1
|
Chen J, Wang Z, Tan K, Huang W, Shi J, Li T, Hu J, Wang K, Wang C, Xin B, Zhao H, Song W, Hufford MB, Schnable JC, Jin W, Lai J. A complete telomere-to-telomere assembly of the maize genome. Nat Genet 2023:10.1038/s41588-023-01419-6. [PMID: 37322109 DOI: 10.1038/s41588-023-01419-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
A complete telomere-to-telomere (T2T) finished genome has been the long pursuit of genomic research. Through generating deep coverage ultralong Oxford Nanopore Technology (ONT) and PacBio HiFi reads, we report here a complete genome assembly of maize with each chromosome entirely traversed in a single contig. The 2,178.6 Mb T2T Mo17 genome with a base accuracy of over 99.99% unveiled the structural features of all repetitive regions of the genome. There were several super-long simple-sequence-repeat arrays having consecutive thymine-adenine-guanine (TAG) tri-nucleotide repeats up to 235 kb. The assembly of the entire nucleolar organizer region of the 26.8 Mb array with 2,974 45S rDNA copies revealed the enormously complex patterns of rDNA duplications and transposon insertions. Additionally, complete assemblies of all ten centromeres enabled us to precisely dissect the repeat compositions of both CentC-rich and CentC-poor centromeres. The complete Mo17 genome represents a major step forward in understanding the complexity of the highly recalcitrant repetitive regions of higher plant genomes.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Zijian Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Kaiwen Tan
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Junpeng Shi
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Tong Li
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Jiang Hu
- Grandomics Biosciences, Wuhan, P. R. China
| | - Kai Wang
- Grandomics Biosciences, Wuhan, P. R. China
| | - Chao Wang
- Grandomics Biosciences, Wuhan, P. R. China
| | - Beibei Xin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Haiming Zhao
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Weibin Song
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - James C Schnable
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Weiwei Jin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China.
- Sanya Institute of China Agricultural University, Sanya, P. R. China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China.
| |
Collapse
|
2
|
Gerber A, van Otterdijk S, Bruggeman FJ, Tutucci E. Understanding spatiotemporal coupling of gene expression using single molecule RNA imaging technologies. Transcription 2023; 14:105-126. [PMID: 37050882 PMCID: PMC10807504 DOI: 10.1080/21541264.2023.2199669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Across all kingdoms of life, gene regulatory mechanisms underlie cellular adaptation to ever-changing environments. Regulation of gene expression adjusts protein synthesis and, in turn, cellular growth. Messenger RNAs are key molecules in the process of gene expression. Our ability to quantitatively measure mRNA expression in single cells has improved tremendously over the past decades. This revealed an unexpected coordination between the steps that control the life of an mRNA, from transcription to degradation. Here, we provide an overview of the state-of-the-art imaging approaches for measurement and quantitative understanding of gene expression, starting from the early visualizations of single genes by electron microscopy to current fluorescence-based approaches in single cells, including live-cell RNA-imaging approaches to FISH-based spatial transcriptomics across model organisms. We also highlight how these methods have shaped our current understanding of the spatiotemporal coupling between transcriptional and post-transcriptional events in prokaryotes. We conclude by discussing future challenges of this multidisciplinary field.Abbreviations: mRNA: messenger RNA; rRNA: ribosomal rDNA; tRNA: transfer RNA; sRNA: small RNA; FISH: fluorescence in situ hybridization; RNP: ribonucleoprotein; smFISH: single RNA molecule FISH; smiFISH: single molecule inexpensive FISH; HCR-FISH: Hybridization Chain-Reaction-FISH; RCA: Rolling Circle Amplification; seqFISH: Sequential FISH; MERFISH: Multiplexed error robust FISH; UTR: Untranslated region; RBP: RNA binding protein; FP: fluorescent protein; eGFP: enhanced GFP, MCP: MS2 coat protein; PCP: PP7 coat protein; MB: Molecular beacons; sgRNA: single guide RNA.
Collapse
Affiliation(s)
- Alan Gerber
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Sander van Otterdijk
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank J. Bruggeman
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Evelina Tutucci
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Chen L, Jiao Y, Guan X, Li X, Feng Y, Jiao M. Investigation of cell cycle-associated structural reorganization in nucleolar FC/DFCs from mouse MFC cells by electron microscopy. Microscopy (Oxf) 2018; 67:4994513. [PMID: 29750255 DOI: 10.1093/jmicro/dfy020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/08/2018] [Indexed: 11/14/2022] Open
Abstract
Nucleolus structure alters as the cell cycle is progressing. It is established in telophase, maintained throughout the entire interphase and disassembled in metaphase. Fibrillar centers (FCs), dense fibrillar components (DFCs) and granular components (GCs) are essential nucleolar organizations where rRNA transcription and processing and ribosome assembly take place. Hitherto, little is known about the cell cycle-dependent reorganization of these structures. In this study, we followed the nucleolus structure during the cell cycle by electron microscopy (EM). We found the nucleolus experienced multiple rounds of structural reorganization within a single cell cycle: (1) when nucleoli are formed during the transition from late M to G1 phase, FCs, DFCs and GCs are constructed, leading to the establishment of tripartite nucleolus; (2) as FC/DFCs are disrupted at mid-G1, tripartite nucleolus is gradually changed into a bipartite organization; (3) at late G1, the reassembly of FC/DFCs results in a structural transition from bipartite nucleolus towards tripartite nucleolus; (4) as cells enter S phase, FC/DFCs are disassembled again and tripartite nucleolus is thus changed into a bipartite organization. Of note, FC/DFCs were not observed until late S phase; (5) FC/DFCs experience structural disruption and restoration during G2 and (6) when cells are at mitotic stage, FC/DFCs disappear before nucleolus structure is disassembled. These results also suggest that bipartite nucleolus can exist in higher eukaryotes at certain period of the cell cycle. As structures are the fundamental basis of diverse cell activities, unveiling the structural reorganization of nucleolar FCs and DFCs may bring insights into the spatial-temporal compartmentalization of relevant cellular functions.
