1
|
Horiuchi Y, Umakawa N, Otani R, Tamada Y, Kosetsu K, Hiwatashi Y, Wakisaka R, Yoshida S, Murata T, Hasebe M, Ishikawa M, Kofuji R. Physcomitrium LATERAL SUPPRESSOR genes promote formative cell divisions to produce germ cell lineages in both male and female gametangia. THE NEW PHYTOLOGIST 2024. [PMID: 39737561 DOI: 10.1111/nph.20372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025]
Abstract
The evolution of green plants from aquatic to terrestrial environments is thought to have been facilitated by the acquisition of gametangia, specialized multicellular organs housing gametes. Antheridia and archegonia, responsible for producing and protecting sperm and egg cells, undergo formative cell divisions to produce a cell to differentiate into germ cell lineages and the other cell to give rise to surrounding structures. However, the genes governing this process remain unidentified. We isolated genes expressed during gametangia development from previously established gene-trap lines of Physcomitrium patens and characterized their function during gametangia formation. We identified P. patens LATERAL SUPPRESSOR 1 (PpLAS1) from the gene-trap library, encoding a GRAS transcription factor. The double-deletion mutant with its paralog PpLAS2 failed to form inner cells in both gametangia. PpLASs are expressed in cells undergoing formative cell division, and introducing PpLAS1 into the double-deletion mutant successfully rescued the phenotype. These findings underscore the pivotal role of PpLASs in regulating formative cell divisions, ensuring the separation of reproductive cell lineages from surrounding cells in antheridia and archegonia. Furthermore, they suggest a link between PpLASs and the evolutionary origin of male and female gametangia in the common ancestor of land plants.
Collapse
Affiliation(s)
- Yuta Horiuchi
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Basic Biology Program, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, 444-8585, Japan
| | - Naoyuki Umakawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Ishikawa, Japan
| | - Rina Otani
- School of Biological Science and Technology, Kanazawa University, Kanazawa, 920-1192, Ishikawa, Japan
| | - Yosuke Tamada
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Basic Biology Program, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, 444-8585, Japan
- School of Engineering, Utsunomiya University, Utsunomiya, 321-8585, Japan
| | - Ken Kosetsu
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Yuji Hiwatashi
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Food Industrial Sciences, Miyagi University, Sendai, 982-0215, Japan
| | - Rena Wakisaka
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Ishikawa, Japan
| | - Saiko Yoshida
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Takashi Murata
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Basic Biology Program, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, 444-8585, Japan
- Department of Applied Chemistry and Bioscience, Kanagawa Institute of Technology, Atsugi, 243-0292, Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Basic Biology Program, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, 444-8585, Japan
| | - Masaki Ishikawa
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Basic Biology Program, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, 444-8585, Japan
| | - Rumiko Kofuji
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Ishikawa, Japan
- School of Biological Science and Technology, Kanazawa University, Kanazawa, 920-1192, Ishikawa, Japan
| |
Collapse
|
2
|
Marron AO, Sauret‐Güeto S, Rebmann M, Silvestri L, Tomaselli M, Haseloff J. An enhancer trap system to track developmental dynamics in Marchantia polymorpha. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:604-628. [PMID: 37583263 PMCID: PMC10952768 DOI: 10.1111/tpj.16394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023]
Abstract
A combination of streamlined genetics, experimental tractability and relative morphological simplicity compared to vascular plants makes the liverwort Marchantia polymorpha an ideal model system for studying many aspects of plant biology. Here we describe a transformation vector combining a constitutive fluorescent membrane marker with a nuclear marker that is regulated by nearby enhancer elements and use this to produce a library of enhancer trap lines for Marchantia. Screening gemmae from these lines allowed the identification and characterization of novel marker lines, including markers for rhizoids and oil cells. The library allowed the identification of a margin tissue running around the thallus edge, highlighted during thallus development. The expression of this marker is correlated with auxin levels. We generated multiple markers for the meristematic apical notch region, which have different spatial expression patterns, reappear at different times during meristem regeneration following apical notch excision and have varying responses to auxin supplementation or inhibition. This reveals that there are proximodistal substructures within the apical notch that could not be observed otherwise. We employed our markers to study Marchantia sporeling development, observing meristem emergence as defining the protonema-to-prothallus stage transition, and subsequent production of margin tissue during the prothallus stage. Exogenous auxin treatment stalls meristem emergence at the protonema stage but does not inhibit cell division, resulting in callus-like sporelings with many rhizoids, whereas pharmacologically inhibiting auxin synthesis and transport does not prevent meristem emergence. This enhancer trap system presents a useful resource for the community and will contribute to future Marchantia research.
Collapse
Affiliation(s)
- Alan O. Marron
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Susanna Sauret‐Güeto
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
- Present address:
Crop Science CentreUniversity of Cambridge93 Lawrence Weaver, RoadCambridgeCB3 0LEUK
| | - Marius Rebmann
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Linda Silvestri
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Marta Tomaselli
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Jim Haseloff
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| |
Collapse
|
3
|
Moody LA, Kelly S, Clayton R, Weeks Z, Emms DM, Langdale JA. NO GAMETOPHORES 2 Is a Novel Regulator of the 2D to 3D Growth Transition in the Moss Physcomitrella patens. Curr Biol 2020; 31:555-563.e4. [PMID: 33242390 DOI: 10.1016/j.cub.2020.10.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022]
Abstract
The colonization of land by plants was one of the most transformative events in the history of life on Earth. The transition from water, which coincided with and was likely facilitated by the evolution of three-dimensional (3D) growth, enabled the generation of morphological diversity on land. In many plants, the transition from two-dimensional (2D) to 3D growth occurs during embryo development. However, in the early divergent moss Physcomitrella patens, 3D growth is preceded by an extended filamentous phase that can be maintained indefinitely. Here, we describe the identification of the cytokinin-responsive NO GAMETOPHORES 2 (PpNOG2) gene, which encodes a shikimate o-hydroxycinnamoyltransferase. In mutants lacking PpNOG2 function, transcript levels of CLAVATA and SCARECROW genes are significantly reduced, excessive gametophore initial cells are produced, and buds undergo premature developmental arrest. Mutants also exhibit misregulation of auxin-responsive genes. Our results suggest that PpNOG2 functions in the ascorbic acid pathway leading to cuticle formation and that NOG2-related genes were co-opted into the lignin biosynthesis pathway after the divergence of bryophytes and vascular plants. We present a revised model of 3D growth in which PpNOG2 comprises part of a feedback mechanism that is required for the modulation of gametophore initial cell frequency. We also propose that the 2D to 3D growth transition in P. patens is underpinned by complex auxin-cytokinin crosstalk that is regulated, at least in part, by changes in flavonoid metabolism.
