1
|
Havird JC, Noe GR, Link L, Torres A, Logan DC, Sloan DB, Chicco AJ. Do angiosperms with highly divergent mitochondrial genomes have altered mitochondrial function? Mitochondrion 2019; 49:1-11. [PMID: 31229574 PMCID: PMC6885534 DOI: 10.1016/j.mito.2019.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
Angiosperm mitochondrial (mt) genes are generally slow-evolving, but multiple lineages have undergone dramatic accelerations in rates of nucleotide substitution and extreme changes in mt genome structure. While molecular evolution in these lineages has been investigated, very little is known about their mt function. Some studies have suggested altered respiration in individual taxa, although there are several reasons why mt variation might be neutral in others. Here, we develop a new protocol to characterize respiration in isolated plant mitochondria and apply it to species of Silene with mt genomes that are rapidly evolving, highly fragmented, and exceptionally large (~11 Mbp). This protocol, complemented with traditional measures of plant fitness, cytochrome c oxidase activity assays, and fluorescence microscopy, was also used to characterize inter- and intraspecific variation in mt function. Contributions of the individual "classic" OXPHOS complexes, the alternative oxidase, and external NADH dehydrogenases to overall mt respiratory flux were found to be similar to previously studied angiosperms with more typical mt genomes. Some differences in mt function could be explained by inter- and intraspecific variation. This study suggests that Silene species with peculiar mt genomes still show relatively normal mt respiration. This may be due to strong purifying selection on mt variants, coevolutionary responses in the nucleus, or a combination of both. Future experiments should explore such questions using a comparative framework and investigating other lineages with unusual mitogenomes.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, USA; Department of Integrative Biology, The University of Texas, Austin, TX, USA.
| | - Gregory R Noe
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Luke Link
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Amber Torres
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - David C Logan
- IRHS, INRA, Université d'Angers, AGROCAMPUS-Ouest, SFR 4207 QUASAV, 49071 Beaucouzé cedex, France
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Tarasenko TA, Tarasenko VI, Koulintchenko MV, Klimenko ES, Konstantinov YM. DNA Import into Plant Mitochondria: Complex Approach for in organello and in vivo Studies. BIOCHEMISTRY (MOSCOW) 2019; 84:817-828. [DOI: 10.1134/s0006297919070113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Niazi AK, Delannoy E, Iqbal RK, Mileshina D, Val R, Gabryelska M, Wyszko E, Soubigou-Taconnat L, Szymanski M, Barciszewski J, Weber-Lotfi F, Gualberto JM, Dietrich A. Mitochondrial Transcriptome Control and Intercompartment Cross-Talk During Plant Development. Cells 2019; 8:E583. [PMID: 31200566 PMCID: PMC6627697 DOI: 10.3390/cells8060583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 01/17/2023] Open
Abstract
We address here organellar genetic regulation and intercompartment genome coordination. We developed earlier a strategy relying on a tRNA-like shuttle to mediate import of nuclear transgene-encoded custom RNAs into mitochondria in plants. In the present work, we used this strategy to drive trans-cleaving hammerhead ribozymes into the organelles, to knock down specific mitochondrial RNAs and analyze the regulatory impact. In a similar approach, the tRNA mimic was used to import into mitochondria in Arabidopsis thaliana the orf77, an RNA associated with cytoplasmic male sterility in maize and possessing sequence identities with the atp9 mitochondrial RNA. In both cases, inducible expression of the transgenes allowed to characterise early regulation and signaling responses triggered by these respective manipulations of the organellar transcriptome. The results imply that the mitochondrial transcriptome is tightly controlled by a "buffering" mechanism at the early and intermediate stages of plant development, a control that is released at later stages. On the other hand, high throughput analyses showed that knocking down a specific mitochondrial mRNA triggered a retrograde signaling and an anterograde nuclear transcriptome response involving a series of transcription factor genes and small RNAs. Our results strongly support transcriptome coordination mechanisms within the organelles and between the organelles and the nucleus.
Collapse
Affiliation(s)
- Adnan Khan Niazi
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan.
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France.
| | - Rana Khalid Iqbal
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Daria Mileshina
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Romain Val
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Marta Gabryelska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France.
| | - Maciej Szymanski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, A. Mickiewicz University Poznan, Ul. Umultowska 89, 61-614 Poznan, Poland.
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland.