Collapse
Affiliation(s)
- Lingling Chen
- School of Life Sciences, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Yang Jiao
- School of Physical Education, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Xin Guan
- School of Life Sciences, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Xiliang Li
- School of Life Sciences, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Yunpeng Feng
- School of Life Sciences, Northeast Normal University, Changchun, Jilin Province 130024, China
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Mingda Jiao
- School of Life Sciences, Northeast Normal University, Changchun, Jilin Province 130024, China
| |
Collapse
|
4
|
de Paula CMP, Souza Sobrinho F, Techio VH. Chromosomal distribution of H3K4me2, H3K9me2 and 5-methylcytosine: variations associated with polyploidy and hybridization in Brachiaria (Poaceae). PLANT CELL REPORTS 2016; 35:1359-1369. [PMID: 27015682 DOI: 10.1007/s00299-016-1969-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
Assessment of chromosomal distribution of modified histones and 5-methylcytosine shown that there are diversification of chromosomal types among species of Brachiaria and its interspecific hybrids. Histone post-translational modifications and DNA methylation are epigenetic processes that are involved in structural and functional organization of the genome. This study compared the chromosomal distribution of modified histones and 5-methylcytosine (5-mCyt) in species and interspecific hybrids of Brachiaria with different ploidy levels and reproduction modes. The relation between H3K9me2 and 5-mCyt was observed in the nucleolus organizer region, centromeric central domain and pericentromeric region. H3K4me2 was detected in euchromatic domains, mainly in the terminal chromosomal regions. Comparison of chromosomal distribution among species and hybrids showed greater variation of chromosomal types for the H3K9me2 in B. decumbens (tetraploid and apomictic species) and the 963 hybrid, while, for the H3K4me2, the variation was higher in B. brizantha and B. decumbens (tetraploid and apomictic species) and 963 hybrid. The chromosome distribution of 5-mCyt was similar between B. brizantha and B. decumbens, which differ from the distribution observed in B. ruziziensis (diploid and sexual species). Significant alterations in DNA methylation were observed in the artificially tetraploidized B. ruziziensis and in the interspecific hybrids, possibly as result of hybridization and polyploidization processes. The monitoring of histone modifications and DNA methylation allowed categorizing nuclear and chromosomal distribution of these epigenetic marks, thus contributing to the knowledge of composition and structure of the genome/epigenome of Brachiaria species and hybrids. These data can be useful for speciation and genome evolution studies in genus Brachiaria, and represent important markers to explore relationships between genomes.
Collapse
Affiliation(s)
| | - Fausto Souza Sobrinho
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Vânia Helena Techio
- Department of Biology/DBI, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200000, Brazil.
| |
Collapse
|
5
|
Legartová S, Sbardella G, Kozubek S, Bártová E. Ellagic Acid-Changed Epigenome of Ribosomal Genes and Condensed RPA194-Positive Regions of Nucleoli in Tumour Cells. Folia Biol (Praha) 2015; 61:49-59. [PMID: 26333121 DOI: 10.14712/fb2015061020049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
We studied the effect of ellagic acid (EA) on the morphology of nucleoli and on the pattern of major proteins of the nucleolus. After EA treatment of HeLa cells, we observed condensation of nucleoli as documented by the pattern of argyrophilic nucleolar organizer regions (AgNORs). EA also induced condensation of RPA194-positive nucleolar regions, but no morphological changes were observed in nucleolar compartments positive for UBF1/2 proteins or fibrillarin. Studied morphological changes induced by EA were compared with the morphology of control, non-treated cells and with pronounced condensation of all nucleolar domains caused by actinomycin D (ACT-D) treatment. Similarly as ACT-D, but in a lesser extent, EA induced an increased number of 53BP1-positive DNA lesions. However, the main marker of DNA lesions, γH2AX, was not accumulated in body-like nuclear structures. An increased level of γH2AX was found by immunofluorescence and Western blots only after EA treatment. Intriguingly, the levels of fibrillarin, UBF1/2 and γH2AX were increased at the promoters of ribosomal genes, while 53BP1 and CARM1 levels were decreased by EA treatment at these genomic regions. In the entire genome, EA reduced H3R17 dimethylation. Taken together, ellagic acid is capable of significantly changing the nucleolar morphology and protein levels inside the nucleolus.