Collapse
Affiliation(s)
- Laura A Moody
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Roxaana Clayton
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Zoe Weeks
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - David M Emms
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
4
|
Odahara M, Kishita Y, Sekine Y. MSH1 maintains organelle genome stability and genetically interacts with RECA and RECG in the moss Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:455-465. [PMID: 28407383 DOI: 10.1111/tpj.13573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 05/15/2023]
Abstract
Chloroplast and mitochondrial DNA encodes genes that are essential for photosynthesis and respiration, respectively. Thus, loss of integrity of the genomic DNA of organelles leads to a decline in organelle function and alteration of organelle genetic information. RECA (RECA1 and RECA2) and RECG, which are homologs of bacterial homologous recombination repair (HRR) factors RecA and RecG, respectively, play an important role in the maintenance of integrity of the organelle genome by suppressing aberrant recombination between short dispersed repeats (SDRs) in the moss Physcomitrella patens. On the other hand, MutS homolog 1 (MSH1), a plant-specific MSH with a C-terminal GIY-YIG endonuclease domain, is involved in the maintenance of integrity of the organelle genome in the angiosperm Arabidopsis thaliana. Here, we address the role of the duplicated MSH1 genes, MSH1A and MSH1B, in P. patens, in which MSH1A lacks the C-terminal endonuclease domain. MSH1A and MSH1B localized to both chloroplast and mitochondrial nucleoids in protoplast cells. Single and double knockout (KO) mutants of MSH1A and MSH1B showed no obvious morphological defects; however, MSH1B KO and double KO mutants, as well as MSH1B GIY-YIG deletion mutants, exhibited genomic instability due to recombination between SDRs in chloroplasts and mitochondria. Creating double KO mutations of each combination of MSH1B, RECA2 and RECG synergistically increased recombination between SDRs in chloroplasts and mitochondria. These results show the role of MSH1 in the maintenance of integrity of the organelle genome and the genetic interaction between MSH1 and homologs of HRR factors in the basal land plant P. patens.
Collapse
Affiliation(s)
- Masaki Odahara
- Department of Life Science, College of Science, Rikkyo (St Paul's) University, Toshima-ku, Tokyo, 171-8501, Japan
| | - Yoshihito Kishita
- Department of Life Science, College of Science, Rikkyo (St Paul's) University, Toshima-ku, Tokyo, 171-8501, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo (St Paul's) University, Toshima-ku, Tokyo, 171-8501, Japan
| |
Collapse
|
5
|
Cells reprogramming to stem cells inhibit the reprogramming of adjacent cells in the moss Physcomitrella patens. Sci Rep 2017; 7:1909. [PMID: 28507289 PMCID: PMC5432521 DOI: 10.1038/s41598-017-01786-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 03/31/2017] [Indexed: 11/08/2022] Open
Abstract
Under certain circumstances differentiated cells can be reprogrammed to form stem cells in land plants, but only a portion of the cells reprograms successfully. A long-distance inhibitory signal from reprogrammed cells to surrounding cells has been reported in some ferns. Here we show the existence of anisotropic inhibitory signal to regulate stem cell formation in the moss Physcomitrella patens. When single cells were isolated from a gametophore leaf, over 90% of them were reprogrammed to stem cells with characteristic nuclear expansion. By contrast, when two adjacent cells were isolated, the nuclei of both cells expanded, but successful reprogramming of both cells occurred only in approximately one fifth of the pairs. When three aligned cells were isolated, the reprogramming rate of both edge cells decreased with a living middle cell but did not with a dead middle cell. Furthermore, unequal conversion into stem cells was more prominent in cell pairs aligned parallel to the proximal-distal leaf axis than in those perpendicular to the axis. This study gives an insight into the role of the inhibitory signal in development and evolution as well as the efficient stem cell induction from differentiated cells.
