1
|
Amambo GN, Fombad FF, Chounna Ndongmo PW, Abong RA, Njouendou AJ, Beng AA, Nji TM, Esum ME, Fru-Cho J, Manuel R, Kebede D, Enyong PI, Hoerauf A, Koudou B, Bockarie M, Wanji S. Impact of repeated mass ivermectin administration using a community directed approach on L. loa infection in Chrysops silacea of the rain forest and forest savanna of Cameroon. Parasite Epidemiol Control 2024; 25:e00343. [PMID: 38405181 PMCID: PMC10884510 DOI: 10.1016/j.parepi.2024.e00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/22/2023] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Background Loiasis is an endemic filarial infection in the rainforest zone of West and Central Africa. Repeated annual community-directed treatment with ivermectin (CDTI) delivered for several years to control onchocerciasis has been shown to reduce the prevalence and intensity of Loiasis in some Loa loa-Onchocerca volvulus co-endemic areas. However, the impact of these multiple rounds of CDTI on entomological indicators of loiasis transmission is not known, and was therefore assessed in this study in areas with contrasting histories of CDTI. Methods The study was conducted in the East, North-west and South-west 1 CDTI project sites of Cameroon. Two communities per CDTI project were selected for fly collection and dissection. Ivermectin treatment coverage was documented in these areas, and this was correlated to Chrysops infection and infective rates. A total of 7029 female Chrysops were collected from 6 communities of the 3 CDTI projects (East, North-west, and South-west 1) and from 2 communities in a non-CDTI district (East). Results Chrysops biting densities and parous rates were significantly reduced in the North-west and South-west sites post-CDTI, while in the East, biting densities were similar in non-CDTI and CDTI sites, with higher parous rates observed in the non-CDTI site. Infection and infective rates in the East non-CDTI site were 4.4% and 1.8% respectively, as compared to 3.3% and 1.3% in the CDTI site after 10 ivermectin rounds (there were no baseline data for the latter). In the North-west site, significant reductions in Chrysops infection and infective rates from 10.2% and 4.2% respectively, to 3.5% and 1.2 (after 9 rounds of ivermectin treatment), were recorded following CDTI. In the South-west, infection rate significantly increased from 1.74% to 2.8% and infective rate remained statistically unchanged after 14 rounds of CDTI (0.45% - 0.40%). Similar trends in Mean Head L3 were observed except in the East site where this indicator was similar in both CDTI and control sites. Only in the North-west site did monthly transmission potentials decrease significantly. Conclusion This study demonstrated that the impact of repeated annual treatment with ivermectin for the control of onchocerciasis using community directed delivery approach on the entomological indicators of loiasis varies with bioecological zones. Community directed treatment with ivermectin induced a significant reduction in the entomological indicators of loiasis in the North-West project site which lies in forest savanna area. A non-significant decrease was observed in the East project site and in contrast, a significant increase was observed in the South-West 1 project site which both lies in the rainforest zones.
Collapse
Affiliation(s)
- Glory N. Amambo
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Res1earch Foundation for Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
- Centre for Neglected Tropical Diseases (Incorporating the Lymphatic Filariasis Support Centre), Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Bonn, Germany
| | - Fanny F. Fombad
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Res1earch Foundation for Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Patrick W. Chounna Ndongmo
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Res1earch Foundation for Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Raphael Awah Abong
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Res1earch Foundation for Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Abdel Jelil Njouendou
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Department of Biomedical Science, Faculty of Health Sciences, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Amuam Andrew Beng
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Res1earch Foundation for Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Theobald Mue Nji
- Res1earch Foundation for Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
- Department of Sociology and Anthropology, Faculty of Social and Management Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Mathias Eyong Esum
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Res1earch Foundation for Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Jerome Fru-Cho
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Res1earch Foundation for Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Ritter Manuel
- Institute of Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Germany
| | - Deribe Kebede
- Global Health and Infection Department, Brighton and Sussex Medical School, Brighton BN1 9PX, United Kingdom
- School of Public Health, College of Health Sciences, Addis Ababa University, Ethiopia
| | - Peter Ivo Enyong
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Res1earch Foundation for Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Germany
- German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Bonn, Germany
| | - Benjamin Koudou
- Unité de Formation et de Recherche Sciences de la Nature, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Moses Bockarie
- Centre for Neglected Tropical Diseases (Incorporating the Lymphatic Filariasis Support Centre), Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- European & Developing Countries Clinical Trials Partnership, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Samuel Wanji
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Res1earch Foundation for Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| |
Collapse
|
2
|
Chunda VC, Fombad FF, Kien CA, Ebai R, Esofi F, Ntuh AN, Ouam E, Gandjui NVT, Ekanya R, Nietcho F, Nchang LC, Magha C, Njouendou AJ, Enyong P, Hoerauf A, Wanji S, Ritter M. Comparative development of human filariae Loa loa, Onchocerca volvulus and Mansonella perstans in immunocompromised mouse strains. FRONTIERS IN TROPICAL DISEASES 2024; 5:1293632. [PMID: 38655273 PMCID: PMC7615855 DOI: 10.3389/fitd.2024.1293632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Introduction Mouse models of human filarial infections are not only urgently needed to investigate the biology of the nematodes and their modulation of the host's immunity, but will also provide a platform to screen and test novel anti-filarial drugs. Recently, murine Loa loa infection models have been stablished using immunocompromised mouse strains, whereas murine Mansonella perstans infections have not been implemented until now. Methods Therefore, we aim to establish experimental M. perstans infections using the immunocompromised mouse strains RAG2IL-2Rγ-/- (lack B, T and natural killer cells), IL-4Rα/IL-5-/- (impaired IL-4/5 signalling and eosinophil activation) and NOD.Cg-PrkdcscidIl2rgtm1Wj l/SzJ (NOD scid gamma, NSG) BALB/c mice (lack mature lymphocytes) through subcutaneous (s.c.) or intraperitoneal (i.p.) inoculation of infective stage 3 larvae (L3) isolated from engorged vectors. Results In total, 145 immunocompromised mice have been inoculated with 3,250 M. perstans, 3,337 O. volvulus, and 2,720 Loa loa L3 to comparatively analyse which immunocompromised mouse strain is susceptible to human filarial infections. Whereas, no M. perstans and O. volvulus L3 could be recovered upon 2-63 days post-inoculation, a 62-66% Loa loa L3 recovery rate could be achieved in the different mouse strains. Gender of mice, type of inoculation (s.c. or i.p.) or time point of analysis (2-63 days post inoculation) did not interfere with the success of L3 recovery. In addition, administration of the immune suppressants hydrocortisone, prednisolone and cyclophosphamide did not restore M. perstans L3 recovery rates. Discussion These findings show that RAG2IL-2Rg-/-BALB/c and C57BL/6, IL-4Rα/IL-5-/- BALB/c and NSG mice were not susceptible to M. perstans and O. volvulus L3 inoculation using the applied methods, whereas Loa loa infection could be maintained. Further studies should investigate if humanized immunocompromised mice might be susceptible to M. perstans. and O. volvulus.