Collapse
Affiliation(s)
- S Legartová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v. v. i., Brno, Czech Republic
| | - G Sbardella
- Epigenetic MedChem Lab, Università di Salerno Dipartimento di Farmacia, Fisciano, Salerno, Italy
| | - S Kozubek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v. v. i., Brno, Czech Republic
| | - E Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v. v. i., Brno, Czech Republic
| |
Collapse
|
6
|
Stępiński D. Functional ultrastructure of the plant nucleolus. PROTOPLASMA 2014; 251:1285-306. [PMID: 24756369 PMCID: PMC4209244 DOI: 10.1007/s00709-014-0648-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 04/08/2014] [Indexed: 05/23/2023]
Abstract
Nucleoli are nuclear domains present in almost all eukaryotic cells. They not only specialize in the production of ribosomal subunits but also play roles in many fundamental cellular activities. Concerning ribosome biosynthesis, particular stages of this process, i.e., ribosomal DNA transcription, primary RNA transcript processing, and ribosome assembly proceed in precisely defined nucleolar subdomains. Although eukaryotic nucleoli are conservative in respect of their main function, clear morphological differences between these structures can be noticed between individual kingdoms. In most cases, a plant nucleolus shows well-ordered structure in which four main ultrastructural components can be distinguished: fibrillar centers, dense fibrillar component, granular component, and nucleolar vacuoles. Nucleolar chromatin is an additional crucial structural component of this organelle. Nucleolonema, although it is not always an unequivocally distinguished nucleolar domain, has often been described as a well-grounded morphological element, especially of plant nucleoli. The ratios and morphology of particular subcompartments of a nucleolus can change depending on its metabolic activity which in turn is correlated with the physiological state of a cell, cell type, cell cycle phase, as well as with environmental influence. Precise attribution of functions to particular nucleolar subregions in the process of ribosome biosynthesis is now possible using various approaches. The presented description of plant nucleolar morphology summarizes previous knowledge regarding the function of nucleoli as well as of their particular subdomains not only in the course of ribosome biosynthesis.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland,
| |
Collapse
|
7
|
Wang F, Ying C, Shang G, Jiao M, Hongfang Z. The new evidence of nucleolar ultrastructural dynamic change: fibrillar centre (FC) fusion in G1 phase and regeneration in S phase. Micron 2013; 49:15-20. [PMID: 23602556 DOI: 10.1016/j.micron.2013.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 02/12/2013] [Accepted: 02/21/2013] [Indexed: 01/15/2023]
Abstract
In higher eukaryotes ribosome production starts at the end of mitosis, increases during G1, is maximal in G2 (Sirri et al., 2000) and stops during prophase (Gébrane-Younès et al., 1997). But the mechanism of the change is still uncovered. Especially in the actively growing mammalian somatic cells usually contain one or several giant fibrillar centres (GFCs) with many tiny fibrillar centre (FCs) (Koberna et al., 2002; Raška et al., 2004; Casafont et al., 2007). The process how the giant fibrillar centre (GFC) and the many tiny fibrillar centres (FCs) were formed is unknown. The present results showed there were processes of FCs fusion in G1 phase and FCs regeneration in S phase respectively in the nucleoli of A 375 cells. A few FCs fused each other in late G1 phase when the process of nucleoli fusion was completed. In S phase, a lot of tiny FCs were regenerated from the periphery of GFC, separated and scattered into nucleolar matrix in late S phase and early G2 phase. The GFC was found to be coexisted with numerous tiny FCs in the nucleolus in G2 phase. The present study provided a new evidence of nucleolar dynamic change during interphase: fibrillar centre (FC) was not to be a stable state subunit of nucleolar compartment but a highly dynamic process that may be the bases of nucleolar morphological architecture organization and its function taking place.
Collapse
Affiliation(s)
- Fengcai Wang
- Jiu Jiang University, Jiangxi Province 332000, China
| | | | | | | | | |
Collapse
|
8
|
Stępiński D. Nucleolin level in plant root meristematic cells under chilling stress and recovery. Micron 2012; 43:870-5. [PMID: 22483616 DOI: 10.1016/j.micron.2012.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
Nucleolin and its homologues are multifunctional proteins which reside mainly in nucleoli of yeast, animal and plant cells. Hence, they are generally implicated in many stages of ribosome biosynthesis. In this study nucleolin was identified in root meristematic cell nucleoli of soybean plants subjected to chilling stress, recovered after chilling and under control conditions with the use of the immunogold electron microscopy technique. Soybean nucleoli exhibited various metabolic activities under these conditions (Stępiński, 2004). Current studies showed that the level of nucleolin, expressed as a number of gold grains per μm(2), varied in particular subnucleolar regions in the soybean root meristematic cell nucleoli. Labeling density changed in these regions when plants were subjected to the given treatment. Most abundantly this protein was present in dense fibrillar component (DFC) around fibrillar centers (FCs) in the nucleoli of recovered plants, while in the nucleoli of stressed plants this region contained the lowest level of nucleolin. It can be supposed that nucleolin participates in ribosome biogenesis and its level is correlated with metabolic activity of soybean nucleoli - the more active nucleoli, the higher level of nucleolin and vice versa.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| |
Collapse
|
9
|
Shaw P, Brown J. Nucleoli: composition, function, and dynamics. PLANT PHYSIOLOGY 2012; 158:44-51. [PMID: 22082506 PMCID: PMC3252080 DOI: 10.1104/pp.111.188052] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/12/2011] [Indexed: 05/18/2023]
Affiliation(s)
- Peter Shaw
- Department of Cell and Developmental Biology, John Innes Center, Norwich NR4 7UH, United Kingdom.
| | | |
Collapse
|
10
|
Tajrishi MM, Tuteja R, Tuteja N. Nucleolin: The most abundant multifunctional phosphoprotein of nucleolus. Commun Integr Biol 2011; 4:267-75. [PMID: 21980556 DOI: 10.4161/cib.4.3.14884] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 01/08/2023] Open
Abstract
Nucleolin is a multifunctional phosphoprotein ubiquitously distributed in the nucleolus, nucleus and cytoplasm of the cell. Nucleolin has a bipartite nuclear localization signal sequence and is conserved in animals, plants and yeast. Its levels are correlated with the rate of functional activity of the nucleolus in exponentially growing cells. Nucleolin contains intrinsic DNA and RNA helicase, nucleic-acid-dependent ATPase and self-cleaving activities. It binds RNA through its RNA recognition motifs. It regulates various aspects of DNA and RNA metabolism, chromatin structure, rDNA transcription, rRNA maturation, cytokinesis, nucleogenesis, cell proliferation and growth, the folding, maturation and ribosome assembly and nucleocytoplasmic transport of newly synthesized pre-RNAs. In this review we present an overview on nucleolin, its localization, structure and various functions. We also describe the discovery and important studies of nucleolin in plants.