Collapse
|
6
|
Odahara M, Masuda Y, Sato M, Wakazaki M, Harada C, Toyooka K, Sekine Y. RECG maintains plastid and mitochondrial genome stability by suppressing extensive recombination between short dispersed repeats. PLoS Genet 2015; 11:e1005080. [PMID: 25769081 PMCID: PMC4358946 DOI: 10.1371/journal.pgen.1005080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/18/2015] [Indexed: 11/25/2022] Open
Abstract
Maintenance of plastid and mitochondrial genome stability is crucial for photosynthesis and respiration, respectively. Recently, we have reported that RECA1 maintains mitochondrial genome stability by suppressing gross rearrangements induced by aberrant recombination between short dispersed repeats in the moss Physcomitrella patens. In this study, we studied a newly identified P. patens homolog of bacterial RecG helicase, RECG, some of which is localized in both plastid and mitochondrial nucleoids. RECG partially complements recG deficiency in Escherichia coli cells. A knockout (KO) mutation of RECG caused characteristic phenotypes including growth delay and developmental and mitochondrial defects, which are similar to those of the RECA1 KO mutant. The RECG KO cells showed heterogeneity in these phenotypes. Analyses of RECG KO plants showed that mitochondrial genome was destabilized due to a recombination between 8–79 bp repeats and the pattern of the recombination partly differed from that observed in the RECA1 KO mutants. The mitochondrial DNA (mtDNA) instability was greater in severe phenotypic RECG KO cells than that in mild phenotypic ones. This result suggests that mitochondrial genomic instability is responsible for the defective phenotypes of RECG KO plants. Some of the induced recombination caused efficient genomic rearrangements in RECG KO mitochondria. Such loci were sometimes associated with a decrease in the levels of normal mtDNA and significant decrease in the number of transcripts derived from the loci. In addition, the RECG KO mutation caused remarkable plastid abnormalities and induced recombination between short repeats (12–63 bp) in the plastid DNA. These results suggest that RECG plays a role in the maintenance of both plastid and mitochondrial genome stability by suppressing aberrant recombination between dispersed short repeats; this role is crucial for plastid and mitochondrial functions. Recombinational DNA repair plays an important role in the maintenance of genomic stability by repairing DNA double-strand breaks and stalled replication forks. However, recombination between nonallelic similar sequences such as dispersed repeated sequences results in genomic instability. Plant plastid and mitochondrial genomes are compact (generally approximately 100–500 kb in size), but they contain essential genes. A substantial number of repeats are dispersed in these genomes, particularly in the mitochondrial genome. In this study, we showed that a knockout mutation of the newly identified plant-specific homolog of bacterial RecG DNA helicase RECG caused some defects in plastids and significant defects in the mitochondria. The organelle genomes in these mutants were destabilized by induced aberrant recombination between short (<100 bp) dispersed repeats. Recombination was induced at repeats as short as 8 bp. This suggests that RECG maintains plastid and mitochondrial genome stability by suppressing aberrant recombination between short dispersed repeats. Because such a phenomenon, to our knowledge, has not been observed in bacterial recG mutants, our results suggest an organelle-specific genome maintenance system distinct from that of bacteria.
Collapse
Affiliation(s)
- Masaki Odahara
- Department of Life Science, College of Science, Rikkyo (St. Paul’s) University, Toshima-ku, Tokyo, Japan
| | - Yuichi Masuda
- Department of Life Science, College of Science, Rikkyo (St. Paul’s) University, Toshima-ku, Tokyo, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa, Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa, Japan
| | - Chizuru Harada
- Department of Life Science, College of Science, Rikkyo (St. Paul’s) University, Toshima-ku, Tokyo, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo (St. Paul’s) University, Toshima-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
7
|
Bonhomme S, Nogué F, Rameau C, Schaefer DG. Usefulness of Physcomitrella patens for studying plant organogenesis. Methods Mol Biol 2013; 959:21-43. [PMID: 23299666 DOI: 10.1007/978-1-62703-221-6_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this chapter, we review the main organogenesis features and associated regulation processes of the moss Physcomitrella patens (P. patens), the model plant for the Bryophytes. We highlight how the study of this descendant of the earliest plant species that colonized earth, brings useful keys to understand the mechanisms that determine and control both vascular and non vascular plants organogenesis. Despite its simple morphogenesis pattern, P. patens still requires the fine tuning of organogenesis regulators, including hormone signalling, common to the whole plant kingdom, and which study is facilitated by a high number of molecular tools, among which the powerful possibility of gene targeting/replacement. The recent discovery of moss cells reprogramming capacity completes the picture of an excellent model for studying plant organogenesis.
Collapse
Affiliation(s)
- Sandrine Bonhomme
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France.
| | | | | | | |
Collapse
|
8
|
Suetsugu N, Sato Y, Tsuboi H, Kasahara M, Imaizumi T, Kagawa T, Hiwatashi Y, Hasebe M, Wada M. The KAC Family of Kinesin-Like Proteins is Essential for the Association of Chloroplasts with the Plasma Membrane in Land Plants. ACTA ACUST UNITED AC 2012; 53:1854-65. [DOI: 10.1093/pcp/pcs133] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
9
|
Aoyama T, Hiwatashi Y, Shigyo M, Kofuji R, Kubo M, Ito M, Hasebe M. AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens. Development 2012; 139:3120-9. [PMID: 22833122 DOI: 10.1242/dev.076091] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Stem cells are formed at particular times and positions during the development of multicellular organisms. Whereas flowering plants form stem cells only in the sporophyte generation, non-seed plants form stem cells in both the sporophyte and gametophyte generations. Although the molecular mechanisms underlying stem cell formation in the sporophyte generation have been extensively studied, only a few transcription factors involved in the regulation of gametophyte stem cell formation have been reported. The moss Physcomitrella patens forms a hypha-like body (protonema) and a shoot-like body (gametophore) from a protonema apical cell and a gametophore apical cell, respectively. These apical cells have stem cell characteristics and are formed as side branches of differentiated protonema cells. Here, we show that four AP2-type transcription factors orthologous to Arabidopsis thaliana AINTEGUMENTA, PLETHORA and BABY BOOM (APB) are indispensable for the formation of gametophore apical cells from protonema cells. Quadruple disruption of all APB genes blocked gametophore formation, even in the presence of cytokinin, which enhances gametophore apical cell formation in the wild type. All APB genes were expressed in emerging gametophore apical cells, but not in protonema apical cells. Heat-shock induction of an APB4 transgene driven by a heat-shock promoter increased the number of gametophores. Expression of all APB genes was induced by auxin but not by cytokinin. Thus, the APB genes function synergistically with cytokinin signaling to determine the identity of the two types of stem cells.