Collapse
Affiliation(s)
- Valerine C. Chunda
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Fanny Fri Fombad
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Chi Anizette Kien
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Rene Ebai
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Frederick Esofi
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Anna Ning Ntuh
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Emmanuel Ouam
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Narcisse Victor Tchamatchoua Gandjui
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Relindis Ekanya
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Franck Nietcho
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Lucy Cho Nchang
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Chefor Magha
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Abdel Jelil Njouendou
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Peter Enyong
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
| | - Samuel Wanji
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Manuel Ritter
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| |
Collapse
|
3
|
Amambo GN, Innocentia N, Abong RA, Fombad FF, Njouendou AJ, Nietcho F, Ekanya R, Kien CA, Ebai R, Lenz B, Ritter M, Esum ME, Deribe K, Cho JF, Beng AA, Enyong PI, Li Z, Hübner MP, Pfarr K, Hoerauf A, Carlow C, Wanji S. Application of loop mediated isothermal amplification (LAMP) assays for the detection of Onchocerca volvulus, Loa loa and Mansonella perstans in humans and vectors. FRONTIERS IN TROPICAL DISEASES 2023; 3:1016176. [PMID: 36684508 PMCID: PMC7614089 DOI: 10.3389/fitd.2022.1016176] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Conventional diagnosis of filarial infections is based on morphological identification of microfilariae using light microscopy and requires considerable expertise, is time-consuming, and can be subjective. Loop-mediated isothermal amplification (LAMP) has advantages over microscopy or PCR because of its operational simplicity, rapidity and versatility of readout options. LAMP assays represent a major step forward in improved filarial diagnostic tools suitable for low resource settings and field applicability. The study goal was to retrospectively evaluate the performance and suitability of the O-150, RF4, and Mp419 LAMP assays for diagnosing Onchocerca volvulus, Loa loa and Mansonella perstans infections, respectively, in humans and vectors under experimental and natural field conditions. Surveys were conducted in four health districts of Cameroon using skin snip and thick blood film methods to detect skin (O. volvulus) and blood (L. loa and M. perstans) dwelling microfilaria in humans. Engorged vectors (Simulium spp., Chrysops spp., and Culicoides spp.) were evaluated by LAMP. Dissected, wild-caught vectors were also analyzed. LAMP showed a prevalence of 40.4% (O. volvulus), 17.8% (L. loa) and 36.6% (M. perstans) versus 20.6% (O. volvulus), 17.4% (L. loa) and 33.8% (M. perstans) with microscopy. Simulium spp. were dissected for microscopy and pooled for LAMP. The O-150 LAMP assay infection rate was 4.3% versus 4.1% by microscopy. Chrysops spp. were dissected and analyzed individually in the LAMP assay. The RF4 LAMP assay infection rate was 23.5% versus 3.3% with microscopy. The RF4 LAMP assay also detected parasites in Chrysops spp. fed on low microfilaremic volunteers. The Mp419 LAMP assay infection rate was 0.2% for C. milnei and 0.04% for C. grahamii, while three other species were LAMP-negative. The sensitivity, species specificity, rapidity and ease of its use of these filarial LAMP assays, and validation of their performance in the field support use as alternatives to microscopy as diagnostic and surveillance tools in global health programs aimed to eliminate onchocerciasis.
Collapse
Affiliation(s)
- Glory Ngongeh Amambo
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Ngong Innocentia
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Raphael Awah Abong
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Fanny Fri Fombad
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Abdel Jelil Njouendou
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Department of Biomedical Science, Faculty of Health Sciences, University of Buea, Buea, Cameroon
| | - Franck Nietcho
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Relindis Ekanya
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Chi Anizette Kien
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Rene Ebai
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Benjamin Lenz
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Manuel Ritter
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Mathias Eyong Esum
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Kebede Deribe
- Global Health and Infection Department, Brighton and Sussex Medical School, Brighton, United Kingdom
- School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jerome Fru Cho
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Amuam Andrew Beng
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Peter Ivo Enyong
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Zhiru Li
- New England Biolabs, Ipswich, MA, United States
| | - Marc P. Hübner
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Kenneth Pfarr
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
| | | | - Samuel Wanji
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| |
Collapse
|
4
|
Factors associated with the periodicity of Loa loa microfilaremia in the Republic of the Congo. Parasit Vectors 2022; 15:417. [DOI: 10.1186/s13071-022-05541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/02/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Loa loa microfilariae circulate in the peripheral blood of human hosts following a diurnal periodicity, with maximal microfilaremia levels generally observed between 10:00 am and 3:00 pm. Few studies have assessed factors potentially associated with this periodicity.
Methods
Microfilaremia data were collected repeatedly between 9:00 am and 8:00 pm from 13 individuals in the Republic of the Congo. Using local polynomial regression (LOESS), we determined the best models representing the dynamics of microfilaremia over this period. In a second step, using cosinor models, we evaluated the influence of sex, age, and body temperature on the periodicity of L. loa microfilaremia in blood.
Results
All subjects reached their maximum microfilaremia between 10:00 am and 4:00 pm. Individual microfilaremia showed different patterns between individuals, and some clearly showed multiple peaks within a day. LOESS provided a good fit to the observed data. Without adjustment, the maximum microfilarial density was reached around 11:00 am. Adjustment revealed three distinct modes of microfilaremia, occurring around 10:00 am, 1:00 pm, and 4:00 pm. Cosinor models also provided good fit to our data. After adjustment on body temperature, the L. loa microfilaremia fluctuation amplitude decreased significantly from 1684.8 to 310.6 microfilariae(mf)/ml and the predicted peak was estimated at 12:02 pm.
Conclusions
We characterized the periodicity of L. loa microfilaremia mathematically with two different approaches: cosinor models and LOESS regression. Both models suggest that body temperature plays a role in the variation in microfilaremia within a day. Further studies are needed to identify individual co-factors affecting microfilaremia.