- NanoBioMedical Centre of the Adam Mickiewicz University, Umultowska 85, 61614 Poznan, Poland.
| | - Frédérique Weber-Lotfi
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - José Manuel Gualberto
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - André Dietrich
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
4
|
Florentz C, Giegé R. History of tRNA research in strasbourg. IUBMB Life 2019; 71:1066-1087. [PMID: 31185141 DOI: 10.1002/iub.2079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
The tRNA molecules, in addition to translating the genetic code into protein and defining the second genetic code via their aminoacylation by aminoacyl-tRNA synthetases, act in many other cellular functions and dysfunctions. This article, illustrated by personal souvenirs, covers the history of ~60 years tRNA research in Strasbourg. Typical examples point up how the work in Strasbourg was a two-way street, influenced by and at the same time influencing investigators outside of France. All along, research in Strasbourg has nurtured the structural and functional diversity of tRNA. It produced massive sequence and crystallographic data on tRNA and its partners, thereby leading to a deeper physicochemical understanding of tRNA architecture, dynamics, and identity. Moreover, it emphasized the role of nucleoside modifications and in the last two decades, highlighted tRNA idiosyncrasies in plants and organelles, together with cellular and health-focused aspects. The tRNA field benefited from a rich local academic heritage and a strong support by both university and CNRS. Its broad interlinks to the worldwide community of tRNA researchers opens to an exciting future. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1066-1087, 2019.
Collapse
Affiliation(s)
- Catherine Florentz
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France.,Direction de la Recherche et de la Valorisation, Université de Strasbourg, F-67084, 4 rue Blaise Pascal, Strasbourg, France
| | - Richard Giegé
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France
| |
Collapse
|
5
|
Verechshagina NA, Konstantinov YM, Kamenski PA, Mazunin IO. Import of Proteins and Nucleic Acids into Mitochondria. BIOCHEMISTRY (MOSCOW) 2018; 83:643-661. [DOI: 10.1134/s0006297918060032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Salinas-Giegé T, Giegé R, Giegé P. tRNA biology in mitochondria. Int J Mol Sci 2015; 16:4518-59. [PMID: 25734984 PMCID: PMC4394434 DOI: 10.3390/ijms16034518] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 01/23/2023] Open
Abstract
Mitochondria are the powerhouses of eukaryotic cells. They are considered as semi-autonomous because they have retained genomes inherited from their prokaryotic ancestor and host fully functional gene expression machineries. These organelles have attracted considerable attention because they combine bacterial-like traits with novel features that evolved in the host cell. Among them, mitochondria use many specific pathways to obtain complete and functional sets of tRNAs as required for translation. In some instances, tRNA genes have been partially or entirely transferred to the nucleus and mitochondria require precise import systems to attain their pool of tRNAs. Still, tRNA genes have also often been maintained in mitochondria. Their genetic arrangement is more diverse than previously envisaged. The expression and maturation of mitochondrial tRNAs often use specific enzymes that evolved during eukaryote history. For instance many mitochondria use a eukaryote-specific RNase P enzyme devoid of RNA. The structure itself of mitochondrial encoded tRNAs is also very diverse, as e.g., in Metazoan, where tRNAs often show non canonical or truncated structures. As a result, the translational machinery in mitochondria evolved adapted strategies to accommodate the peculiarities of these tRNAs, in particular simplified identity rules for their aminoacylation. Here, we review the specific features of tRNA biology in mitochondria from model species representing the major eukaryotic groups, with an emphasis on recent research on tRNA import, maturation and aminoacylation.
Collapse
Affiliation(s)
- Thalia Salinas-Giegé
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| | - Richard Giegé
- Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France.
| | - Philippe Giegé
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| |
Collapse
|
7
|
Salinas T, El Farouk-Ameqrane S, Ubrig E, Sauter C, Duchêne AM, Maréchal-Drouard L. Molecular basis for the differential interaction of plant mitochondrial VDAC proteins with tRNAs. Nucleic Acids Res 2014; 42:9937-48. [PMID: 25114051 PMCID: PMC4150812 DOI: 10.1093/nar/gku728] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In plants, the voltage-dependent anion-selective channel (VDAC) is a major component of a pathway involved in transfer RNA (tRNA) translocation through the mitochondrial outer membrane. However, the way in which VDAC proteins interact with tRNAs is still unknown. Potato mitochondria contain two major mitochondrial VDAC proteins, VDAC34 and VDAC36. These two proteins, composed of a N-terminal α-helix and of 19 β-strands forming a β-barrel structure, share 75% sequence identity. Here, using both northwestern and gel shift experiments, we report that these two proteins interact differentially with nucleic acids. VDAC34 binds more efficiently with tRNAs or other nucleic acids than VDAC36. To further identify specific features and critical amino acids required for tRNA binding, 21 VDAC34 mutants were constructed and analyzed by northwestern. This allowed us to show that the β-barrel structure of VDAC34 and the first 50 amino acids that contain the α-helix are essential for RNA binding. Altogether the work shows that during evolution, plant mitochondrial VDAC proteins have diverged so as to interact differentially with nucleic acids, and this may reflect their involvement in various specialized biological functions.