Collapse
Affiliation(s)
- Tsuyoshi Aoyama
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Kulkarni AR, Peña MJ, Avci U, Mazumder K, Urbanowicz BR, Pattathil S, Yin Y, O'Neill MA, Roberts AW, Hahn MG, Xu Y, Darvill AG, York WS. The ability of land plants to synthesize glucuronoxylans predates the evolution of tracheophytes. Glycobiology 2011; 22:439-51. [PMID: 22048859 DOI: 10.1093/glycob/cwr117] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glucuronoxylans with a backbone of 1,4-linked β-D-xylosyl residues are ubiquitous in the secondary walls of gymnosperms and angiosperms. Xylans have been reported to be present in hornwort cell walls, but their structures have not been determined. In contrast, the presence of xylans in the cell walls of mosses and liverworts remains a subject of debate. Here we present data that unequivocally establishes that the cell walls of leafy tissue and axillary hair cells of the moss Physcomitrella patens contain a glucuronoxylan that is structurally similar to glucuronoxylans in the secondary cell walls of vascular plants. Some of the 1,4-linked β-D-xylopyranosyl residues in the backbone of this glucuronoxylan bear an α-D-glucosyluronic acid (GlcpA) sidechain at O-2. In contrast, the lycopodiophyte Selaginella kraussiana synthesizes a glucuronoxylan substituted with 4-O-Me-α-D-GlcpA sidechains, as do many hardwood species. The monilophyte Equisetum hyemale produces a glucuronoxylan with both 4-O-Me-α-D-GlcpA and α-D-GlcpA sidechains, as does Arabidopsis. The seedless plant glucuronoxylans contain no discernible amounts of the reducing-end sequence that is characteristic of gymnosperm and eudicot xylans. Phylogenetic studies showed that the P. patens genome contains genes with high sequence similarity to Arabidopsis CAZy family GT8, GT43 and GT47 glycosyltransferases that are likely involved in xylan synthesis. We conclude that mosses synthesize glucuronoxylan that is structurally similar to the glucuronoxylans present in the secondary cell walls of lycopodiophytes, monilophytes, and many seed-bearing plants, and that several of the glycosyltransferases required for glucuronoxylan synthesis evolved before the evolution of tracheophytes.
Collapse
Affiliation(s)
- Ameya R Kulkarni
- Complex Carbohydrate Research Center and US Department of Energy Bioenergy Science Center, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Saleh O, Issman N, Seumel GI, Stav R, Samach A, Reski R, Frank W, Arazi T. MicroRNA534a control of BLADE-ON-PETIOLE 1 and 2 mediates juvenile-to-adult gametophyte transition in Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:661-674. [PMID: 21235646 DOI: 10.1111/j.1365-313x.2010.04451.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The Arabidopsis thaliana BLADE-ON-PETIOLE genes encode a pair of transcriptional coactivators that regulate lateral organ architecture by promoting cell differentiation in their proximal regions. To gain insight into the roles of BOP genes early in land plant evolution, we characterized the functions of Physcomitrella patens BOP1 and BOP2 and their negative regulator Pp-miR534a. We show that in ΔPpMIR534a mutants lacking mature Pp-miR534a, cleavage of PpBOP1/2 is abolished, leading to elevated PpBOP1/2 transcript levels. These loss-of-function mutants display an accelerated gametophore development thus correlating elevated levels of PpBOP1/2 with premature bud formation. This is further supported by our finding that exposure to cytokinin, which is known to induce bud formation on caulonema, downregulates PpMIR534a transcription and increases the accumulation of PpBOP1 in apical caulonema cells. Reporter gene fusions showed that PpMIR534a is ubiquitously expressed in protonema whereas PpBOP1/2 accumulation is restricted almost exclusively to potent caulonema apical cells and their side branch initials, but absent from differentiated cells. Together, our data propose that PpBOP1/2 act as positive regulators of protonema differentiation and that Pp-miR534a is required to control the timing of the juvenile-to-adult gametophyte transition by spatially restricting their expression to caulonema stem cells. As protonemata develop, increased cytokinin levels downregulate Pp-MIR534a transcription in these cells until a threshold level of PpBOP1/2 is reached that triggers cell differentiation and bud formation.
Collapse
Affiliation(s)
- Omar Saleh
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hayashi KI, Horie K, Hiwatashi Y, Kawaide H, Yamaguchi S, Hanada A, Nakashima T, Nakajima M, Mander LN, Yamane H, Hasebe M, Nozaki H. Endogenous diterpenes derived from ent-kaurene, a common gibberellin precursor, regulate protonema differentiation of the moss Physcomitrella patens. PLANT PHYSIOLOGY 2010; 153:1085-97. [PMID: 20488896 PMCID: PMC2899919 DOI: 10.1104/pp.110.157909] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Gibberellins (GAs) are a group of diterpene-type plant hormones biosynthesized from ent-kaurene via ent-kaurenoic acid. GAs are ubiquitously present in seed plants. The GA signal is perceived and transduced by the GID1 GA receptor/DELLA repressor pathway. The lycopod Selaginella moellendorffii biosynthesizes GA and has functional GID1-DELLA signaling components. In contrast, no GAs or functionally orthologous GID1-DELLA components have been found in the moss Physcomitrella patens. However, P. patens produces ent-kaurene, a common precursor for GAs, and possesses a functional ent-kaurene synthase, PpCPS/KS. To assess the biological role of ent-kaurene in P. patens, we generated a PpCPS/KS disruption mutant that does not accumulate ent-kaurene. Phenotypic analysis demonstrates that the mutant has a defect in the protonemal differentiation of the chloronemata to caulonemata. Gas chromatography-mass spectrometry analysis shows that P. patens produces ent-kaurenoic acid, an ent-kaurene metabolite in the GA biosynthesis pathway. The phenotypic defect of the disruptant was recovered by the application of ent-kaurene or ent-kaurenoic acid, suggesting that ent-kaurenoic acid, or a downstream metabolite, is involved in protonemal differentiation. Treatment with uniconazole, an inhibitor of ent-kaurene oxidase in GA biosynthesis, mimics the protonemal phenotypes of the PpCPS/KS mutant, which were also restored by ent-kaurenoic acid treatment. Interestingly, the GA(9) methyl ester, a fern antheridiogen, rescued the protonemal defect of the disruption mutant, while GA(3) and GA(4), both of which are active GAs in angiosperms, did not. Our results suggest that the moss P. patens utilizes a diterpene metabolite from ent-kaurene as an endogenous developmental regulator and provide insights into the evolution of GA functions in land plants.