Graphical Abstract
Collapse
|
5
|
Amambo GN, Abong RA, Fombad FF, Njouendou AJ, Nietcho F, Beng AA, Manuel R, Esum ME, Deribe K, Cho JF, Enyong PI, Poole C, Hoerauf A, Carlow C, Wanji S. Validation of loop-mediated isothermal amplification for the detection of Loa loa infection in Chrysops spp in experimental and natural field conditions. Parasit Vectors 2021; 14:19. [PMID: 33407819 PMCID: PMC7788981 DOI: 10.1186/s13071-020-04506-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mass drug administration of ivermectin for onchocerciasis control has contributed to a significant drop in Loa loa microfilaria loads in humans that has, in turn, led to reduction of infection levels in Chrysops vectors. Accurate parasite detection is essential for assessing loiasis transmission as it provides a potential alternative or indirect strategy for addressing the problem of co-endemic loiasis and lymphatic filariasis through the Onchocerciasis Elimination Programme and it further reflects the true magnitude of the loiasis problem as excess human mortality has been reported to be associated with the disease. Although microscopy is the gold standard for detecting the infection, the sensitivity of this method is compromised when the intensity of infection is low. The loop-mediated isothermal amplification (LAMP) assay of parasite DNA is an alternative method for detecting infection which offers operational simplicity, rapidity and versatility of visual readout options. The aim of this study was to validate the Loa loa LAMP assay for the detection of infected Chrysops spp. under experimental and natural field conditions. METHODS Two sets of 18 flies were fed on volunteers with either a low (< 10 mf/ml) or high (> 30,000mf/ml) microfilarial load. The fed flies were maintained under laboratory conditions for 14 days and then analysed using LAMP for the detection of L. loa infection. In addition, a total of 9270 flies were collected from the north-west, east, and south-west regions (SW 1 and 2) of Cameroon using sweep nets and subjected to microscopy (7841 flies) and LAMP (1291 flies plus 138 nulliparous flies) analyses. RESULTS The LAMP assay successfully detected parasites in Chrysops fed on volunteers with both low and high microfilariaemic loads. Field validation and surveillance studies revealed LAMP-based infection rates ranging from 0.5 to 31.6%, with the lowest levels in SW 2 and the highest infection rates in SW 1. The LAMP assay detected significantly higher infection rates than microscopy in four of the five study sites. CONCLUSION This study demonstrated the potential of LAMP as a simple surveillance tool. It was found to be more sensitive than microscopy for the detection of experimental and natural L. loa infections in Chrysops vectors.
Collapse
Affiliation(s)
- Glory Ngongeh Amambo
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Raphael Awah Abong
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Fanny Fri Fombad
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Abdel Jelil Njouendou
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Department of Biomedical science, Faculty of Health Sciences, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Franck Nietcho
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Amuam Andrew Beng
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Ritter Manuel
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Mathias Eyong Esum
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Kebede Deribe
- Global Health and Infection Department, Brighton and Sussex Medical School, Brighton, BN1 9PX, UK
- School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jerome Fru Cho
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Peter Ivo Enyong
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | | | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | | | - Samuel Wanji
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon.
- Research Foundation in Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon.
| |
Collapse
|
6
|
Collateral Impact of Community-Directed Treatment with Ivermectin (CDTI) for Onchocerciasis on Parasitological Indicators of Loa loa Infection. Pathogens 2020; 9:pathogens9121043. [PMID: 33322724 PMCID: PMC7764802 DOI: 10.3390/pathogens9121043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Ivermectin (IVM) is a broad spectrum endectocide whose initial indication was onchocerciasis. Although loiasis is not among its indications, IVM also exhibits antiparasitic activity against Loa loa. IVM-based preventive chemotherapies (PCs), so-called community-directed treatment with ivermectin (CDTI), have led to the interruption of transmission of onchocerciasis in some foci. A cross-sectional study was conducted in the Yabassi Health District where CDTI have been implemented since 20 years to fight onchocerciasis. All volunteers aged ≥ 5 years underwent daytime calibrated thick blood smears to search for L. loa microfilariae (mf). The prevalence of loiasis was 3.7% (95% CI: 2.2-6.2), significantly lower than its baseline prevalence (12.4%; 95% CI: 10.1-15.2; Chi-Square = 21.4; df = 1; p < 0.0001). Similarly, the microfilarial density was significantly low (mean = 1.8 mf/mL; SD = 13.6; max = 73,600) compared to baseline microfilarial density (mean = 839.3 mf/mL; SD = 6447.1; max = 130,840; Wilcoxon W = 179,904.5; p < 0.0001). This study revealed that the endemicity level of loiasis was significantly low compared to its baseline value, indicating a significant impact of IVM-based PC on this filarial disease. However, transmission is still ongoing, and heavily infected individuals are still found in communities, supporting why some individuals are still experiencing severe adverse events despite > 2 decades of CDTI in this Health District.
Collapse
|
7
|
Generation of Loa loa infective larvae by experimental infection of the vector, Chrysops silacea. PLoS Negl Trop Dis 2020; 14:e0008415. [PMID: 32804951 PMCID: PMC7470323 DOI: 10.1371/journal.pntd.0008415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 09/03/2020] [Accepted: 05/22/2020] [Indexed: 11/19/2022] Open
Abstract
Basic and translational research on loiasis, a filarial nematode infection of medical importance, is impeded by a lack of suitable Loa loa infection models and techniques of obtaining and culturing life cycle stages. We describe the development of a new method for routine production of infective third-stage larvae (L3) of L. loa from the natural intermediate arthropod vector host, Chrysops silacea, following experimental infection with purified microfilariae. At 14-days post-infection of C. silacea, the fly survival rate was 43%. Survival was significantly higher in flies injected with 50 mf (55.2%) than those that received 100 mf (31.0%). However, yield per surviving fly and total yield of L3 was markedly higher in the group of flies inoculated with 100 mf (3474 vs 2462 L3 produced). The abdominal segment hosted the highest percentage recovery of L3 (47.7%) followed by head (34.5%) and thorax (17.9%). L. loa larval survival was higher than 90% after 30 days of in vitro culture. The in vitro moulting success rate to the L4 larval stage was 59.1%. After experimental infection of RAG2-/-IL-2γc-/-mice, the average L. loa juvenile adult worm recovery rate was 10.5% at 62 dpi. More than 87% of the worms were recovered from the muscles and subcutaneous tissues. Worms recovered measured an average 24.3 mm and 11.4 mm in length for females (n = 5) and males (n = 5), respectively. In conclusion, L. loa mf injected into C. silacea intrathoracically develop into infective larvae that remain viable and infective comparable to L3 obtained through natural feeding on the human host. This technique further advances the development of a full laboratory life cycle of L. loa where mf derived from experimentally-infected animals may be utilized to passage life cycle generations via intrathoracic injections of wild-caught vector hosts.