Collapse
Affiliation(s)
- Thalia Salinas
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Samira El Farouk-Ameqrane
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Elodie Ubrig
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Claude Sauter
- Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS, associated with Strasbourg University, 15 rue René Descartes 67084 Strasbourg cedex, France
| | - Anne-Marie Duchêne
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Laurence Maréchal-Drouard
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| |
Collapse
|
8
|
Smirnova EV, Lakunina VA, Tarassov I, Krasheninnikov IA, Kamenski PA. Noncanonical functions of aminoacyl-tRNA synthetases. BIOCHEMISTRY (MOSCOW) 2012; 77:15-25. [PMID: 22339629 DOI: 10.1134/s0006297912010026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aminoacyl-tRNA synthetases, together with their main function of covalent binding of an amino acid to a corresponding tRNA, also perform many other functions. They take part in regulation of gene transcription, apoptosis, translation, and RNA splicing. Some of them function as cytokines or catalyze different reactions in living cells. Noncanonical functions can be mediated by additional domains of these proteins. On the other hand, some of the noncanonical functions are directly associated with the active center of the aminoacylation reaction. In this review we summarize recent data on the noncanonical functions of aminoacyl-tRNA synthetases and on the mechanisms of their action.
Collapse
Affiliation(s)
- E V Smirnova
- Department of Molecular Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | |
Collapse
|
9
|
Val R, Wyszko E, Valentin C, Szymanski M, Cosset A, Alioua M, Dreher TW, Barciszewski J, Dietrich A. Organelle trafficking of chimeric ribozymes and genetic manipulation of mitochondria. Nucleic Acids Res 2011; 39:9262-74. [PMID: 21768127 PMCID: PMC3241634 DOI: 10.1093/nar/gkr580] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 01/15/2023] Open
Abstract
With the expansion of the RNA world, antisense strategies have become widespread to manipulate nuclear gene expression but organelle genetic systems have remained aside. The present work opens the field to mitochondria. We demonstrate that customized RNAs expressed from a nuclear transgene and driven by a transfer RNA-like (tRNA-like) moiety are taken up by mitochondria in plant cells. The process appears to follow the natural tRNA import specificity, suggesting that translocation indeed occurs through the regular tRNA uptake pathway. Upon validation of the strategy with a reporter sequence, we developed a chimeric catalytic RNA composed of a specially designed trans-cleaving hammerhead ribozyme and a tRNA mimic. Organelle import of the chimeric ribozyme and specific target cleavage within mitochondria were demonstrated in transgenic tobacco cell cultures and Arabidopsis thaliana plants, providing the first directed knockdown of a mitochondrial RNA in a multicellular eukaryote. Further observations point to mitochondrial messenger RNA control mechanisms related to the plant developmental stage and culture conditions. Transformation of mitochondria is only accessible in yeast and in the unicellular alga Chlamydomonas. Based on the widespread tRNA import pathway, our data thus make a breakthrough for direct investigation and manipulation of mitochondrial genetics.
Collapse
Affiliation(s)
- Romain Val
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland and Department of Microbiology, Oregon State University, Corvallis, Oregon 97331-3804, USA
| | - Eliza Wyszko
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland and Department of Microbiology, Oregon State University, Corvallis, Oregon 97331-3804, USA
| | - Clarisse Valentin
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland and Department of Microbiology, Oregon State University, Corvallis, Oregon 97331-3804, USA
| | - Maciej Szymanski
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland and Department of Microbiology, Oregon State University, Corvallis, Oregon 97331-3804, USA
| | - Anne Cosset
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland and Department of Microbiology, Oregon State University, Corvallis, Oregon 97331-3804, USA
| | - Malek Alioua
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland and Department of Microbiology, Oregon State University, Corvallis, Oregon 97331-3804, USA
| | - Theo W. Dreher
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland and Department of Microbiology, Oregon State University, Corvallis, Oregon 97331-3804, USA
| | - Jan Barciszewski
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland and Department of Microbiology, Oregon State University, Corvallis, Oregon 97331-3804, USA
| | - André Dietrich
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland and Department of Microbiology, Oregon State University, Corvallis, Oregon 97331-3804, USA
| |
Collapse
|
10
|
Mileshina D, Koulintchenko M, Konstantinov Y, Dietrich A. Transfection of plant mitochondria and in organello gene integration. Nucleic Acids Res 2011; 39:e115. [PMID: 21715377 PMCID: PMC3177224 DOI: 10.1093/nar/gkr517] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Investigation and manipulation of mitochondrial genetics in animal and plant cells remains restricted by the lack of an efficient in vivo transformation methodology. Mitochondrial transfection in whole cells and maintenance of the transfected DNA are main issues on this track. We showed earlier that isolated mitochondria from different organisms can import DNA. Exploiting this mechanism, we assessed the possibility to maintain exogenous DNA in plant organelles. Whereas homologous recombination is scarce in the higher plant nuclear compartment, recombination between large repeats generates the multipartite structure of the plant mitochondrial genome. These processes are under strict surveillance to avoid extensive genomic rearrangements. Nevertheless, following transfection of isolated organelles with constructs composed of a partial gfp gene flanked by fragments of mitochondrial DNA, we demonstrated in organello homologous recombination of the imported DNA with the resident DNA and integration of the reporter gene. Recombination yielded insertion of a continuous exogenous DNA fragment including the gfp sequence and at least 0.5 kb of flanking sequence on each side. According to our observations, transfection constructs carrying multiple sequences homologous to the mitochondrial DNA should be suitable and targeting of most regions in the organelle genome should be feasible, making the approach of general interest.