Collapse
Affiliation(s)
- Marjan M Tajrishi
- International Center for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, Delhi India
| | | | | |
Collapse
|
11
|
Santos A, Ferreira L, Maroco J, Oliveira M. Abiotic Stress and Induced DNA Hypomethylation Cause Interphase Chromatin Structural Changes in Rice rDNA Loci. Cytogenet Genome Res 2011; 132:297-303. [DOI: 10.1159/000322287] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2010] [Indexed: 01/30/2023] Open
|
12
|
|
13
|
Sáez-Vásquez J, Gadal O. Genome organization and function: a view from yeast and Arabidopsis. MOLECULAR PLANT 2010; 3:678-690. [PMID: 20601371 DOI: 10.1093/mp/ssq034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Recent progress in understanding higher-order chromatin organization in the nucleus has been considerable. From single gene to chromosome territory, realistic biophysical models can now accurately predict some of the structural feature of cell nuclei. Despite growing evidence of a deterministic nuclear organization, the physiological consequence of spatial genome organization is still unclear. In the simple eukaryotic model, Saccharomyces cerevisiae, clear correlation between gene position and transcription has been established. In this review, we will focus on higher-order chromatin organization in yeast with respect to the nuclear envelope and nucleolus. In Arabidopsis thaliana, a model plant for which we have a complete genome sequence, chromosome territory (CT) arrangement and somatic homologous pairing in interphase nuclei seem to occur randomly. Since chromosomes containing nucleolar organizer regions associate more frequently to form a single nucleolar structure, as in yeast, the nucleolus seems to play a major role in organizing nuclear space. Recent findings have begun to elucidate how plant regulatory factors, such as chromatin remodeling or histone chaperones, affect the chromatin state of ribosomal DNA genes located in two distinct CT arrangements in the nucleus. The functional outcome of yeast nuclear organization allowed us to propose how nuclear organization might contribute to a novel type of epigenetic regulation: the spatial regulation of transcription.
Collapse
Affiliation(s)
- Julio Sáez-Vásquez
- LGDP-UMR 5096 CNRS-IRD-Université de Perpignan via Domitia, 58 Av. Paul Alduy, 66860 Perpignan, France
| | | |
Collapse
|
14
|
Stepiński D. Organization of the nucleoli of soybean root meristematic cells at different states of their activity. Micron 2010; 41:283-8. [PMID: 20071186 DOI: 10.1016/j.micron.2009.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/23/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
Internal organization of a nucleolus changes along with rRNA transcriptional activity. These changes mainly concern qualitative and quantitative alternations of three main nucleolar components: fibrillar centres (FC), dense fibrillar component (DFC) and granular component (GC). In the present work quantitative measurements of the number and sizes of FCs and DFCs in nucleoli of root meristematic cells of soybean seedlings grown at (1) chilling conditions that reduce transcriptional activity of soybean nucleoli (temp. of 10 degrees C) and at (2) conditions that increase this activity (recovery at optimal temp. of 25 degrees C after previous chilling), even more than (3) the control, have been carried out. Morphometric measurements showed that the highest number of FCs and DFCs was in the most active nucleoli, while the smallest number - in those with the lowest activity. The average size of an individual FC was similar in all nucleoli regardless of their transcriptional activity, that of the individual DFC varied, being bigger in the nucleoli of the chilled plants and smallest in those of the recovered plants. The numbers of FCs and DFCs seem to be indicators of transcriptional activity of plant nucleoli - the higher number of FCs and DFCs the more active nucleoli.
Collapse
Affiliation(s)
- Dariusz Stepiński
- Department of Cytophysiology, University of Łódź, Pilarskiego 14, 90-321 Łódź, Poland.
| |
Collapse
|
15
|
Bártová E, Horáková AH, Uhlírová R, Raska I, Galiová G, Orlova D, Kozubek S. Structure and epigenetics of nucleoli in comparison with non-nucleolar compartments. J Histochem Cytochem 2009; 58:391-403. [PMID: 20026667 DOI: 10.1369/jhc.2009.955435] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nucleolus is a nuclear compartment that plays an important role in ribosome biogenesis. Some structural features and epigenetic patterns are shared between nucleolar and non-nucleolar compartments. For example, the location of transcriptionally active mRNA on extended chromatin loop species is similar to that observed for transcriptionally active ribosomal DNA (rDNA) genes on so-called Christmas tree branches. Similarly, nucleolus organizer region-bearing chromosomes located a distance from the nucleolus extend chromatin fibers into the nucleolar compartment. Specific epigenetic events, such as histone acetylation and methylation and DNA methylation, also regulate transcription of both rRNA- and mRNA-encoding loci. Here, we review the epigenetic mechanisms and structural features that regulate transcription of ribosomal and mRNA genes. We focus on similarities in epigenetic and structural regulation of chromatin in nucleoli and the surrounding non-nucleolar region and discuss the role of proteins, such as heterochromatin protein 1, fibrillarin, nucleolin, and upstream binding factor, in rRNA synthesis and processing.
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i. Královopolská 135, CZ-612 65, Brno, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
16
|
Wegel E, Koumproglou R, Shaw P, Osbourn A. Cell type-specific chromatin decondensation of a metabolic gene cluster in oats. THE PLANT CELL 2009; 21:3926-36. [PMID: 20040536 PMCID: PMC2814510 DOI: 10.1105/tpc.109.072124] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/29/2009] [Accepted: 12/04/2009] [Indexed: 05/18/2023]
Abstract
Transcription-related chromatin decondensation has been studied in mammals for clusters of structurally and/or functionally related genes that are coordinately regulated (e.g., the homeobox locus in mice and the major histocompatability complex locus in humans). Plant genes have generally been considered to be randomly distributed throughout the genome, although several examples of metabolic gene clusters for synthesis of plant defense compounds have recently been discovered. Clustering provides for genetic linkage of genes that together confer a selective advantage and may also facilitate coordinate regulation of gene expression by enabling localized changes in chromatin structure. Here, we use cytological methods to investigate components of a metabolic gene cluster for synthesis of developmentally regulated defense compounds (avenacins) in diploid oat (Avena strigosa). Our experiments reveal that expression of the avenacin gene cluster is associated with cell type-specific chromatin decondensation, providing new insights into regulation of gene clusters in plants. Importantly, chromatin decondensation could be visualized not only at the large-scale level but down to the single gene level. We further show that the avenacin and sterol pathways are likely to be inversely regulated at the level of transcription.