Collapse
|
8
|
Wanji S, Tayong DB, Ebai R, Opoku V, Kien CA, Ndongmo WPC, Njouendou AJ, Ghani RN, Ritter M, Debrah YA, Layland LE, Enyong PA, Hoerauf A. Update on the biology and ecology of Culicoides species in the South-West region of Cameroon with implications on the transmission of Mansonella perstans. Parasit Vectors 2019; 12:166. [PMID: 30975194 PMCID: PMC6460808 DOI: 10.1186/s13071-019-3432-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 04/04/2019] [Indexed: 11/17/2022] Open
Abstract
Background Culicoides (Diptera; Ceratoponidae) are tiny, stout, blood-sucking flies with a near worldwide distribution. When present, they are often considered a biting nuisance but in addition, they are involved in the transmission of pathogens to humans, domestic and wild animals. Data on Culicoides species in the South-West region of Cameroon dates back to the 1950s. Over the decades, ecological transformation due to agriculture and deforestation may have affected the population dynamics of Culicoides and therefore our study provides an update of their bio-ecology in the region. Furthermore, the role of various Culicoides species in the transmission of parasitic filariae of the genus Mansonella remains inconclusive in this region. This study was designed to address these unknown issues and expand on current scientific knowledge. Results Eight species of Culicoides (C. bedfordi, C. inornatipennis, C. fulvithorax, C. grahamii, C. imicola, C. milnei, C. neavei and C. kumbaensis) were collected using light traps and human baits. Culicoides grahamii was the most abundant species, followed closely by C. milnei. Three species (C. milnei, C. grahamii and C. inornatipennis) were common in all observed larval development sites. Only four species (C. inornatipennis, C. fulvithorax, C. grahamii and C. milnei) were collected on humans. Anthropophilic species were more abundant (P < 0.001) in the evening (4–7 pm) when compared to the morning collections (6–9 am). After overnight fly collections using a drop trap with a human microfilaremic donor, C. milnei emerged as the potential host for transmitting Mansonella perstans. Substantial heterogeneity was observed between the trap visiting cycles of the various species (P < 0.001). The biting cycle of the main vector, C. milnei, showed two peaks (10–11 pm and 4–5 am), the highest being 10–11 pm. Conclusions The Culicoides fauna of the South-West region of Cameroon has not changed significantly since the 1950s. Culicoides milnei was demonstrated to be the major vector of M. perstans in this part of Cameroon. It is essentially a nocturnal species which peaks in abundance between 10 and 11 pm. Electronic supplementary material The online version of this article (10.1186/s13071-019-3432-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samuel Wanji
- Parasite and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and the Environment (REFOTDE), P.O. Box 474, Buea, Cameroon.
| | - Dizzle Bita Tayong
- Parasite and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Rene Ebai
- Parasite and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Vera Opoku
- Kumasi Centre for Collaborative Research (KCCR), Kumasi, Ghana
| | - Chi Anizette Kien
- Parasite and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Winston Patrick Chounna Ndongmo
- Parasite and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Abdel Jelil Njouendou
- Parasite and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Raymond Nsaidzedze Ghani
- Parasite and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Manuel Ritter
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Yaw Alex Debrah
- Kumasi Centre for Collaborative Research (KCCR), Kumasi, Ghana
| | - Laura E Layland
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany
| | - Peter A Enyong
- Parasite and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany
| |
Collapse
|
9
|
Badia-Rius X, Betts H, Molyneux DH, Kelly-Hope LA. Environmental factors associated with the distribution of Loa loa vectors Chrysops spp. in Central and West Africa: seeing the forest for the trees. Parasit Vectors 2019; 12:72. [PMID: 30728063 PMCID: PMC6366063 DOI: 10.1186/s13071-019-3327-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Loiasis is caused by the filarial parasite Loa loa, which is widespread through Central and West Africa and largely confined the tropical equatorial rainforests. The tabanid flies Chrysops silacea and Chrysops dimidiata are the main vectors driving transmission. This study aimed to better define the spatial distribution and ecological niche of the two vectors to help define spatial-temporal risk and target appropriate, timely intervention strategies for filariasis control and elimination programmes. METHODS Chrysops spp. distributions were determined by collating information from the published literature into a database, detailing the year, country, locality, latitude/longitude and species collected. Environmental factors including climate, elevation and tree canopy characteristics were summarised for each vector from data obtained from satellite modelled data or imagery, which were also used to identify areas with overt landcover changes. The presence of each Chrysops vector was predicted using a maximum entropy species distribution modelling (MaxEnt) method. RESULTS A total of 313 location-specific data points from 59 published articles were identified across seven loiasis endemic countries. Of these, 186 sites were included in the climate and elevation analysis, and due to overt landcover changes, 83 sites included in tree canopy analysis and MaxEnt model. Overall, C. silacea and C. dimidiata were found to have similar ranges; annual mean temperature (24.6 °C and 24.1 °C, respectively), annual precipitation (1848.6 mm and 1868.8 mm), elevation (368.8 m and 400.6 m), tree canopy cover (61.4% and 66.9%) and tree canopy height (22.4 m and 25.1 m). MaxEnt models found tree canopy coverage was a significant environmental variable for both vectors. CONCLUSIONS The Chrysops spp. database and large-scale environmental analysis provides insights into the spatial and ecological parameters of the L. loa vectors driving transmission. These may be used to further delineate loiasis risk, which will be important for implementing filariasis control and elimination programmes in the equatorial rainforest region of Central and West Africa.
Collapse
Affiliation(s)
- Xavier Badia-Rius
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hannah Betts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David H. Molyneux
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Louise A. Kelly-Hope
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
10
|
Wanji S, Chounna Ndongmo WP, Fombad FF, Kengne-Ouafo JA, Njouendou AJ, Longang Tchounkeu YF, Koudou B, Bockarie M, Fobi G, Roungou JB, Enyong PA. Impact of repeated annual community directed treatment with ivermectin on loiasis parasitological indicators in Cameroon: Implications for onchocerciasis and lymphatic filariasis elimination in areas co-endemic with Loa loa in Africa. PLoS Negl Trop Dis 2018; 12:e0006750. [PMID: 30226900 PMCID: PMC6161907 DOI: 10.1371/journal.pntd.0006750] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/28/2018] [Accepted: 08/13/2018] [Indexed: 11/18/2022] Open
Abstract
Background Loiasis is a filarial infection endemic in the rainforest zone of west and central Africa particularly in Cameroon, Gabon, Republic of Congo, and Democratic Republic of the Congo. Repeated treatments with ivermectin have been delivered using the annual community directed treatment with ivermectin (CDTI) approach for several years to control onchocerciasis in some Loa loa-Onchocerca volvulus co-endemic areas. The impact of CDTI on loiasis parasitological indicators is not known. We, therefore, designed this cross sectional study to explore the effects of several rounds of CDTI on parasitological indicators of loiasis. Methodology/Principal findings The study was conducted in the East, Northwest and Southwest 2 CDTI projects of Cameroon. Individuals who consented to participate were interviewed for ivermectin treatment history and enrolled for parasitological screening using thick smears. Ivermectin treatment history was correlated with loiasis prevalence/intensity. A total of 3,684 individuals were recruited from 36 communities of the 3 CDTI projects and 900 individuals from 9 villages in a non-CDTI district. In the East, loiasis prevalence was 29.3% (range = 24.2%–34.6%) in the non-CDTI district but 16.0% (3.3%–26.6%) in the CDTI district with 10 ivermectin rounds (there were no baseline data for the latter). In the Northwest and Southwest 2 districts, reductions from 30.5% to 17.9% (after 9 ivermectin rounds) but from 8.1% to 7.8% (not significantly different after 14 rounds) were registered post CDTI, respectively. Similar trends in infection intensity were observed in all sites. There was a negative relationship between adherence to ivermectin treatment and prevalence/intensity of infection in all sites. None of the children (aged 10–14 years) examined in the East CDTI project harboured high (8,000–30,000 mf/ml) or very high (>30,000 mf/ml) microfilarial loads. Individuals who had taken >5 ivermectin treatments were 2.1 times more likely to present with no microfilaraemia than those with less treatments. Conclusion In areas where onchocerciasis and loiasis are co-endemic, CDTI reduces the number of, and microfilaraemia in L. loa-infected individuals, and this, in turn, will help to prevent non-neurological and neurological complications post-ivermectin treatment among CDTI adherents. Loa loa (the parasite causing loiasis), also known as African eye worm, is endemic in forest areas of west and central Africa. In several of the endemic areas, it co-exists with onchocerciasis and lymphatic filariasis (LF). Because of the benefit individuals suffering from onchocerciasis could have by taking ivermectin where the disease is severe, despite the risk of developing serious side-effects due to being co-infected with L. loa, mass drug administration (MDA) of ivermectin for the control of onchocerciasis has been ongoing in areas where the two diseases overlap. Ivermectin is also effective against loiasis. It is, therefore, hypothesized that several years of ivermectin MDA against onchocerciasis in those areas may have impacted on parasitological indicators for loiasis. In particular, we assess the impact of annual community directed treatment with ivermectin (CDTI) on loiasis with specific reference to the relationship between adherence to treatment and the risk of developing severe (nervous system) complications following ivermectin treatment. We also discuss the feasibility of eliminating onchocerciasis and/or LF in areas endemic for L. loa with ivermectin as the sole intervention tool.