Collapse
|
11
|
Michaud M, Cognat V, Duchêne AM, Maréchal-Drouard L. A global picture of tRNA genes in plant genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:80-93. [PMID: 21443625 DOI: 10.1111/j.1365-313x.2011.04490.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Although transfer RNA (tRNA) has a fundamental role in cell life, little is known about tRNA gene organization and expression on a genome-wide scale in eukaryotes, particularly plants. Here, we analyse the content and distribution of tRNA genes in five flowering plants and one green alga. The tRNA gene content is homogenous in plants, and is mostly correlated with genome size. The number of tRNA pseudogenes and organellar-like tRNA genes present in nuclear genomes varies greatly from one plant species to another. These pseudogenes or organellar-like genes appear to be generated or inserted randomly during evolution. Interestingly, we identified a new family of tRNA-related short interspersed nuclear elements (SINEs) in the Populus trichocarpa nuclear genome. In higher plants, intron-containing tRNA genes are rare, and correspond to genes coding for tRNA(Tyr) and tRNA(Mete) . By contrast, in green algae, more than half of the tRNA genes contain an intron. This suggests divergent means of intron acquisition and the splicing process between green algae and land plants. Numerous tRNAs are co-transcribed in Chlamydomonas, but they are mostly transcribed as a single unit in flowering plants. The only exceptions are tRNA(Gly) -snoRNA and tRNA(Mete) -snoRNA cotranscripts in dicots and monocots, respectively. The internal or external motifs required for efficient transcription of tRNA genes by RNA polymerase III are well conserved among angiosperms. A brief analysis of the mitochondrial and plastidial tRNA gene populations is also provided.
Collapse
Affiliation(s)
- Morgane Michaud
- Institut de Biologie Moléculaire des Plantes, UPR 2357-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
12
|
Mitochondrial RNA import: from diversity of natural mechanisms to potential applications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:145-90. [PMID: 21414588 DOI: 10.1016/b978-0-12-386043-9.00004-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria, owing to their bacterial origin, still contain their own DNA. However, the majority of bacterial genes were lost or transferred to the nuclear genome and the biogenesis of the "present-day" mitochondria mainly depends on the expression of the nuclear genome. Thus, most mitochondrial proteins and a small number of mitochondrial RNAs (mostly tRNAs) expressed from nuclear genes need to be imported into the organelle. During evolution, macromolecule import systems were universally established. The processes of protein mitochondrial import are very well described in the literature. By contrast, deciphering the mitochondrial RNA import phenomenon is still a real challenge. The purpose of this review is to present a general survey of our present knowledge in this field in different model organisms, protozoa, plants, yeast, and mammals. Questions still under debate and major challenges are discussed. Mitochondria are involved in numerous human diseases. The targeting of macromolecule to mitochondria represents a promising way to fight mitochondrial disorders and recent developments in this area of research are presented.
Collapse
|
13
|
Lithgow T, Schneider A. Evolution of macromolecular import pathways in mitochondria, hydrogenosomes and mitosomes. Philos Trans R Soc Lond B Biol Sci 2010; 365:799-817. [PMID: 20124346 PMCID: PMC2817224 DOI: 10.1098/rstb.2009.0167] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
All eukaryotes require mitochondria for survival and growth. The origin of mitochondria can be traced down to a single endosymbiotic event between two probably prokaryotic organisms. Subsequent evolution has left mitochondria a collection of heterogeneous organelle variants. Most of these variants have retained their own genome and translation system. In hydrogenosomes and mitosomes, however, the entire genome was lost. All types of mitochondria import most of their proteome from the cytosol, irrespective of whether they have a genome or not. Moreover, in most eukaryotes, a variable number of tRNAs that are required for mitochondrial translation are also imported. Thus, import of macromolecules, both proteins and tRNA, is essential for mitochondrial biogenesis. Here, we review what is known about the evolutionary history of the two processes using a recently revised eukaryotic phylogeny as a framework. We discuss how the processes of protein import and tRNA import relate to each other in an evolutionary context.