Collapse
Affiliation(s)
- Ken-ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lazarow K, Lütticke S. An Ac/Ds-mediated gene trap system for functional genomics in barley. BMC Genomics 2009; 10:55. [PMID: 19178688 PMCID: PMC2647555 DOI: 10.1186/1471-2164-10-55] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 01/29/2009] [Indexed: 01/17/2023] Open
Abstract
Background Gene trapping is a powerful tool for gene discovery and functional genomics in both animals and plants. Upon insertion of the gene trap construct into an expressed gene, splice donor and acceptor sites facilitate the generation of transcriptional fusions between the flanking sequence and the reporter. Consequently, detection of reporter gene expression allows the identification of genes based on their expression pattern. Up to now rice is the only cereal crop for which gene trap approaches exist. In this study we describe a gene trap system in barley (Hordeum vulgare L.) based on the maize transposable elements Ac/Ds. Results We generated gene trap barley lines by crossing Ac transposase expressing plants with multiple independent transformants carrying the Ds based gene trap construct GTDsB. Upstream of the β-Glucuronidase start codon GTDsB carries splice donor and acceptor sites optimized for monocotyledonous plants. DNA blot analysis revealed GTDsB transposition frequencies of 11% and 26% in the F1 and F2 generation of gene trap lines and perpetuation of transposition activity in later generations. Furthermore, analysis of sequences flanking transposed GTDsB elements evidenced preferential insertion into expressed regions of the barley genome. We screened leaves, nodes, immature florets, pollinated florets, immature grains and seedlings of F2 plants and detected GUS expression in 51% (72/141) of the plants. Thus, reporter gene expression was found in 24 of the 28 F1 lines tested and in progeny of all GTDsB parental lines. Conclusion Due to the frequent transposition of GTDsB and the efficient expression of the GUS reporter gene, we conclude that this Ac/Ds-based gene trap system is an applicable approach for gene discovery in barley. The successful introduction of a gene trap construct optimized for monocots in barley contributes a novel functional genomics tool for this cereal crop.
Collapse
Affiliation(s)
- Katina Lazarow
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.
| | | |
Collapse
|
14
|
Hiwatashi Y, Obara M, Sato Y, Fujita T, Murata T, Hasebe M. Kinesins are indispensable for interdigitation of phragmoplast microtubules in the moss Physcomitrella patens. THE PLANT CELL 2008; 20:3094-106. [PMID: 19028965 PMCID: PMC2613662 DOI: 10.1105/tpc.108.061705] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 10/23/2008] [Accepted: 11/08/2008] [Indexed: 05/18/2023]
Abstract
Microtubules form arrays with parallel and antiparallel bundles and function in various cellular processes, including subcellular transport and cell division. The antiparallel bundles in phragmoplasts, plant-unique microtubule arrays, are mostly unexplored and potentially offer new cellular insights. Here, we report that the Physcomitrella patens kinesins KINID1a and KINID1b (for kinesin for interdigitated microtubules 1a and 1b), which are specific to land plants and orthologous to Arabidopsis thaliana PAKRP2, are novel factors indispensable for the generation of interdigitated antiparallel microtubules in the phragmoplasts of the moss P. patens. KINID1a and KINID1b are predominantly localized to the putative interdigitated parts of antiparallel microtubules. This interdigitation disappeared in double-deletion mutants of both genes, indicating that both KINID1a and 1b are indispensable for interdigitation of the antiparallel microtubule array. Furthermore, cell plates formed by these phragmoplasts did not reach the plasma membrane in approximately 20% of the mutant cells examined. We observed that in the double-deletion mutant lines, chloroplasts remained between the plasma membrane and the expanding margins of the cell plate, while chloroplasts were absent from the margins of the cell plates in the wild type. This suggests that the kinesins, the antiparallel microtubule bundles with interdigitation, or both are necessary for proper progression of cell wall expansion.
Collapse
Affiliation(s)
- Yuji Hiwatashi
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Fujita T, Sakaguchi H, Hiwatashi Y, Wagstaff SJ, Ito M, Deguchi H, Sato T, Hasebe M. Convergent evolution of shoots in land plants: lack of auxin polar transport in moss shoots. Evol Dev 2008; 10:176-86. [PMID: 18315811 DOI: 10.1111/j.1525-142x.2008.00225.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The shoot is a repeated structure made up of stems and leaves and is the basic body plan in land plants. Vascular plants form a shoot in the diploid generation, whereas nonvascular plants such as mosses form a shoot in the haploid generation. It is not clear whether all land plants use similar molecular mechanisms in shoot development or how the genetic networks for shoot development evolved. The control of auxin distribution, especially by polar auxin transport, is essential for shoot development in flowering plants. We did not detect polar auxin transport in the gametophytic shoots of several mosses, but did detect it in the sporophytes of mosses without shoot structure. Treatment with auxin transport inhibitors resulted in abnormal embryo development, as in flowering plants, but did not cause any morphological changes in the haploid shoots. We fused the soybean auxin-inducible promoter GH3 with a GUS reporter gene and used it to indirectly detect auxin distribution in the moss Physcomitrella patens. An auxin transport inhibitor NPA did not cause any changes in the putative distribution of auxin in the haploid shoot. These results indicate that polar auxin transport is not involved in haploid shoot development in mosses and that shoots in vascular plants and mosses are most likely regulated differently during development.