Collapse
Affiliation(s)
- Samuel Wanji
- Parasites and Vector Biology research unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- * E-mail:
| | - Winston Patrick Chounna Ndongmo
- Parasites and Vector Biology research unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Fanny Fri Fombad
- Parasites and Vector Biology research unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Jonas Arnaud Kengne-Ouafo
- Parasites and Vector Biology research unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Abdel Jelil Njouendou
- Parasites and Vector Biology research unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | | | - Benjamin Koudou
- Centre for Neglected Tropical Diseases (incorporating the Lymphatic Filariasis Support Centre), Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Moses Bockarie
- Centre for Neglected Tropical Diseases (incorporating the Lymphatic Filariasis Support Centre), Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Grace Fobi
- African Program for Onchocerciasis Control (APOC), Ouagadougou, Burkina Faso
| | | | - Peter A. Enyong
- Parasites and Vector Biology research unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| |
Collapse
|
11
|
Njouendou AJ, Fombad FF, O'Neill M, Zofou D, Nutting C, Ndongmo PC, Kengne-Ouafo AJ, Geary TG, Mackenzie CD, Wanji S. Heterogeneity in the in vitro susceptibility of Loa loa microfilariae to drugs commonly used in parasitological infections. Parasit Vectors 2018; 11:223. [PMID: 29615094 PMCID: PMC5883330 DOI: 10.1186/s13071-018-2799-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/15/2018] [Indexed: 01/10/2023] Open
Abstract
Background Co-infection with loiasis remains a potential problem in control programs targeting filarial infections. The effects of many anti-parasitic drugs often administered to Loa loa infected people are not well documented. This study compared the in vitro activity of several of these drugs on the viability of L. loa microfilariae (mf). Methods Human strain L. loa mf were isolated from baboon blood using iso-osmotic Percoll gradient, and cultured in RPMI 1640/10% FBS with antimalarial drugs (mefloquine, amodiaquine, artesunate, chloroquine and quinine), anthelmintics (ivermectin, praziquantel, flubendazole and its reduced and hydrolyzed metabolites), two potential trypanocidal agents (fexinidazole and Scynexis-7158) and the anticancer drug imatinib. The drug concentrations used varied between 0.156 μg/ml and 10 μg/ml. Mf motility (CR50 = 50% immotility) and a metabolic viability assay (MTT) were used to assess the effects of these drugs on the parasites. Results Mf in control cultures showed only a slight reduction in motility after 5 days of culture. Active inhibition of Loa loa motility was seen with mefloquine and amodiaquine (CR50 values of 3.87 and 4.05 μg/ml, respectively), immobilizing > 90% mf within the first 24 hours: mefloquine killed the mf after 24 hours of culture at concentrations ≥ 5 μg/ml. SCYX-7158 also induced a concentration-dependent reduction in mf motility, with > 50% reduction in mf motility seen after 5 days at 10 μg/ml. The anticancer drug imatinib reduced mf motility at 10 μg/ml from the first day of incubation to 55% by day 5, and the reduction in motility was concentration-dependent. Praziquantel and fexinidazole were inactive, and FLBZ and its metabolites, as well as ivermectin at concentrations > 5 μg/ml, had very minimal effects on mf motility over the first 4 days of culture. Conclusions The considerable action of the anti-malarial drugs mefloquine and amodiaquine on Loa mf in vitro highlights the possibility of repurposing the existing anti-infectious agents for the development of drugs against loiasis. The heterogeneity in the activity of anti-parasitic agents on Loa loa mf supports the need for further investigation using animal models of loiasis. Electronic supplementary material The online version of this article (10.1186/s13071-018-2799-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abdel J Njouendou
- Parasites and Vectors Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Fanny F Fombad
- Parasites and Vectors Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Maeghan O'Neill
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Denis Zofou
- Biotechnology unit, Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Chuck Nutting
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Patrick C Ndongmo
- Parasites and Vectors Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Arnaud J Kengne-Ouafo
- Parasites and Vectors Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Charles D Mackenzie
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA.,Filariasis Programmes Support Unit, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Samuel Wanji
- Parasites and Vectors Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.
| |
Collapse
|
12
|
Whittaker C, Walker M, Pion SD, Chesnais CB, Boussinesq M, Basáñez MG. The Population Biology and Transmission Dynamics of Loa loa. Trends Parasitol 2018; 34:335-350. [DOI: 10.1016/j.pt.2017.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 11/27/2022]
|
13
|
Kelly-Hope L, Paulo R, Thomas B, Brito M, Unnasch TR, Molyneux D. Loa loa vectors Chrysops spp.: perspectives on research, distribution, bionomics, and implications for elimination of lymphatic filariasis and onchocerciasis. Parasit Vectors 2017; 10:172. [PMID: 28381279 PMCID: PMC5382514 DOI: 10.1186/s13071-017-2103-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Loiasis is a filarial disease caused Loa loa. The main vectors are Chrysops silacea and C. dimidiata which are confined to the tropical rainforests of Central and West Africa. Loiasis is a mild disease, but individuals with high microfilaria loads may suffer from severe adverse events if treated with ivermectin during mass drug administration campaigns for the elimination of lymphatic filariasis and onchocerciasis. This poses significant challenges for elimination programmes and alternative interventions are required in L. loa co-endemic areas. The control of Chrysops has not been considered as a viable cost-effective intervention; we reviewed the current knowledge of Chrysops vectors to assess the potential for control as well as identified areas for future research. RESULTS We identified 89 primary published documents on the two main L. loa vectors C. silacea and C dimidiata. These were collated into a database summarising the publication, field and laboratory procedures, species distributions, ecology, habitats and methods of vector control. The majority of articles were from the 1950-1960s. Field studies conducted in Cameroon, Democratic Republic of Congo, Equatorial Guinea, Nigeria and Sudan highlighted that C. silacea is the most important and widespread vector. This species breeds in muddy streams or swampy areas of forests or plantations, descends from forest canopies to feed on humans during the day, is more readily adapted to human dwellings and attracted to wood fires. Main vector targeted measures proposed to impact on L. loa transmission included personal repellents, household screening, indoor residual spraying, community-based environmental management, adulticiding and larviciding. CONCLUSIONS This is the first comprehensive review of the major L. loa vectors for several decades. It highlights key vector transmission characteristics that may be targeted for vector control providing insights into the potential for integrated vector management, with multiple diseases being targeted simultaneously, with shared human and financial resources and multiple impact. Integrated vector management programmes for filarial infections, especially in low transmission areas of onchocerciasis, require innovative approaches and alternative strategies if the elimination targets established by the World Health Organization are to be achieved.