Collapse
Affiliation(s)
- Trevor Lithgow
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestr. 3, CH-3012 Bern, Switzerland
| |
Collapse
|
14
|
Duchêne AM, Pujol C, Maréchal-Drouard L. Import of tRNAs and aminoacyl-tRNA synthetases into mitochondria. Curr Genet 2008; 55:1-18. [PMID: 19083240 DOI: 10.1007/s00294-008-0223-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/21/2008] [Accepted: 11/24/2008] [Indexed: 12/13/2022]
Abstract
During evolution, most of the bacterial genes from the ancestral endosymbiotic alpha-proteobacteria at the origin of mitochondria have been either lost or transferred to the nuclear genome. A crucial evolutionary step was the establishment of macromolecule import systems to allow the come back of proteins and RNAs into the organelle. Paradoxically, the few mitochondria-encoded protein genes remain essential and must be translated by a mitochondrial translation machinery mainly constituted by nucleus-encoded components. Two crucial partners of the mitochondrial translation machinery are the aminoacyl-tRNA synthetases and the tRNAs. All mitochondrial aminoacyl-tRNA synthetases and many tRNAs are imported from the cytosol into the mitochondria in eukaryotic cells. During the last few years, their origin and their import into the organelle have been studied in evolutionary distinct organisms and we review here what is known in this field.
Collapse
Affiliation(s)
- Anne-Marie Duchêne
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche du CNRS, Associated with Louis Pasteur University, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France.
| | | | | |
Collapse
|
15
|
Salinas T, Duchêne AM, Maréchal-Drouard L. Recent advances in tRNA mitochondrial import. Trends Biochem Sci 2008; 33:320-9. [DOI: 10.1016/j.tibs.2008.04.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 04/22/2008] [Accepted: 04/22/2008] [Indexed: 02/02/2023]
|
16
|
Cognat V, Deragon JM, Vinogradova E, Salinas T, Remacle C, Maréchal-Drouard L. On the evolution and expression of Chlamydomonas reinhardtii nucleus-encoded transfer RNA genes. Genetics 2008; 179:113-23. [PMID: 18493044 PMCID: PMC2390591 DOI: 10.1534/genetics.107.085688] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 03/18/2008] [Indexed: 11/18/2022] Open
Abstract
In Chlamydomonas reinhardtii, 259 tRNA genes were identified and classified into 49 tRNA isoaccepting families. By constructing phylogenetic trees, we determined the evolutionary history for each tRNA gene family. The majority of the tRNA sequences are more closely related to their plant counterparts than to animals ones. Northern experiments also permitted us to show that at least one member of each tRNA isoacceptor family is transcribed and correctly processed in vivo. A short stretch of T residues known to be a signal for termination of polymerase III transcription was found downstream of most tRNA genes. It allowed us to propose that the vast majority of the tRNA genes are expressed and to confirm that numerous tRNA genes separated by short spacers are indeed cotranscribed. Interestingly, in silico analyses and hybridization experiments show that the cellular tRNA abundance is correlated with the number of tRNA genes and is adjusted to the codon usage to optimize translation efficiency. Finally, we studied the origin of SINEs, short interspersed elements related to tRNAs, whose presence in Chlamydomonas is exceptional. Phylogenetic analysis strongly suggests that tRNA(Asp)-related SINEs originate from a prokaryotic-type tRNA either horizontally transferred from a bacterium or originally present in mitochondria or chloroplasts.
Collapse
Affiliation(s)
- Valérie Cognat
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357, Conventionnée avec l'Université Louis Pasteur (Strasbourg 1), Centre National de la Recherche Scientifique, 67084 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
17
|
Bouzaidi-Tiali N, Aeby E, Charrière F, Pusnik M, Schneider A. Elongation factor 1a mediates the specificity of mitochondrial tRNA import in T. brucei. EMBO J 2007; 26:4302-12. [PMID: 17853889 PMCID: PMC2034667 DOI: 10.1038/sj.emboj.7601857] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 08/22/2007] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial tRNA import is widespread in eukaryotes. Yet, the mechanism that determines its specificity is unknown. Previous in vivo experiments using the tRNAs(Met), tRNA(Ile) and tRNA(Lys) have suggested that the T-stem nucleotide pair 51:63 is the main localization determinant of tRNAs in Trypanosoma brucei. In the cytosol-specific initiator tRNA(Met), this nucleotide pair is identical to the main antideterminant that prevents interaction with cytosolic elongation factor (eEF1a). Here we show that ablation of cytosolic eEF1a, but not of initiation factor 2, inhibits mitochondrial import of newly synthesized tRNAs well before translation or growth is affected. tRNA(Sec) is the only other cytosol-specific tRNA in T. brucei. It has its own elongation factor and does not bind eEF1a. However, a mutant of the tRNA(Sec) expected to bind to eEF1a is imported into mitochondria. This import requires eEF1a and aminoacylation of the tRNA. Thus, for a tRNA to be imported into the mitochondrion of T. brucei, it needs to bind eEF1a, and it is this interaction that mediates the import specificity.