Collapse
|
16
|
Nagae M, Nakata M, Takahashi Y. Identification of negative cis-acting elements in response to copper in the chloroplastic iron superoxide dismutase gene of the moss Barbula unguiculata. PLANT PHYSIOLOGY 2008; 146:1687-96. [PMID: 18258690 PMCID: PMC2287343 DOI: 10.1104/pp.107.114868] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Superoxide dismutases (SODs) are ubiquitous metalloenzymes that catalyze the dismutation of superoxide radicals. Chloroplasts have two isozymes, copper/zinc SOD (Cu/ZnSOD) and iron SOD (FeSOD), encoded by nuclear genes. Because bryophytes are considered as the earliest land plants, they are one of the most interesting plant models for adaptation against oxidative stress. In a previous study, we found that the FeSOD gene was expressed under Cu-deficient conditions and repressed under high-Cu-supply conditions; on the other hand, the Cu/ZnSOD gene was induced by Cu in a moss, Barbula unguiculata. The expression of Cu/ZnSOD and FeSOD is coordinately regulated at the transcriptional level depending on metal bioavailability. Here, using transgenic moss plants, we determined that the GTACT motif is a negative cis-acting element of the moss FeSOD gene in response to Cu. Furthermore, we found that a plant-specific transcription factor, PpSBP2 (for SQUAMOSA promoter-binding protein), and its related proteins bound to the GTACT motif repressed the expression of the FeSOD gene. The moss FeSOD gene was negatively regulated by Cu in transgenic Nicotiana tabacum plants, and the Arabidopsis thaliana FeSOD gene promoter containing the GTACT motif was repressed by Cu. Our results suggested that molecular mechanisms of GTACT motif-dependent transcriptional suppression by Cu are conserved in land plants.
Collapse
Affiliation(s)
- Miwa Nagae
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | | | | |
Collapse
|
17
|
Zhang J, Li C, Wu C, Xiong L, Chen G, Zhang Q, Wang S. RMD: a rice mutant database for functional analysis of the rice genome. Nucleic Acids Res 2006; 34:D745-8. [PMID: 16381972 PMCID: PMC1347379 DOI: 10.1093/nar/gkj016] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rice Mutant Database (RMD, ) is an archive for collecting, managing and searching information of the T-DNA insertion mutants generated by an enhancer trap system. We have generated ∼129 000 rice mutant (enhancer trap) lines that are now being gathered in the database. Information collected in RMD includes mutant phenotypes, reporter-gene expression patterns, flanking sequences of T-DNA insertional sites, seed availability and others, and can be searched by respective ID, keyword, nucleotide sequence or protein sequence on the website. This database is both a mutant collection for identifying novel genes and regulatory elements and a pattern line collection for ectopic expression of target gene in specific tissue or at specific growth stage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiping Wang
- To whom correspondence should be addressed. Tel: +86 27 87283009; Fax: +86 27 87287092;
| |
Collapse
|
18
|
Sano R, Juárez CM, Hass B, Sakakibara K, Ito M, Banks JA, Hasebe M. KNOX homeobox genes potentially have similar function in both diploid unicellular and multicellular meristems, but not in haploid meristems. Evol Dev 2005; 7:69-78. [PMID: 15642091 DOI: 10.1111/j.1525-142x.2005.05008.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Members of the class 1 knotted-like homeobox (KNOX) gene family are important regulators of shoot apical meristem development in angiosperms. To determine whether they function similarly in seedless plants, three KNOX genes (two class 1 genes and one class 2 gene) from the fern Ceratopteris richardii were characterized. Expression of both class 1 genes was detected in the shoot apical cell, leaf primordia, marginal part of the leaves, and vascular bundles by in situ hybridization, a pattern that closely resembles that of class 1 KNOX genes in angiosperms with compound leaves. The fern class 2 gene was expressed in all sporophyte tissues examined, which is characteristic of class 2 gene expression in angiosperms. All three CRKNOX genes were not detected in gametophyte tissues by RNA gel blot analysis. Arabidopsis plants overexpressing the fern class 1 genes resembled plants that overexpress seed plant class 1 KNOX genes in leaf morphology. Ectopic expression of the class 2 gene in Arabidopsis did not result in any unusual phenotypes. Taken together with phylogenetic analysis, our results suggest that (a) the class 1 and 2 KNOX genes diverged prior to the divergence of fern and seed plant lineages, (b) the class 1 KNOX genes function similarly in seed plant and fern sporophyte meristem development despite their differences in structure, (c) KNOX gene expression is not required for the development of the fern gametophyte, and (d) the sporophyte and gametophyte meristems of ferns are not regulated by the same developmental mechanisms at the molecular level.
Collapse
Affiliation(s)
- Ryosuke Sano
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Hayashida A, Takechi K, Sugiyama M, Kubo M, Itoh RD, Takio S, Fujita T, Hiwatashi Y, Hasebe M, Takano H. Isolation of mutant lines with decreased numbers of chloroplasts per cell from a tagged mutant library of the moss Physcomitrella patens. PLANT BIOLOGY (STUTTGART, GERMANY) 2005; 7:300-6. [PMID: 15912450 DOI: 10.1055/s-2005-837691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Eleven mutant lines exhibiting decreased numbers of chloroplasts per cell were isolated from 8 800 tagged mutant lines of Physcomitrella patens by microscopic observations. Chloronema subapical cells in wild-type plants had a mean of 48 chloroplasts, whereas chloroplast numbers in subapical cells in mutant lines 215 and 222 decreased to 75 % of that in the wild type. Seven mutant lines - 473, 122, 221, 129, 492, 207, and 138 - had about half as many chloroplasts as the wild type. Mutant line 11 had a few remarkably enlarged chloroplasts, and mutant line 347 had chloroplasts of various sizes. Whereas the cell volume was the same as in the wild type in mutant lines 222, 473, 221, 129, 492, and 207, the cell volume of the other mutants increased. The chloroplast number of leaf cells was the same as that of chloronema cells in each mutant line when gametophores could be formed. Treatment with ampicillin decreased the number of chloroplasts in all mutant lines. Southern hybridization using DNA in tags as probes showed that only one insertion occurred in mutant lines 473 and 221. To determine whether the tagged DNA inserted into the known genes for plastid division, we isolated the PpMinD1, PpMinD2, and PpMinE1 genes. Genomic polymerase chain reaction analysis showed that the PpFtsZ and PpMinD/E genes were not disrupted by the insertion of the tags in mutant lines 11 and 347, respectively.