Collapse
Affiliation(s)
- Louise Kelly-Hope
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Rossely Paulo
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.,CISA, Health Research Centre of Angola, Caxito, Angola
| | - Brent Thomas
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Miguel Brito
- CISA, Health Research Centre of Angola, Caxito, Angola.,Lisbon School of Health Technology, Lisbon, Portugal
| | - Thomas R Unnasch
- College of Public Health, Department of Global Health, University of South Florida, Tampa, USA
| | - David Molyneux
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
14
|
Kelly-Hope LA, Unnasch TR, Stanton MC, Molyneux DH. Hypo-endemic onchocerciasis hotspots: defining areas of high risk through micro-mapping and environmental delineation. Infect Dis Poverty 2015; 4:36. [PMID: 26279835 PMCID: PMC4537576 DOI: 10.1186/s40249-015-0069-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/28/2015] [Indexed: 01/12/2023] Open
Abstract
Background Onchocerciasis (river blindness) caused by the parasite Onchocercavolvulus and transmitted by riverine Simulium spp. (Black flies) is targeted for elimination in Africa. This is a significant change in strategy from the ‘control’ of meso- and hyper-endemic areas through mass drug administration (MDA) with Mectizan® (ivermectin), to the ‘elimination’ in all endemic areas where a range of interventions may be required. The most significant challenges of elimination in low transmission or hypo-endemic areas are two-fold. First, there are vast remote areas where the focality of low transmission is relatively undefined. Second, the treatment with ivermectin increases the risk of serious adverse events (SAEs) in individuals with high parasitaemias of Loa loa, a filarial parasite widespread in Central and West Africa, which causes Tropical eye worm and transmitted by Chrysops spp. (Deer flies). Discussion We therefore propose novel mapping approaches using remote sensing satellite and modelled environmental data to be used in combination with rapid field surveys to help resolve the problems of targeting the expansion of onchocerciasis elimination activities in L. loa co-endemic areas. First, we demonstrate that micro-stratification overlap mapping (MOM) of available onchocerciasis and loiasis prevalence maps can be used to identify 12 key high risk areas, where low O. volvulusand high L. loa transmission overlap, which we define as “hypo-endemic hotspots”. Second we show that integrated micro-mapping of prevalence data, and the use of environmental data to delineate riverine and forest risk factors associated with Simulium spp. and Chrysops spp. vector habitats can further help to define target intervention areas i.e. secondary hotspots within hotspots, to help avoid the risk of SAEs. Summary These mapping examples demonstrate the value of bringing prevalence, entomological and ecological information together to develop maps for planned implementation and targeted strategies. This is critical as better mapping may the reduce costs and lower the L. loa associated risks, especially if there are extensive areas of low endemicity that may require treatment with ivermectin or alternative strategies. Novel cost-effective approaches are necessary if elimination of O.volvulus transmission in Africa is to be achieved in an efficient and safe way by the goal of 2025. Electronic supplementary material The online version of this article (doi:10.1186/s40249-015-0069-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Michelle C Stanton
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - David H Molyneux
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| |
Collapse
|
15
|
Wanji S, Kengne-Ouafo JA, Esum ME, Chounna PWN, Tendongfor N, Adzemye BF, Eyong JEE, Jato I, Datchoua-Poutcheu FR, Kah E, Enyong P, Taylor DW. Situation analysis of parasitological and entomological indices of onchocerciasis transmission in three drainage basins of the rain forest of South West Cameroon after a decade of ivermectin treatment. Parasit Vectors 2015; 8:202. [PMID: 25886166 PMCID: PMC4393872 DOI: 10.1186/s13071-015-0817-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Community-Directed Treatment with Ivermectin (CDTI) is the main strategy adopted by the African Programme for Onchocerciasis control (APOC). Recent reports from onchocerciasis endemic areas of savannah zones have demonstrated the feasibility of disease elimination through CDTI. Such information is lacking in rain forest zones. In this study, we investigated the parasitological and entomological indices of onchocerciasis transmission in three drainage basins in the rain forest area of Cameroon [after over a decade of CDTI]. River basins differed in terms of river number and their flow rates; and were characterized by high pre-control prevalence rates (60-98%). METHODS Nodule palpation and skin snipping were carried out in the study communities to determine the nodule rates, microfilarial prevalences and intensity. Simulium flies were caught at capture points and dissected to determine the biting, parous, infection and infective rates and the transmission potential. RESULTS The highest mean microfilaria (mf) prevalence was recorded in the Meme (52.7%), followed by Mungo (41.0%) and Manyu drainage basin (33.0%). The same trend was seen with nodule prevalence between the drainage basins. Twenty-three (23/39) communities (among which 13 in the Meme) still had mf prevalence above 40%. All the communities surveyed had community microfilarial loads (CMFL) below 10 mf/skin snip (ss). The infection was more intense in the Mungo and Meme. The intensity of infection was still high in younger individuals and children less than 10 years of age. Transmission potentials as high as 1211.7 infective larvae/person/month were found in some of the study communities. Entomological indices followed the same trend as the parasitological indices in the three river basins with the Meme having the highest values. CONCLUSION When compared with pre-control data, results of the present study show that after over a decade of CDTI, the burden of onchocerciasis has reduced. However, transmission is still going on in this study site where loiasis and onchocerciasis are co-endemic and where ecological factors strongly favour the onchocerciasis transmission. The possible reasons for this persistent and differential transmission despite over a decade of control efforts using ivermectin are discussed.