Collapse
Affiliation(s)
- Nabile Bouzaidi-Tiali
- Department of Biology/Cell and Developmental Biology, University of Fribourg, Chemin du Musée 10, Fribourg, Switzerland
| | - Eric Aeby
- Department of Biology/Cell and Developmental Biology, University of Fribourg, Chemin du Musée 10, Fribourg, Switzerland
| | - Fabien Charrière
- Department of Biology/Cell and Developmental Biology, University of Fribourg, Chemin du Musée 10, Fribourg, Switzerland
| | - Mascha Pusnik
- Department of Biology/Cell and Developmental Biology, University of Fribourg, Chemin du Musée 10, Fribourg, Switzerland
| | - André Schneider
- Department of Biology/Cell and Developmental Biology, University of Fribourg, Chemin du Musée 10, Fribourg, Switzerland
- Department of Biology, University of Fribourg, Chemin du Musee 10, Fribourg 1700, Switzerland. Tel.: +41 26 300 8877; Fax: +41 26 300 9741; E-mail:
| |
Collapse
|
18
|
Mukhopadhyay A, Weiner H. Delivery of drugs and macromolecules to mitochondria. Adv Drug Deliv Rev 2007; 59:729-38. [PMID: 17659805 PMCID: PMC2267434 DOI: 10.1016/j.addr.2007.06.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 06/12/2007] [Indexed: 01/24/2023]
Abstract
Mitochondria is where the bulk of the cell's ATP is produced. Mutations occur to genes coding for members of the complexes involved in energy production. Some are a result of damages to nuclear coded genes and others to mitochondrial coded genes. This review describes approaches to bring small molecules, proteins and RNA/DNA into mitochondria. The purpose is to repair damaged genes as well as to interrupt mitochondrial function including energy production, oxygen radical formation and the apoptotic pathway.
Collapse
Affiliation(s)
- Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, Indiana 47907-2063, USA.
| | | |
Collapse
|
19
|
Kamenski PA, Vinogradova EN, Krasheninnikov IA, Tarassov IA. Directed import of macromolecules into mitochondria. Mol Biol 2007. [DOI: 10.1134/s0026893307020021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Tsuji S, Ueda K, Nishiyama T, Hasebe M, Yoshikawa S, Konagaya A, Nishiuchi T, Yamaguchi K. The chloroplast genome from a lycophyte (microphyllophyte), Selaginella uncinata, has a unique inversion, transpositions and many gene losses. JOURNAL OF PLANT RESEARCH 2007; 120:281-90. [PMID: 17297557 DOI: 10.1007/s10265-006-0055-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 10/25/2006] [Indexed: 05/13/2023]
Abstract
We determined the complete nucleotide sequence of the chloroplast genome of Selaginella uncinata, a lycophyte belonging to the basal lineage of the vascular plants. The circular double-stranded DNA is 144,170 bp, with an inverted repeat of 25,578 bp separated by a large single copy region (LSC) of 77,706 bp and a small single copy region (SSC) of 40,886 bp. We assigned 81 protein-coding genes including four pseudogenes, four rRNA genes and only 12 tRNA genes. Four genes, rps15, rps16, rpl32 and ycf10, found in most chloroplast genomes in land plants were not present in S. uncinata. While gene order and arrangement of the chloroplast genome of another lycophyte, Hupertzia lucidula, are almost the same as those of bryophytes, those of S. uncinata differ considerably from the typical structure of bryophytes with respect to the presence of a unique 20 kb inversion within the LSC, transposition of two segments from the LSC to the SSC and many gene losses. Thus, the organization of the S. uncinata chloroplast genome provides a new insight into the evolution of lycophytes, which were separated from euphyllophytes approximately 400 million years ago.