Collapse
Affiliation(s)
- Eva Wegel
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Rachil Koumproglou
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Peter Shaw
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Address correspondence to
| |
Collapse
|
17
|
Chromosome banding and essential oils composition of Brazilian accessions of Lippia alba (Verbenaceae). Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0066-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Dynamic changes of nucleolar DNA configuration and distribution during the cell cycle in Allium sativum cells. Micron 2009; 40:449-54. [DOI: 10.1016/j.micron.2009.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 12/17/2022]
|
19
|
|
20
|
Abstract
The nucleolus is a multifunctional compartment of the eukaryotic nucleus. Besides its well-recognised role in transcription and processing of ribosomal RNA and the assembly of ribosomal subunits, the nucleolus has functions in the processing and assembly of a variety of RNPs and is involved in cell cycle control and senescence and as a sensor of stress. Historically, nucleoli have been tenuously linked to the biogenesis and, in particular, export of mRNAs in yeast and mammalian cells. Recently, data from plants have extended the functions in which the plant nucleolus is involved to include transcriptional gene silencing as well as mRNA surveillance and nonsense-mediated decay, and mRNA export. The nucleolus in plants may therefore have important roles in the biogenesis and quality control of mRNAs.
Collapse
Affiliation(s)
- Anireddy S. N. Reddy
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO 80523 USA
| | - Maxim Golovkin
- Department of Microbiology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
21
|
Matyásek R, Tate JA, Lim YK, Srubarová H, Koh J, Leitch AR, Soltis DE, Soltis PS, Kovarík A. Concerted evolution of rDNA in recently formed Tragopogon allotetraploids is typically associated with an inverse correlation between gene copy number and expression. Genetics 2007; 176:2509-19. [PMID: 17603114 PMCID: PMC1950650 DOI: 10.1534/genetics.107.072751] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We analyzed nuclear ribosomal DNA (rDNA) transcription and chromatin condensation in individuals from several populations of Tragopogon mirus and T. miscellus, allotetraploids that have formed repeatedly within only the last 80 years from T. dubius and T. porrifolius and T. dubius and T. pratensis, respectively. We identified populations with no (2), partial (2), and complete (4) nucleolar dominance. It is probable that epigenetic regulation following allopolyploidization varies between populations, with a tendency toward nucleolar dominance by one parental homeologue. Dominant rDNA loci are largely decondensed at interphase while silent loci formed condensed heterochromatic regions excluded from nucleoli. Those populations where nucleolar dominance is fixed are epigenetically more stable than those with partial or incomplete dominance. Previous studies indicated that concerted evolution has partially homogenized thousands of parental rDNA units typically reducing the copy numbers of those derived from the T. dubius diploid parent. Paradoxically, despite their low copy number, repeats of T. dubius origin dominate rDNA transcription in most populations studied, i.e., rDNA units that are genetic losers (copy numbers) are epigenetic winners (high expression).
Collapse
Affiliation(s)
- Roman Matyásek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i Laboratory of Molecular Epigenetics, Královopolská 135, CZ-612 65 Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pontvianne F, Matía I, Douet J, Tourmente S, Medina FJ, Echeverria M, Sáez-Vásquez J. Characterization of AtNUC-L1 reveals a central role of nucleolin in nucleolus organization and silencing of AtNUC-L2 gene in Arabidopsis. Mol Biol Cell 2007; 18:369-79. [PMID: 17108323 PMCID: PMC1783796 DOI: 10.1091/mbc.e06-08-0751] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/27/2006] [Accepted: 11/02/2006] [Indexed: 11/11/2022] Open
Abstract
Nucleolin is one of the most abundant protein in the nucleolus and is a multifunctional protein involved in different steps of ribosome biogenesis. In contrast to animals and yeast, the genome of the model plant Arabidopsis thaliana encodes two nucleolin-like proteins, AtNUC-L1 and AtNUC-L2. However, only the AtNUC-L1 gene is ubiquitously expressed in normal growth conditions. Disruption of this AtNUC-L1 gene leads to severe plant growth and development defects. AtNUC-L1 is localized in the nucleolus, mainly in the dense fibrillar component. Absence of this protein in Atnuc-L1 plants induces nucleolar disorganization, nucleolus organizer region decondensation, and affects the accumulation levels of pre-rRNA precursors. Remarkably, in Atnuc-L1 plants the AtNUC-L2 gene is activated, suggesting that AtNUC-L2 might rescue, at least partially, the loss of AtNUC-L1. This work is the first description of a higher eukaryotic organism with a disrupted nucleolin-like gene and defines a new role for nucleolin in nucleolus structure and rDNA chromatin organization.
