a reduction of other important allergens, superantigens, or irritants in bed. We therefore recommend the use of bedcovers as part of treatment for AD.
Collapse
Affiliation(s)
- L Holm
- Department of Dermatology, Stockholm Söder Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
12
|
Buentke E, Zargari A, Heffler LC, Avila-Cariño J, Savolainen J, Scheynius A. Uptake of the yeast Malassezia furfur and its allergenic components by human immature CD1a+ dendritic cells. Clin Exp Allergy 2000; 30:1759-70. [PMID: 11122215 DOI: 10.1046/j.1365-2222.2000.00937.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with increasing prevalence, though still little is known of the pathomechanisms and the causes of the disease. Patients with AD often have specific IgE reactivity to the yeast Malassezia furfur (M. furfur), present in the normal microflora on human skin. To investigate the possible interaction of immature and mature antigen-presenting dendritic cells with the yeast M. furfur and its allergenic components. Monocyte-derived dendritic cells (MDDCs) generated from human peripheral blood were allowed to interact with FITC-labelled whole M. furfur yeast cells, M. furfur extract, a recombinant allergen from M. furfur designated rMal f 5 and M. furfur mannan, in the absence of IgE antibodies. Interaction and uptake were detected using flow cytometry and confocal laser scanning microscopy. Internalization of M. furfur yeast cells and yeast components by immature MDDCs was found using confocal laser scanning microscopy. Results from flow cytometric studies showed that a median of 94% (range, 65-98%) of the immature CD1a+ MDDCs were M. furfur extract positive, 81% (75-97%) rMal f 5 positive and 93% (62-98%) mannan positive. Mature CD1a+ MDDCs were significantly less efficient in this respect, with the corresponding figures only 26% (6-37%, P < 0.01), 6% (2-15%, P < 0.05) and 32% (9-50%, P < 0.01), respectively. Uptake of the non-glycosylated rMal f 5 by immature CD1a+ MDDCs was decreased to 27% (15-38%) by inhibition of pinocytosis. The binding of M. furfur extract and mannan was inhibited in a dose-dependent manner by methyl-alpha-D-mannopyranoside, suggesting uptake via the mannose receptor. Human immature CD1a+ MDDCs can efficiently take up M. furfur and allergenic components from the yeast in the absence of IgE antibodies, implying that sensitization of AD patients to M. furfur can be mediated by immature dendritic cells in the skin.
Collapse
Affiliation(s)
- E Buentke
- Department of Medicine, Unit of Clinical Allergy Research, Karolinska Hospital and Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|