Collapse
Affiliation(s)
- Sumika Tsuji
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Salinas T, Duchêne AM, Delage L, Nilsson S, Glaser E, Zaepfel M, Maréchal-Drouard L. The voltage-dependent anion channel, a major component of the tRNA import machinery in plant mitochondria. Proc Natl Acad Sci U S A 2006; 103:18362-7. [PMID: 17105808 PMCID: PMC1838756 DOI: 10.1073/pnas.0606449103] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In plants, as in most eukaryotic cells, import of nuclear-encoded cytosolic tRNAs is an essential process for mitochondrial biogenesis. Despite its broad occurrence, the mechanisms governing RNA transport into mitochondria are far less understood than protein import. This article demonstrates by Northwestern and gel-shift experiments that the plant mitochondrial voltage-dependent anion channel (VDAC) protein interacts with tRNA in vitro. It shows also that this porin, known to play a key role in metabolite transport, is a major component of the channel involved in the tRNA translocation step through the plant mitochondrial outer membrane, as supported by inhibition of tRNA import into isolated mitochondria by VDAC antibodies and Ruthenium red. However VDAC is not a tRNA receptor on the outer membrane. Rather, two major components from the TOM (translocase of the outer mitochondrial membrane) complex, namely TOM20 and TOM40, are important for tRNA binding at the surface of mitochondria, suggesting that they are also involved in tRNA import. Finally, we show that proteins and tRNAs are translocated into plant mitochondria by different pathways. Together, these findings identify unexpected components of the tRNA import machinery and suggest that the plant tRNA import pathway has evolved by recruiting multifunctional proteins.
Collapse
Affiliation(s)
- Thalia Salinas
- *Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357, Conventionné avec l'Université Louis Pasteur (Strasbourg1), Centre National de la Recherche Scientifique, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France; and
| | - Anne-Marie Duchêne
- *Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357, Conventionné avec l'Université Louis Pasteur (Strasbourg1), Centre National de la Recherche Scientifique, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France; and
| | - Ludovic Delage
- *Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357, Conventionné avec l'Université Louis Pasteur (Strasbourg1), Centre National de la Recherche Scientifique, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France; and
| | - Stefan Nilsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Marlyse Zaepfel
- *Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357, Conventionné avec l'Université Louis Pasteur (Strasbourg1), Centre National de la Recherche Scientifique, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France; and
| | - Laurence Maréchal-Drouard
- *Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357, Conventionné avec l'Université Louis Pasteur (Strasbourg1), Centre National de la Recherche Scientifique, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Duchêne AM, Giritch A, Hoffmann B, Cognat V, Lancelin D, Peeters NM, Zaepfel M, Maréchal-Drouard L, Small ID. Dual targeting is the rule for organellar aminoacyl-tRNA synthetases in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2005; 102:16484-9. [PMID: 16251277 PMCID: PMC1283425 DOI: 10.1073/pnas.0504682102] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In plants, protein synthesis occurs in the cytosol, mitochondria, and plastids. Each compartment requires a full set of tRNAs and aminoacyl-tRNA synthetases. We have undertaken a systematic analysis of the targeting of organellar aminoacyl-tRNA synthetases in the model plant Arabidopsis thaliana. Dual targeting appeared to be a general rule. Among the 24 identified organellar aminoacyl-tRNA synthetases (aaRSs), 15 (and probably 17) are shared between mitochondria and plastids, and 5 are shared between cytosol and mitochondria (one of these aaRSs being present also in chloroplasts). Only two were shown to be uniquely chloroplastic and none to be uniquely mitochondrial. Moreover, there are no examples where the three aaRS genes originating from the three ancestral genomes still coexist. These results indicate that extensive exchange of aaRSs has occurred during evolution and that many are now shared between two or even three compartments. The findings have important implications for studies of the translation machinery in plants and on protein targeting and gene transfer in general.
Collapse
Affiliation(s)
- Anne-Marie Duchêne
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS) et Université Louis Pasteur, 12 Rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Salinas T, Schaeffer C, Maréchal-Drouard L, Duchêne AM. Sequence dependence of tRNA(Gly) import into tobacco mitochondria. Biochimie 2005; 87:863-72. [PMID: 15927343 DOI: 10.1016/j.biochi.2005.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2004] [Revised: 03/29/2005] [Accepted: 04/01/2005] [Indexed: 11/16/2022]
Abstract
Plant mitochondrial genomes lack a number of tRNA genes and the corresponding tRNAs, which are nuclear-encoded, are imported from the cytosol. We show that specific import of tRNA(Gly) isoacceptors occurs in tobacco mitochondria: tRNA(Gly)(UCC) and tRNA(Gly)(CCC) are cytosolic and mitochondrial, while tRNA(Gly)(GCC) is found only in the cytosol. Exchange of sequences between tRNA(Gly)(UCC) and tRNA(Gly)(GCC) shows that the anticodon and D-domain are essential for tRNA(Gly)(UCC) import. However the reverse mutations in tRNA(Gly)(GCC) are not sufficient to promote its import into tobacco mitochondria.