Collapse
Affiliation(s)
- Frederic Pontvianne
- *Unité Mixte de Recherche Centre National de la Recherche Scientifique 5096, Université de Perpignan, Perpignan, 66860 Perpignan, France
| | - Isabel Matía
- Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Cientificas, Ramiro de Maetzu 9, E-28040 Madrid, Spain; and
| | - Julien Douet
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 6547, BIOMOVE, Université Blaise Pascal, 63177 Aubière, France
| | - Sylvette Tourmente
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 6547, BIOMOVE, Université Blaise Pascal, 63177 Aubière, France
| | - Francisco J. Medina
- Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Cientificas, Ramiro de Maetzu 9, E-28040 Madrid, Spain; and
| | - Manuel Echeverria
- *Unité Mixte de Recherche Centre National de la Recherche Scientifique 5096, Université de Perpignan, Perpignan, 66860 Perpignan, France
| | - Julio Sáez-Vásquez
- *Unité Mixte de Recherche Centre National de la Recherche Scientifique 5096, Université de Perpignan, Perpignan, 66860 Perpignan, France
| |
Collapse
|
23
|
Raska I, Shaw PJ, Cmarko D. Structure and function of the nucleolus in the spotlight. Curr Opin Cell Biol 2006; 18:325-34. [PMID: 16687244 DOI: 10.1016/j.ceb.2006.04.008] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
The nucleolus is the most obvious and clearly differentiated nuclear sub-compartment. It is where ribosome biogenesis takes place, but it is becoming clear that the nucleolus also has non-ribosomal functions. In this review we discuss recent progress in our understanding of how both ribosome biosynthesis and some non-ribosomal functions relate to observable nucleolar structure. We still do not have detailed enough information about the in situ organization of the various processes taking place in the nucleolus. However, the present power of light and electron microscopy techniques means that a description of the organization of nucleolar processes at the molecular level is now achievable, and the time is ripe for such an effort.
Collapse
Affiliation(s)
- Ivan Raska
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic.
| | | | | |
Collapse
|
24
|
Raska I, Shaw PJ, Cmarko D. New Insights into Nucleolar Architecture and Activity. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:177-235. [PMID: 17178467 DOI: 10.1016/s0074-7696(06)55004-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nucleolus is the most obvious and clearly differentiated nuclear subcompartment. It is where ribosome biogenesis takes place and has been the subject of research over many decades. In recent years progress in our understanding of ribosome biogenesis has been rapid and is accelerating. This review discusses current understanding of how the biochemical processes of ribosome biosynthesis relate to an observable nucleolar structure. Emerging evidence is also described that points to other, unconventional roles for the nucleolus, particularly in the biogenesis of other RNA-containing cellular machinery, and in stress sensing and the control of cellular activity. Striking recent observations show that the nucleolus and its components are highly dynamic, and that the steady state structure observed by microscopical methods must be interpreted as the product of these dynamic processes. We still do not have detailed enough information to understand fully the organization and regulation of the various processes taking place in the nucleolus. However, the present power of light and electron microscopy (EM) techniques means that a description of nucleolar processes at the molecular level is now achievable, and the time is ripe for such an effort.
Collapse
Affiliation(s)
- Ivan Raska
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | | | | |
Collapse
|
25
|
Neves N, Delgado M, Silva M, Caperta A, Morais-Cecílio L, Viegas W. Ribosomal DNA heterochromatin in plants. Cytogenet Genome Res 2005; 109:104-11. [PMID: 15753565 DOI: 10.1159/000082388] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 02/19/2004] [Indexed: 11/19/2022] Open
Abstract
The aim of this review is to integrate earlier results and recent findings to present the current state-of-the-art vision concerning the dynamic behavior of the ribosomal DNA (rDNA) fraction in plants. The global organization and behavioral features of rDNA make it a most useful system to analyse the relationship between chromatin topology and gene expression patterns. Correlations between several heterochromatin fractions and rDNA arrays demonstrate the heterochromatic nature of the rDNA and reveal the importance of the genomic environment and of developmental controls in modulating its dynamics.
Collapse
Affiliation(s)
- N Neves
- Secção de Genética, Centro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
26
|
Wegel E, Shaw P. Gene activation and deactivation related changes in the three-dimensional structure of chromatin. Chromosoma 2005; 114:331-7. [PMID: 16075283 DOI: 10.1007/s00412-005-0015-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 06/30/2005] [Accepted: 06/30/2005] [Indexed: 12/12/2022]
Abstract
Chromatin in the interphase nucleus is dynamic, decondensing where genes are activated and condensing where they are silenced. Local chromatin remodelling to a more open structure during gene activation is followed by changes in nucleosome distribution through the action of the transcriptional machinery. This leads to chromatin expansion and looping out of whole genomic regions. Such chromatin loops can extend beyond the chromosome territory. As several studies point to the location of transcription sites inside chromosome territories as well as at their periphery, extraterritorial loops cannot simply be a mechanism for making transcribed genes accessible to the transcriptional machinery and must occur for other reasons. The level of decondensation within an activated region varies greatly and probably depends on the density of activated genes and the number of engaged RNA polymerases. Genes that are silenced during development form a more closed chromatin structure. Specific histone modifications are correlated with gene activation and silencing, and silenced genes may become associated with heterochromatin protein 1 homologues or with polycomb group complexes. Several levels of chromatin packaging are found in the nucleus relating to the different functions of and performed by active genes; euchromatic and heterochromatic regions and the models explaining higher-order chromatin structure are still disputed.
Collapse
Affiliation(s)
- Eva Wegel
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | | |
Collapse
|
27
|
Testillano PS, González-Melendi P, Coronado MJ, Seguí-Simarro JM, Moreno-Risueño MA, Risueño MC. Differentiating plant cells switched to proliferation remodel the functional organization of nuclear domains. Cytogenet Genome Res 2005; 109:166-74. [PMID: 15753573 DOI: 10.1159/000082396] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Accepted: 02/24/2004] [Indexed: 11/19/2022] Open
Abstract
The immature pollen grain, the microspore, under stress conditions can switch its developmental program towards proliferation and embryogenesis. The comparison between the gametophytic and sporophytic pathways followed by the microspore permitted us to analyse the nuclear changes in plant differentiating cells when switched to proliferation. The nucleus is highly dynamic, the architecture of its well organised functional domains--condensed chromatin, interchromatin region, nuclear bodies and nucleolus--changing in response to DNA replication, RNA transcription, processing and transport. In the present work, the rearrangements of the nuclear domains during the switch to proliferation have been determined by in situ molecular identification methods for the subcellular localization of chromatin at different functional states, rDNA, elements of the nuclear machinery (PCNA, splicing factors), signalling and stress proteins. The study of the changes in the nuclear domains was determined by a correlative approach at confocal and electron microscopy levels. The results showed that the switch of the developmental program and the activation of the proliferative activity affected the functional organization of the nuclear domains, which accordingly changed their architecture and functional state. A redistribution of components, among them various signalling molecules which targeted structures within the interchromatin region upon translocation from the cytoplasm, was also observed.
