1
|
Kitano J, Ansai S, Fujimoto S, Kakioka R, Sato M, Mandagi IF, Sumarto BKA, Yamahira K. A Cryptic Sex-Linked Locus Revealed by the Elimination of a Master Sex-Determining Locus in Medaka Fish. Am Nat 2023; 202:231-240. [PMID: 37531272 DOI: 10.1086/724840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
AbstractSex chromosomes rapidly turn over in several taxonomic groups. Sex chromosome turnover is generally thought to start with the appearance of a new sex-determining gene on an autosome while an old sex-determining gene still exists, followed by the fixation of the new one. However, we do not know how prevalent the transient state is, where multiple sex-determining loci coexist within natural populations. Here, we removed a Y chromosome with a master male-determining gene DMY from medaka fish using high temperature-induced sex-reversed males. After four generations, the genomic characteristics of a sex chromosome were found on one chromosome, which was an autosome in the original population. Thus, the elimination of a master sex-determining locus can reveal a cryptic locus with a possible sex-determining effect, which can be the seed for sex chromosome turnover. Our results suggest that populations that seem to have a single-locus XY system may have other chromosomal regions with sex-determining effects. In conclusion, the coexistence of multiple sex-determining genes in a natural population may be more prevalent than previously thought. Experimental elimination of a master sex-determining locus may serve as a promising method for finding a locus that can be a protosex chromosome.
Collapse
|
2
|
Cordaux R, Chebbi MA, Giraud I, Pleydell DRJ, Peccoud J. Characterization of a Sex-Determining Region and Its Genomic Context via Statistical Estimates of Haplotype Frequencies in Daughters and Sons Sequenced in Pools. Genome Biol Evol 2021; 13:evab121. [PMID: 34048551 PMCID: PMC8350356 DOI: 10.1093/gbe/evab121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 11/14/2022] Open
Abstract
Sex chromosomes are generally derived from a pair of autosomes that have acquired a locus controlling sex. Sex chromosomes may evolve reduced recombination around this locus and undergo a long process of molecular divergence. At that point, the original loci controlling sex may be difficult to pinpoint. This difficulty has affected many model species from mammals to birds to flies, which present highly diverged sex chromosomes. Identifying sex-controlling loci is easier in species with molecularly similar sex chromosomes. Here we aimed at pinpointing the sex-determining region (SDR) of Armadillidium vulgare, a terrestrial isopod with female heterogamety (ZW females and ZZ males) and whose sex chromosomes appear to show low genetic divergence. To locate the SDR, we assessed single-nucleotide polymorphism (SNP) allele frequencies in F1 daughters and sons sequenced in pools (pool-seq) in several families. We developed a Bayesian method that uses the SNP genotypes of individually sequenced parents and pool-seq data from F1 siblings to estimate the genetic distance between a given genomic region (contig) and the SDR. This allowed us to assign more than 43 Mb of contigs to sex chromosomes, and to demonstrate extensive recombination and very low divergence between these chromosomes. By taking advantage of multiple F1 families, we delineated a very short genomic region (∼65 kb) that presented no evidence of recombination with the SDR. In this short genomic region, the comparison of sequencing depths between sexes highlighted female-specific genes that have undergone recent duplication, and which may be involved in sex determination in A. vulgare.
Collapse
Affiliation(s)
- Richard Cordaux
- Laboratoire Écologie et Biologie des Interactions, Équipe Écologie Évolution Symbiose, UMR CNRS 7267, Université de Poitiers, France
| | - Mohamed Amine Chebbi
- Laboratoire Écologie et Biologie des Interactions, Équipe Écologie Évolution Symbiose, UMR CNRS 7267, Université de Poitiers, France
| | - Isabelle Giraud
- Laboratoire Écologie et Biologie des Interactions, Équipe Écologie Évolution Symbiose, UMR CNRS 7267, Université de Poitiers, France
| | - David Richard John Pleydell
- UMR Animal, Santé, Territoires, Risques et Écosystèmes, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, France
| | - Jean Peccoud
- Laboratoire Écologie et Biologie des Interactions, Équipe Écologie Évolution Symbiose, UMR CNRS 7267, Université de Poitiers, France
| |
Collapse
|
3
|
Abstract
Fields such as behavioural and evolutionary ecology are built on the assumption that natural selection leads to organisms that behave as if they are trying to maximise their fitness. However, there is considerable evidence for selfish genetic elements that change the behaviour of individuals to increase their own transmission. How can we reconcile this contradiction? Here we show that: (1) when selfish genetic elements have a greater impact at the individual level, they are more likely to be suppressed, and suppression spreads more quickly; (2) selection on selfish genetic elements leads them towards a greater impact at the individual level, making them more likely to be suppressed; (3) the majority interest within the genome generally prevails over 'cabals' of a few genes, irrespective of genome size, mutation rate and the sophistication of trait distorters. Overall, our results suggest that even when there is the potential for considerable genetic conflict, this will often have negligible impact at the individual level.