Collapse
Affiliation(s)
- Thalia Salinas
- Institut de Biologie Moléculaire des Plantes, UPR du CNRS no. 2357, Université Louis Pasteur, 12, rue du Général Zimmer, 67000 Strasbourg, France
| | | | | | | |
Collapse
|
24
|
Mahata B, Bhattacharyya SN, Mukherjee S, Adhya S. Correction of translational defects in patient-derived mutant mitochondria by complex-mediated import of a cytoplasmic tRNA. J Biol Chem 2004; 280:5141-4. [PMID: 15619607 DOI: 10.1074/jbc.c400572200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A variety of clinical disorders result from mutations in mitochondrial tRNA genes, leading to translational defects. We show here that a protein complex from the kinetoplastid protozoon Leishmania induces specific, ATP-dependent import of human cytoplasmic tRNA(1)(Lys) into human mitochondria in vitro. The imported tRNA undergoes efficient aminoacylation within the organelle and supports organellar protein synthesis. Moreover, translation in mitochondria from patients with myclonic epilepsy with ragged red fibers (MERRF) and Kearns-Sayre syndrome (KSS), containing mutant tRNA(Lys) genes, is stimulated to near-wild-type levels and the formation of aberrant polypeptides suppressed by complex-mediated import. These results suggest a novel way to introduce RNAs for the modulation of mitochondrial gene expression.
Collapse
Affiliation(s)
- Bidesh Mahata
- Genetic Engineering Laboratory, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Calcutta 7000032, India
| | | | | | | |
Collapse
|
25
|
Kolesnikova OA, Entelis NS, Jacquin-Becker C, Goltzene F, Chrzanowska-Lightowlers ZM, Lightowlers RN, Martin RP, Tarassov I. Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells. Hum Mol Genet 2004; 13:2519-34. [PMID: 15317755 DOI: 10.1093/hmg/ddh267] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations are an important cause of human disease for which there is no efficient treatment. Our aim was to determine whether the A8344G mitochondrial tRNA(Lys) mutation, which can cause the MERRF (myoclonic epilepsy with ragged-red fibers) syndrome, could be complemented by targeting tRNAs into mitochondria from the cytosol. Import of small RNAs into mitochondria has been demonstrated in many organisms, including protozoans, plants, fungi and animals. Although human mitochondria do not import tRNAs in vivo, we previously demonstrated that some yeast tRNA derivatives can be imported into isolated human mitochondria. We show here that yeast tRNALys derivatives expressed in immortalized human cells and in primary human fibroblasts are partially imported into mitochondria. Imported tRNAs are correctly aminoacylated and are able to participate in mitochondrial translation. In transmitochondrial cybrid cells and in patient-derived fibroblasts bearing the MERRF mutation, import of tRNALys is accompanied by a partial rescue of mitochondrial functions affected by the mutation such as mitochondrial translation, activity of respiratory complexes, electrochemical potential across the mitochondrial membrane and respiration rate. Import of a tRNALys with a mutation in the anticodon preventing recognition of the lysine codons does not lead to any rescue, whereas downregulation of the transgenic tRNAs by small interfering RNA (siRNA) transiently abolishes the functional rescue, showing that this rescue is due to the import. These findings prove for the first time the functionality of imported tRNAs in human mitochondria in vivo and highlight the potential for exploiting the RNA import pathway to treat patients with mtDNA diseases.
Collapse
Affiliation(s)
- Olga A Kolesnikova
- CNRS-FRE 2375, Institute of Physiology and Biological Chemistry, Université Louis Pasteur, 21 René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Crausaz Esseiva A, Maréchal-Drouard L, Cosset A, Schneider A. The T-stem determines the cytosolic or mitochondrial localization of trypanosomal tRNAsMet. Mol Biol Cell 2004; 15:2750-7. [PMID: 15064351 PMCID: PMC420099 DOI: 10.1091/mbc.e03-11-0821] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mitochondrion of Trypanosoma brucei lacks tRNA genes. Organellar translation therefore depends on import of cytosolic, nucleus-encoded tRNAs. Except for the cytosol-specific initiator tRNA(Met), all trypanosomal tRNAs function in both the cytosol and the mitochondrion. The initiator tRNA(Met) is closely related to the imported elongator tRNA(Met). Thus, the distinct localization of the two tRNAs(Met) must be specified by the 26 nucleotides, which differ between the two molecules. Using transgenic T. brucei cell lines and subsequent cell fractionation, we show that the T-stem is both required and sufficient to specify the localization of the tRNAs(Met). Furthermore, it was shown that the tRNA(Met) T-stem localization determinants are also functional in the context of two other tRNAs. In vivo analysis of the modified nucleotides found in the initiator tRNA(Met) indicates that the T-stem localization determinants do not require modified nucleotides. In contrast, import of native tRNAs(Met) into isolated mitochondria suggests that nucleotide modifications might be involved in regulating the extent of import of elongator tRNA(Met).
Collapse
Affiliation(s)
- Anne Crausaz Esseiva
- Department of Biology/Zoology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | | | | | |
Collapse
|
27
|
|