Collapse
Affiliation(s)
- A Hayashida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Frank W, Decker EL, Reski R. Molecular tools to study Physcomitrella patens. PLANT BIOLOGY (STUTTGART, GERMANY) 2005; 7:220-7. [PMID: 15912441 DOI: 10.1055/s-2005-865645] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The moss Physcomitrella patens has become a suitable model plant system for the analysis of diverse aspects of modern plant biology. The research strategies have been influenced by the implementation of state-of-the-art cell culture and molecular biology techniques. The forthcoming completion of the Physcomitrella genome sequencing project will generate many open questions, the examination of which will rely on a diverse set of molecular tools. Within this article, we intend to introduce the essential cell culture and molecular biology techniques which have been adopted in recent years to make Physcomitrella amenable to a wide range of genetic analyses. Many research groups have made valuable contributions to improve the methodology for the study of Physcomitrella. We would like to apologise to all colleagues whose important contributions could not be cited within this manuscript.
Collapse
Affiliation(s)
- W Frank
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
21
|
Schween G, Egener T, Fritzowsky D, Granado J, Guitton MC, Hartmann N, Hohe A, Holtorf H, Lang D, Lucht JM, Reinhard C, Rensing SA, Schlink K, Schulte J, Reski R. Large-scale analysis of 73 329 physcomitrella plants transformed with different gene disruption libraries: production parameters and mutant phenotypes. PLANT BIOLOGY (STUTTGART, GERMANY) 2005; 7:228-37. [PMID: 15912442 DOI: 10.1055/s-2005-837692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Gene targeting in the moss Physcomitrella patens has created a new platform for plant functional genomics. We produced a mutant collection of 73 329 Physcomitrella plants and evaluated the phenotype of each transformant in comparison to wild type Physcomitrella. Production parameters and morphological changes in 16 categories, such as plant structure, colour, coverage with gametophores, cell shape, etc., were listed and all data were compiled in a database (mossDB). Our mutant collection consists of at least 1804 auxotrophic mutants which showed growth defects on minimal Knop medium but were rescued on supplemented medium. 8129 haploid and 11 068 polyploid transformants had morphological alterations. 9 % of the haploid transformants had deviations in the leaf shape, 7 % developed less gametophores or had a different leaf cell shape. Other morphological deviations in plant structure, colour, and uniformity of leaves on a moss colony were less frequently observed. Preculture conditions of the plant material and the cDNA library (representing genes from either protonema, gametophore or sporophyte tissue) used to transform Physcomitrella had an effect on the number of transformants per transformation. We found correlations between ploidy level and plant morphology and growth rate on Knop medium. In haploid transformants correlations between the percentage of plants with specific phenotypes and the cDNA library used for transformation were detected. The number of different cDNAs present during transformation had no effect on the number of transformants per transformation, but it had an effect on the overall percentage of plants with phenotypic deviations. We conclude that by linking incoming molecular, proteome, and metabolome data of the transformants in the future, the database mossDB will be a valuable biological resource for systems biology.
Collapse
Affiliation(s)
- G Schween
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Brücker G, Mittmann F, Hartmann E, Lamparter T. Targeted site-directed mutagenesis of a heme oxygenase locus by gene replacement in the moss Ceratodon purpureus. PLANTA 2005; 220:864-74. [PMID: 15578218 DOI: 10.1007/s00425-004-1411-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 09/16/2004] [Indexed: 05/24/2023]
Abstract
The moss Physcomitrella patens is so far the only plant species in which it is possible for nuclear genes to be modified by homologous recombination at a reasonably efficiency. Here we describe the use of homologous recombination for another moss, Ceratodon purpureus. Our approach is based on the repair of the ptr116 mutant allele. In this mutant, codon 31 of the heme oxygenase gene CpHO1 is mutated to a stop codon. Heme oxygenase is necessary for the conversion of heme to biliverdin, the precursor of the phytochrome chromophore. Thus, in ptr116 the phytochrome-mediated responses of phototropism, chlorophyll accumulation and branching are lost. Protoplast transformation with DNA encoding the wild-type protein resulted in a rescue of 0.8% of regenerated protoplasts. In about half of the analyzed lines, formation of CpHO1 concatemers was observed at the CpHO1 locus, whereas in the other half, the mutant CpHO1 gene was replaced by a single DNA copy. This gene repair led to the exchange of single bases, and thus provides the first demonstration of efficient site-directed mutagenesis in a plant nuclear genome. Our studies also revealed an effective mechanism for gene inactivation in Ceratodon. When wild-type protoplasts were transformed with intact or modified CpHO1 genes, approximately 40% of regenerated protoplasts showed the ptr phenotype.
Collapse
Affiliation(s)
- Gerhard Brücker
- Pflanzenphysiologie, Freie Universität Berlin, Königin Luise Str. 12-16, 14195, Berlin, Germany.
| | | | | | | |
Collapse
|
23
|
Thornton LE, Keren N, Ohad I, Pakrasi HB. Physcomitrella patens and Ceratodon purpureus, mosses as model organisms in photosynthesis studies. PHOTOSYNTHESIS RESEARCH 2005; 83:87-96. [PMID: 16143910 DOI: 10.1007/s11120-004-5577-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 10/29/2004] [Indexed: 05/04/2023]
Abstract
With the discovery of targeted gene replacement, moss biology has been rapidly advancing over the last 10 years. This study demonstrates the usefulness of moss as a model organism for plant photosynthesis research. The two mosses examined in this study, Physcomitrella patens and Ceratodon purpureus, are easily cultured through vegetative propagation. Growth tests were conducted to determine carbon sources suitable for maintaining heterotrophic growth while photosynthesis was blocked. Photosynthetic parameters examined in these plants indicated that the photosynthetic activity of Ceratodon and Physcomitrella is more similar to vascular plants than cyanobacteria or green algae. Ceratodon plants grown heterotrophically appeared etiolated in that the plants were taller and plastids did not differentiate thylakoid membranes. After returning to the light, the plants developed green, photosynthetically active chloroplasts. Furthermore, UV-induced mutagenesis was used to show that photosynthesis-deficient mutant Ceratodon plants could be obtained. After screening approximately 1000 plants, we obtained a number of mutants, which could be arranged into the following categories: high fluorescence, low fluorescence, fast and slow fluorescence quenching, and fast and slow greening. Our results indicate that in vivo biophysical analysis of photosynthetic activity in the mosses can be carried out which makes both mosses useful for photosynthesis studies, and Ceratodon best sustains perturbations in photosynthetic activity.