Collapse
Affiliation(s)
- Samuel Wanji
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Jonas A Kengne-Ouafo
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Mathias E Esum
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Patrick W N Chounna
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Nicholas Tendongfor
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Bridget F Adzemye
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Joan E E Eyong
- Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon. .,Department of Biological Sciences, Faculty of Science, University of Bamenda, P.O. Box 39, Bambili, North West Region, Bamenda, Cameroon.
| | - Isaac Jato
- Tropical Medicine Research station, P.O. Box 55, Kumba, Cameroon.
| | - Fabrice R Datchoua-Poutcheu
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Elvis Kah
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Department of Geography, University of Yaounde1, Yaounde, Cameroon.
| | - Peter Enyong
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Tropical Medicine Research station, P.O. Box 55, Kumba, Cameroon.
| | - David W Taylor
- Division of Pathway Medicine, School for Biomedical Studies, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
16
|
Kouam MK, Tchatchueng-Mbougua JB, Demanou M, Boussinesq M, Pion SDS, Kamgno J. Impact of repeated ivermectin treatments against onchocerciasis on the transmission of loiasis: an entomologic evaluation in central Cameroon. Parasit Vectors 2013; 6:283. [PMID: 24289520 PMCID: PMC3849770 DOI: 10.1186/1756-3305-6-283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/25/2013] [Indexed: 11/21/2022] Open
Abstract
Background Annual community-directed treatment with ivermectin (CDTI) have been carried out since 1999 in the Lekie division (central region of Cameroon where most cases of Loa-related post ivermectin severe adverse events were reported) as part of the joined activities of the African Programme for Onchocerciasis Control (APOC) and Mectizan® Donation Program (MDP). As large-scale administration of ivermetine was demonstrated to be an efficient means to control loiasis transmission, it was hypothesized that CDTI would have lowered or halted the transmission of Loa loa in the Lekie division after 13 years of annual drug administration, indicating a possible reduction in the occurrence of Loa-related post-ivermectin severe adverse events. Methods A 4-month entomologic study was carried out from March to June 2012 in the Lekie division to evaluate the impact of 13 years of CDTI on the transmission of L. loa whose baseline data were recorded in 1999–2000. Results There was a significant reduction in the infection rate for Chrysops silacea and C. dimidiata from 6.8 and 9% in 1999–2000 to 3 and 3.6% in 2012, respectively. The differences in the infective rate (IR) (percentage of flies harboring head L3 larvae), potential infective rate (PIR) (percentage of flies bearing L3 larvae), mean head L3 larvae load (MHL3) (average L3 per infective fly) and mean fly L3 larvae load (MFL3) (average L3 per potentially infective fly) for both C. silacea and C. dimidiata were not significantly different between the two investigation periods. The biting density (BD) was almost three-fold higher in 2012 for C. silacea but not for C. dimidiata. The transmission potential (TP) which is a function of the BD, was higher in the present study than in the baseline investigation for each species. Conclusion The infection rate remaining high, the high TP and the stability observed in the IR, PIR, MHL3 and MFL3 after 13 years of CDTI suggest that transmission of L. loa is still active. This is an indication that the risk of occurrence of severe adverse events such as fatal encephalopathies is still present, especially for heavily microfilaria-loaded people taken ivermectin for the first time.
Collapse
|
17
|
Abstract
OBJECTIVE To review methods for the statistical analysis of parasite and other skewed count data. METHODS Statistical methods for skewed count data are described and compared, with reference to a 10-year period of Tropical Medicine and International Health (TMIH). Two parasitological datasets are used for illustration. RESULTS The review of TMIH found 90 articles, of which 89 used descriptive methods and 60 used inferential analysis. A lack of clarity is noted in identifying the measures of location, in particular the Williams and geometric means. The different measures are compared, emphasising the legitimacy of the arithmetic mean for the skewed data. In the published articles, the t test and related methods were often used on untransformed data, which is likely to be invalid. Several approaches to inferential analysis are described, emphasising (1) non-parametric methods, while noting that they are not simply comparisons of medians, and (2) generalised linear modelling, in particular with the negative binomial distribution. Additional methods, such as the bootstrap, with potential for greater use are described. CONCLUSIONS Clarity is recommended when describing transformations and measures of location. It is suggested that non-parametric methods and generalised linear models are likely to be sufficient for most analyses.
Collapse
Affiliation(s)
- Neal Alexander
- London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
18
|
|
19
|
Wanji S, Akotshi DO, Mutro MN, Tepage F, Ukety TO, Diggle PJ, Remme JH. Validation of the rapid assessment procedure for loiasis (RAPLOA) in the Democratic Republic of Congo. Parasit Vectors 2012; 5:25. [PMID: 22300872 PMCID: PMC3292485 DOI: 10.1186/1756-3305-5-25] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 02/02/2012] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND A simple method called RAPLOA, to rapidly assess what proportion of people in a community are infected with L. loa and hence which communities are at high risk of severe adverse reactions following ivermectin treatment, was developed in Cameroon and Nigeria. The method needed further validation in other geographical and cultural contexts before its application in all endemic countries. The present study was designed to validate RAPLOA in two regions in the North East and South West of the Democratic Republic of Congo. METHODS In each study region, villages were selected from different bio-ecological zones in order to cover a wide range of loiasis endemicity. In each selected community, 80 people above the age of 15 years were interviewed for a history of eye worm (migration of adult L. loa under the conjunctiva of the eye) and parasitologically examined for the presence and intensity of L. loa infection. In total, 8100 individuals from 99 villages were enrolled into the study. RESULTS The results confirmed the findings of the original RAPLOA study: i) the eye worm phenomenon was well-known in all endemic areas, ii) there was a clear relationship between the prevalence of eye worm history and the prevalence and intensity of L. loa microfilaraemia, and iii) using a threshold of 40%, the prevalence of eye worm history was a sensitive and specific indicator of high-risk communities. CONCLUSION Following this successful validation, RAPLOA was recommended for the assessment of loiasis endemicity in areas targeted for ivermectin treatment by lymphatic filariasis and onchocerciasis control programmes.
Collapse
Affiliation(s)
- Samuel Wanji
- University of Buea, Faculty of Science, Department Microbiology and Parasitology, P.O. Box 63, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Dowo O Akotshi
- Programme National de Lutte contre l'Onchocercose, Ministère de la Santé Publique, Kinshasa, République démocratique du Congo
| | - Maurice N Mutro
- Centre de Recherche en Maladies Tropicales de l'Ituri, Hôpital Général de Référence de Rethy, République démocratique du Congo
| | - Floribert Tepage
- Programme National de Lutte contre l'Onchocercose, Ministère de la Santé Publique, Buta, République démocratique du Congo
| | - Tony O Ukety
- World Health Organization, Prevention of Blindness and Deafness, Avenue Appia 20, 1211 Geneva 27, Switzerland
| | - Peter J Diggle
- Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YB, UK
| | | |
Collapse
|
20
|
Kelly-Hope LA, Thomas BC, Bockarie MJ, Molyneux DH. Lymphatic filariasis in the Democratic Republic of Congo; micro-stratification overlap mapping (MOM) as a prerequisite for control and surveillance. Parasit Vectors 2011; 4:178. [PMID: 21923949 PMCID: PMC3183006 DOI: 10.1186/1756-3305-4-178] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Democratic Republic of Congo (DRC) has a significant burden of lymphatic filariasis (LF) caused by the parasite Wuchereria bancrofti. A major impediment to the expansion of the LF elimination programme is the risk of serious adverse events (SAEs) associated with the use of ivermectin in areas co-endemic for onchocerciasis and loiasis. It is important to analyse these and other factors, such as soil transmitted helminths (STH) and malaria co-endemicity, which will impact on LF elimination. RESULTS We analysed maps of onchocerciasis community-directed treatment with ivermectin (CDTi) from the African Programme for Onchocerciasis Control (APOC); maps of predicted prevalence of Loa loa; planned STH control maps of albendazole (and mebendazole) from the Global Atlas of Helminth Infections (GAHI); and bed nets and insecticide treated nets (ITNs) distribution from Demographic and Health Surveys (DHS) as well as published historic data which were incorporated into overlay maps. We developed an approach we designate as micro-stratification overlap mapping (MOM) to identify areas that will assist the implementation of LF elimination in the DRC. The historic data on LF was found through an extensive review of the literature as no recently published information was available. CONCLUSIONS This paper identifies an approach that takes account of the various factors that will influence not only country strategies, but suggests that country plans will require a finer resolution mapping than usual, before implementation of LF activities can be efficiently deployed. This is because 1) distribution of ivermectin through APOC projects will already have had an impact of LF intensity and prevalence 2) DRC has been up scaling bed net distribution which will impact over time on transmission of W. bancrofti and 3) recently available predictive maps of L. loa allow higher risk areas to be identified, which allow LF implementation to be initiated with reduced risk where L. loa is considered non-endemic. We believe that using the proposed MOM approach is essential for planning the expanded distribution of drugs for LF programmes in countries co-endemic for filarial infections.