Collapse
Affiliation(s)
- P S Testillano
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Wegel E, Vallejos RH, Christou P, Stöger E, Shaw P. Large-scale chromatin decondensation induced in a developmentally activated transgene locus. J Cell Sci 2005; 118:1021-31. [PMID: 15713746 DOI: 10.1242/jcs.01685] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The high molecular weight (HMW) glutenin-encoding genes in wheat are developmentally activated in the endosperm at about 8 days after anthesis. We have investigated the physical changes that occur in these genes in two transgenic lines containing about 20 and 50 copies each of the HMW glutenin genes together with their promoters. Using fluorescence in-situ hybridisation (FISH) and confocal imaging, we demonstrate that, in non-expressing tissue, each transgene locus consists of one or two highly condensed sites, which decondense into many foci upon activation of transcription in endosperm nuclei. Initiation of transcription can precede decondensation but not vice versa. We show that, in one of the lines, cytoplasmic transcript levels are high after onset of transcription but disappear by 14 days after anthesis, whereas small interfering RNAs, which indicate post-transcriptional gene silencing (PTGS), are detected at this stage. However, the transcript levels remain high at the transcription sites, most of the transgene copies are transcriptionally active and transcriptional activity in the nucleus ceases only with cell death at the end of endosperm development.
Collapse
MESH Headings
- Cell Nucleus/metabolism
- Chromatin/chemistry
- Chromatin/metabolism
- Chromatin/ultrastructure
- Cytoplasm/metabolism
- DNA/metabolism
- DNA Methylation
- DNA Primers/chemistry
- Flow Cytometry
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Gene Silencing
- Genes, Plant
- Glutens/genetics
- Image Processing, Computer-Assisted
- In Situ Hybridization
- In Situ Hybridization, Fluorescence
- Metaphase
- Microscopy, Confocal
- Plant Physiological Phenomena
- Plant Roots/metabolism
- Plants, Genetically Modified
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Seeds/metabolism
- Time Factors
- Transcription, Genetic
- Transformation, Genetic
- Transgenes
- Triticum/genetics
- Triticum/metabolism
Collapse
Affiliation(s)
- Eva Wegel
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | | | | | | | | |
Collapse
|
29
|
Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW, Andersen J, Mann M, Lamond AI, Brown JWS, Shaw PJ. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 2005; 16:260-9. [PMID: 15496452 PMCID: PMC539170 DOI: 10.1091/mbc.e04-09-0791] [Citation(s) in RCA: 272] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 10/13/2004] [Indexed: 12/15/2022] Open
Abstract
The eukaryotic nucleolus is involved in ribosome biogenesis and a wide range of other RNA metabolism and cellular functions. An important step in the functional analysis of the nucleolus is to determine the complement of proteins of this nuclear compartment. Here, we describe the first proteomic analysis of plant (Arabidopsis thaliana) nucleoli, in which we have identified 217 proteins. This allows a direct comparison of the proteomes of an important nuclear structure between two widely divergent species: human and Arabidopsis. The comparison identified many common proteins, plant-specific proteins, proteins of unknown function found in both proteomes, and proteins that were nucleolar in plants but nonnucleolar in human. Seventy-two proteins were expressed as GFP fusions and 87% showed nucleolar or nucleolar-associated localization. In a striking and unexpected finding, we have identified six components of the postsplicing exon-junction complex (EJC) involved in mRNA export and nonsense-mediated decay (NMD)/mRNA surveillance. This association was confirmed by GFP-fusion protein localization. These results raise the possibility that in plants, nucleoli may have additional functions in mRNA export or surveillance.
Collapse
|
30
|
Abstract
With the rapid development of sequencing technologies in the past decade, many eukaryotic genomes have been resolved at the primary sequence level. However, organization of the genome within nuclei and the principles that govern such properties remain largely unclear. Optimization of fluorescence probe-based hybridization technologies combined with new advances in the instrumentation for microscopy has steadily yielded more structural information on chromosome organization in eukaryote model systems. These studies provide static snapshots of the detailed organization of chromatin. More recently, the successful application of a chromatin tagging strategy utilizing auto fluorescent fusion proteins opened a new era of chromatin studies in which the dynamic organization of the genome can be tracked in near real time. This review focuses on these new approaches to studying chromatin organization and dynamics in plants, and on future prospects in unraveling the basic principle of chromosome organization.
Collapse
Affiliation(s)
- Eric Lam
- Biotech Center for Agriculture and the Environment, Department of Plant Science, Rutgers the State University of New Jersey, New Brunswick, New Jersey 08901, USA.