Collapse
Affiliation(s)
- Leeann E Thornton
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|
24
|
Sakakibara K, Nishiyama T, Sumikawa N, Kofuji R, Murata T, Hasebe M. Involvement of auxin and a homeodomain-leucine zipper I gene in rhizoid development of the moss Physcomitrella patens. Development 2003; 130:4835-46. [PMID: 12917289 DOI: 10.1242/dev.00644] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Differentiation of epidermal cells is important for plants because they are in direct contact with the environment. Rhizoids are multicellular filaments that develop from the epidermis in a wide range of plants, including pteridophytes, bryophytes, and green algae; they have similar functions to root hairs in vascular plants in that they support the plant body and are involved in water and nutrient absorption. In this study, we examined mechanisms underlying rhizoid development in the moss, Physcomitrella patens, which is the only land plant in which high-frequency gene targeting is possible. We found that rhizoid development can be split into two processes: determination and differentiation. Two types of rhizoids with distinct developmental patterns (basal and mid-stem rhizoids) were recognized. The development of basal rhizoids from epidermal cells was induced by exogenous auxin, while that of mid-stem rhizoids required an unknown factor in addition to exogenous auxin. Once an epidermal cell had acquired a rhizoid initial cell fate, expression of the homeodomain-leucine zipper I gene Pphb7 was induced. Analysis of Pphb7 disruptant lines showed that Pphb7 affects the induction of pigmentation and the increase in the number and size of chloroplasts, but not the position or number of rhizoids. This is the first report on the involvement of a homeodomain-leucine zipper I gene in epidermal cell differentiation.
Collapse
|
25
|
Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Li X, Zhou DX, Wang S, Zhang Q. Development of enhancer trap lines for functional analysis of the rice genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:418-27. [PMID: 12887592 DOI: 10.1046/j.1365-313x.2003.01808.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Enhancer trapping has provided a powerful strategy for identifying novel genes and regulatory elements. In this study, we adopted an enhancer trap system, consisting of the GAL4/VP16-UAS elements with GUS as the reporter, to generate a trapping population of rice. Currently, 31 443 independent transformants were obtained from two cultivars using Agrobacterium-mediated T-DNA insertion. PCR tests and DNA blot hybridization showed that about 94% of the transformants contained T-DNA insertions. The transformants carried, on average, two copies of the T-DNA, and 42% of the transformants had single-copy insertions. Histochemical assays of approximately 1000 T0 plants revealed various patterns of the reporter gene expression, including expression in only one tissue, and simultaneously in two or more tissues. The expression pattern of the reporter gene in T1 families corresponded well with the T0 plants and segregated in a 3 : 1 Mendelian ratio in majority of the T1 families tested. The frequency of reporter gene expression in the enhancer trap lines was much higher than that in gene trap lines reported previously. Analysis of flanking sequences of T-DNA insertion sites from about 200 transformants showed that almost all the sequences had homology with the sequences in the rice genome databases. Morphologically conspicuous mutations were observed in about 7.5% of the 2679 T1 families that were field-tested, and segregation in more than one-third of the families fit the 3 : 1 ratio. It was concluded that GAL4/VP16-UAS elements provided a useful system for enhancer trap in rice.
Collapse
Affiliation(s)
- Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Reiss B. Homologous recombination and gene targeting in plant cells. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 228:85-139. [PMID: 14667043 DOI: 10.1016/s0074-7696(03)28003-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gene targeting has become an indispensable tool for functional genomics in yeast and mouse; however, this tool is still missing in plants. This review discusses the gene targeting problem in plants in the context of general knowledge on recombination and gene targeting. An overview on the history of gene targeting is followed by a general introduction to genetic recombination of bacteria, yeast, and vertebrates. This abridged discussion serves as a guide to the following sections, which cover plant-specific aspects of recombination assay systems, the mechanism of recombination, plant recombination genes, the relationship of recombination to the environment, approaches to stimulate homologous recombination and gene targeting, and a description of two plant systems, the moss Physcomitrella patens and the chloroplast, that naturally have high efficiencies of gene targeting. The review concludes with a discussion of alternatives to gene targeting.
Collapse
Affiliation(s)
- Bernd Reiss
- Max-Planck-Institut für Zuechtungsforschung, Carl-von-Linne-Weg 10, D-50829 Köln, Germany
| |
Collapse
|
27
|
Schaefer DG. A new moss genetics: targeted mutagenesis in Physcomitrella patens. ANNUAL REVIEW OF PLANT BIOLOGY 2002; 53:477-501. [PMID: 12221986 DOI: 10.1146/annurev.arplant.53.100301.135202] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The potential of moss as a model system to study plant biology is associated with their relatively simple developmental pattern that nevertheless resembles the basic organization of the body plan of land plants, the direct access to cell-lineage analysis, their similar responses to plant growth factors and environmental stimuli as those observed in other land plants, and the dominance of the gametophyte in the life cycle that facilitates genetic approaches. Transformation studies in the moss Physcomitrella patens have revealed a totally unique feature for plants, i.e., that foreign DNA sequences integrate in the genome preferentially at targeted locations by homologous recombination, enabling for the first time in plants the application of the powerful molecular genetic approaches used routinely in bacteria, yeast, and since 1989, the mouse embryonic stem cells. This article reviews our current knowledge of Physcomitrella patens transformation and its unique suitability for functional genomic studies.
Collapse
Affiliation(s)
- Didier G Schaefer
- Institut d'Ecologie, Laboratoire de Phytogénétique Cellulaire, Bâtiment de Biologie, Université de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
28
|
Affiliation(s)
- D G Schaefer
- Laboratoire de Phytogénétique Cellulaire, Institut d'Ecologie, Université de Lausanne, CH 1015 Lausanne, Switzerland.
| | | |
Collapse
|