Collapse
Affiliation(s)
- Louise A Kelly-Hope
- Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Brent C Thomas
- Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Moses J Bockarie
- Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - David H Molyneux
- Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
21
|
Padgett JJ, Jacobsen KH. Loiasis: African eye worm. Trans R Soc Trop Med Hyg 2008; 102:983-9. [PMID: 18466939 DOI: 10.1016/j.trstmh.2008.03.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/26/2008] [Accepted: 03/26/2008] [Indexed: 11/16/2022] Open
Abstract
The filarial parasite Loa loa is transmitted by Chrysops fly bites. Loiasis is endemic in rainforest areas of West and Central Africa, and sporadic cases have also been diagnosed in travellers and migrants. Whilst many infected persons are asymptomatic, microfilariae may be detected in the blood or adult worms may be seen under the skin or the sclera of the eye. Mass treatment programmes for onchocerciasis have raised concern about the risk of severe adverse effects when ivermectin is distributed in areas co-endemic for onchocerciasis and loiasis.
Collapse
Affiliation(s)
- Jeannie J Padgett
- Department of Global & Community Health, College of Health and Human Services, George Mason University, 4400 University Drive 5B7, Fairfax, VA 22030, USA
| | | |
Collapse
|
22
|
Estran C, Marty P, Blanc V, Faure O, Leccia MT, Pelloux H, Diebolt E, Ambrosetti D, Cardot-Leccia N. Dirofilariose humaine: 3 cas autochtones dans le sud de la France. Presse Med 2007; 36:799-803. [PMID: 17398064 DOI: 10.1016/j.lpm.2006.11.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 11/22/2006] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Dirofilariasis is a zoonosis usually found in dogs and cats. It is rare in humans, who are dead-end hosts for the parasite. CASES We report 3 cases of subcutaneous dirofilariasis due to Dirofilaria repens, contracted in the south of France (Alpes-Maritimes and Corsica). In the first two cases, the dirofilariasis manifested as lymph node enlargement; in the third case, lung disease suggested a systemic diffusion of microfilariae. DISCUSSION Dirofilaria repens dirofilariasis is due to the transmission of microfilariae by some mosquito bites (Aedes, Culex, Anopheles, Mansonia, Psorophora and Taeniorhynchus). Usually only one larva develops, producing an immature adult worm inside a node. Ultrasound examination may suggest the parasitic origin of the lesion. It is treated surgically, by excision, without chemotherapy. Very rarely, an adult worm may mature and produce systemic diffusion of microfilariae. The nodule in the third case contained a gravid adult female worm but we found no microfilariae. Dirofilariosis can present problems in diagnosis and treatment. It must be considered in patients with an isolated nodule.
Collapse
|
23
|
Pichon G, Treuil JP. Genetic determinism of parasitic circadian periodicity and subperiodicity in human lymphatic filariasis. C R Biol 2005; 327:1087-94. [PMID: 15656351 DOI: 10.1016/j.crvi.2004.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The larval parasites of the pantropical lymphatic filariasis exhibit two types of circadian behaviour. Typically, they only appear in the human bloodstream at nighttime, synchronised with their mosquito vectors. In Polynesia and parts of Southeast Asia, free of nocturnal vectors, they are found at all hours, and each population biorhythm differs. Through a geometrical approach, we explain this circadian diversity by a single, dominant mutation: the clocks of individual parasites are set at midnight (ubiquitous) or at 2 p.m. Compared to other circadian genes, this mutation must be very old, as it is shared by four biologically remote genera of parasites. This seniority sheds new light on several theoretical and practical aspects of vector-parasite temporal relations.
Collapse
Affiliation(s)
- Gaston Pichon
- Institut de recherches pour le développement (IRD), UR GEODES, 93143 Bondy cedex, France.
| | | |
Collapse
|
24
|
Wanji S, Tendongfor N, Esum M, Atanga SN, Enyong P. Heterogeneity in the prevalence and intensity of loiasis in five contrasting bioecological zones in Cameroon. Trans R Soc Trop Med Hyg 2004; 97:183-7. [PMID: 14584374 DOI: 10.1016/s0035-9203(03)90114-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The prevalence and intensity of loiasis were studied in 4532 individuals selected from 42 villages from 5 contrasting bioecological zones in Cameroon from February to July 2001. The individuals were examined for Loa loa microfilaraemia using the thick blood film method. Loiasis was heterogeneously distributed from one bioecological zone to another. The occurrence of the infection was largely related to environmental factors favouring the breeding of Chrysops vectors. The mean prevalence of infection varied from 0% in the grassland savannah, 6.6% in the deciduous equatorial rainforest, 9.7% in the dense-humid equatorial rainforest, to 33.3% in the forested savannah. Loiasis was totally absent in the grassland savannah. The intensity of loiasis infection (L. loa microfilariae per millilitre [mf/mL] of blood) increased with an increase in prevalence, varying from 0 mf/mL in the grassland savannah, 325 mf/mL in the deciduous equatorial rainforest, 433 mf/mL in the dense-humid equatorial rainforest, to 3125 mf/mL in the forested savannah. The proportion of individuals with high (> 8000 mf/mL) and very high (> 30,000 mf/mL) L. loa microfilaraemia was greater in bioecological zones with a higher prevalence of L. loa. These results will be valuable for the prediction of loiasis endemicity in different ecological zones of Central Africa and for the refinement of the existing geographical model for the mapping of loiasis.
Collapse
Affiliation(s)
- Samuel Wanji
- University of Buea, Faculty of Science, Department of Life Sciences, Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon.
| | | | | | | | | |
Collapse
|