| | | | | |
Collapse
|
31
|
Hemleben V, Volkov RA, Zentgraf U, Medina FJ. Molecular Cell Biology: Organization and Molecular Evolution of rDNA, Nucleolar Dominance, and Nucleolus Structure. PROGRESS IN BOTANY 2004. [DOI: 10.1007/978-3-642-18819-0_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Wei T, Baiqu H, Chunxiang L, Zhonghe Z. In situ visualization of rDNA arrangement and its relationship with subnucleolar structural regions in Allium sativum cell nucleolus. J Cell Sci 2003; 116:1117-25. [PMID: 12584254 DOI: 10.1242/jcs.00323] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used a DNA-specific staining technique to show the two states of DNA component distributed in the nucleolar region of Allium sativum cells. One state is the extended DNA fiber, and the other is the condensed DNA clump. In situ hybridization demonstrated that the extended DNA fiber was an rRNA gene. Anti-fibrillarin antibody immunolabeling revealed that these rRNA genes were located in the dense fibrillar component near the fibrillar center, including at the periphery of the fibrillar center. None was in the dense fibrillar component far away from the fibrillar center. The condensed DNA clump was located in the fibrillar center. Further observations showed that the rRNA genes in the nucleolus were all arranged around the fibrillar center and associated with the DNA clumps in the fibrillar center. Results of statistical analysis showed that the distribution region of rRNA genes occupied about one-third of the total dense fibrillar component region. Ag-NOR protein showed a similar distribution pattern to that of rDNA. Immunolabeling of an anti-RNA/DNA hybrid antibody demonstrated that the transcription sites of rRNA were located at the periphery of the fibrillar center and in the dense fibrillar component near the fibrillar center, and these sites were consistent with the location and arrangement of rDNA shown in situ. These results demonstrated that transcription of rRNA takes place around the fibrillar center and at the periphery, whereas the dense fibrillar component that was far away from fibrillar center was the non-transcription region. The DNA clumps within the fibrillar center were probably the anchoring sites for rDNA arrangement.
Collapse
Affiliation(s)
- Tao Wei
- Department of Cell Biology, School of Life Sciences, Peking University, 100871, China.
| | | | | | | |
Collapse
|
33
|
Caperta AD, Neves N, Morais-Cecílio L, Malhó R, Viegas W. Genome restructuring in rye affects the expression, organization and disposition of homologous rDNA loci. J Cell Sci 2002; 115:2839-46. [PMID: 12082145 DOI: 10.1242/jcs.115.14.2839] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The standard rye cultivar `Imperial' and a structural variant carrying an intact 1R chromosome and two telocentric 1R chromosomes (short and long arms)were used to investigate expression patterns of homologous rDNA loci, and the influence of chromosome structural change on their interphase organisation and relative disposition. Sequential silver staining and in situ hybridization with the rDNA probe pTa71, established a correspondence between the expression and organization patterns of rDNA domains in metaphase and interphase cells. In most cells of the cultivar Imperial, nucleolar organizer region (NOR)silver staining on metaphase chromosomes with equivalent numbers of rDNA genes revealed a size heteromorphism between homologous rDNA loci, resulting from their differential expression. NOR heteromorphism in the structural variant line was significantly reduced. The preferential activity of one NOR over its homologue was found to be random within cells and independent of parental origin. Nucleotypic modifications mediated by changes in the 1R chromosome structure include increased proximity between homologous rDNA loci in interphase, and an increase in the frequency of cells with intra-nucleolar ribosomal condensed chromatin. These results seem to indicate a `sequence recognition' process for the regulation of homologous loci.
Collapse
Affiliation(s)
- Ana D Caperta
- Secção de Genética, Departamento de Botânica e Engenharia Biológica, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
34
|
Abstract
The subnucleolar structure that is involved in rDNA transcription has been controversial. A report by Koberna et al. (2002)(this issue, page 743) adds significant weight toward the idea that dense fibrillar components (DFCs)**Abbreviations used in this paper: DFC, dense fibrillar component; FC, fibrillar center; GC, granular component; Pol I, polymerase I. and fibrillar center (FC)/DFC borders are the sites of pre-rRNA synthesis.
Collapse
Affiliation(s)
- Sui Huang
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA.
| |
Collapse
|
35
|
Koberna K, Malínský J, Pliss A, Masata M, Vecerova J, Fialová M, Bednár J, Raska I. Ribosomal genes in focus: new transcripts label the dense fibrillar components and form clusters indicative of "Christmas trees" in situ. J Cell Biol 2002; 157:743-8. [PMID: 12034768 PMCID: PMC2173423 DOI: 10.1083/jcb.200202007] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
T he organization of transcriptionally active ribosomal genes in animal cell nucleoli is investigated in this study in order to address the long-standing controversy with regard to the intranucleolar localization of these genes. Detailed analyses of HeLa cell nucleoli include direct localization of ribosomal genes by in situ hybridization and their indirect localization via nascent ribosomal transcript mappings. On the light microscopy (LM) level, ribosomal genes map in 10-40 fluorescence foci per nucleus, and transcription activity is associated with most foci. We demonstrate that each nucleolar focus observed by LM corresponds, on the EM level, to an individual fibrillar center (FC) and surrounding dense fibrillar components (DFCs). The EM data identify the DFC as the nucleolar subcompartment in which rRNA synthesis takes place, consistent with detection of rDNA within the DFC. The highly sensitive method for mapping nascent transcripts in permeabilized cells on ultrastructural level provides intense and unambiguous clustered immunogold signal over the DFC, whereas very little to no label is detected over the FC. This signal is strongly indicative of nascent "Christmas trees" of rRNA associated with individual rDNA genes, sampled on the surface of thin sections. Stereological analysis of the clustered transcription signal further suggests that these Christmas trees may be contorted in space and exhibit a DNA compaction ratio on the order of 4-5.5.
Collapse
Affiliation(s)
- Karel Koberna
- Department of Cell Biology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
36
|
González-Melendi P, Shaw P. 3D gold in situ labelling in the EM. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:237-43. [PMID: 11862949 DOI: 10.1046/j.0960-7412.2001.01204.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have developed a novel pre-embedding in situ hybridization labelling method for electron microscopy which has given much greater sensitivity and higher labelling levels than have been achieved previously, together with good ultrastructural preservation. Vibratome sections of plant tissue were labelled throughout their thickness with 1 nm gold antibodies and then silver enhanced, embedded in resin and sectioned for electron microscopy. Because the labelling extends throughout the depth of the specimen, this method permits the study of the 3D arrangement of the labelling at the electron microscope level by either stereo-pair recording, tomographic reconstruction or 3D reconstruction from serial sections. In this paper we describe the application of this method to study the organization of rDNA in pea root tissue.
Collapse
|