Collapse
Affiliation(s)
- Thomas W Scott
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| | - Stuart A West
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
4
|
Becking T, Chebbi MA, Giraud I, Moumen B, Laverré T, Caubet Y, Peccoud J, Gilbert C, Cordaux R. Sex chromosomes control vertical transmission of feminizing Wolbachia symbionts in an isopod. PLoS Biol 2019; 17:e3000438. [PMID: 31600190 PMCID: PMC6805007 DOI: 10.1371/journal.pbio.3000438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/22/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Microbial endosymbiosis is widespread in animals, with major ecological and evolutionary implications. Successful symbiosis relies on efficient vertical transmission through host generations. However, when symbionts negatively affect host fitness, hosts are expected to evolve suppression of symbiont effects or transmission. Here, we show that sex chromosomes control vertical transmission of feminizing Wolbachia endosymbionts in the isopod Armadillidium nasatum. Theory predicts that the invasion of an XY/XX species by cytoplasmic sex ratio distorters is unlikely because it leads to fixation of the unusual (and often lethal or infertile) YY genotype. We demonstrate that A. nasatum X and Y sex chromosomes are genetically highly similar and that YY individuals are viable and fertile, thereby enabling Wolbachia spread in this XY-XX species. Nevertheless, we show that Wolbachia cannot drive fixation of YY individuals, because infected YY females do not transmit Wolbachia to their offspring, unlike XX and XY females. The genetic basis fits the model of a Y-linked recessive allele (associated with an X-linked dominant allele), in which the homozygous state suppresses Wolbachia transmission. Moreover, production of all-male progenies by infected YY females restores a balanced sex ratio at the host population level. This suggests that blocking of Wolbachia transmission by YY females may have evolved to suppress feminization, thereby offering a whole new perspective on the evolutionary interplay between microbial symbionts and host sex chromosomes.
Collapse
Affiliation(s)
- Thomas Becking
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Mohamed Amine Chebbi
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Isabelle Giraud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Tiffany Laverré
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Yves Caubet
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Clément Gilbert
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
- * E-mail:
| |
Collapse
|
5
|
Duplouy A, Hornett EA. Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts. PeerJ 2018; 6:e4629. [PMID: 29761037 PMCID: PMC5947162 DOI: 10.7717/peerj.4629] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022] Open
Abstract
The Lepidoptera is one of the most widespread and recognisable insect orders. Due to their remarkable diversity, economic and ecological importance, moths and butterflies have been studied extensively over the last 200 years. More recently, the relationship between Lepidoptera and their heritable microbial endosymbionts has received increasing attention. Heritable endosymbionts reside within the host’s body and are often, but not exclusively, inherited through the female line. Advancements in molecular genetics have revealed that host-associated microbes are both extremely prevalent among arthropods and highly diverse. Furthermore, heritable endosymbionts have been repeatedly demonstrated to play an integral role in many aspects of host biology, particularly host reproduction. Here, we review the major findings of research of heritable microbial endosymbionts of butterflies and moths. We promote the Lepidoptera as important models in the study of reproductive manipulations employed by heritable endosymbionts, with the mechanisms underlying male-killing and feminisation currently being elucidated in moths and butterflies. We also reveal that the vast majority of research undertaken of Lepidopteran endosymbionts concerns Wolbachia. While this highly prevalent bacterium is undoubtedly important, studies should move towards investigating the presence of other, and interacting endosymbionts, and we discuss the merits of examining the microbiome of Lepidoptera to this end. We finally consider the importance of understanding the influence of endosymbionts under global environmental change and when planning conservation management of endangered Lepidoptera species.
Collapse
Affiliation(s)
- Anne Duplouy
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Emily A Hornett
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Cordaux R, Gilbert C. Evolutionary Significance of Wolbachia-to-Animal Horizontal Gene Transfer: Female Sex Determination and the f Element in the Isopod Armadillidium vulgare. Genes (Basel) 2017; 8:genes8070186. [PMID: 28753988 PMCID: PMC5541319 DOI: 10.3390/genes8070186] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 11/19/2022] Open
Abstract
An increasing number of horizontal gene transfer (HGT) events from bacteria to animals have been reported in the past years, many of which involve Wolbachia bacterial endosymbionts and their invertebrate hosts. Most transferred Wolbachia genes are neutrally-evolving fossils embedded in host genomes. A remarkable case of Wolbachia HGT for which a clear evolutionary significance has been demonstrated is the “f element”, a nuclear Wolbachia insert involved in female sex determination in the terrestrial isopod Armadillidium vulgare. The f element represents an instance of bacteria-to-animal HGT that has occurred so recently that it was possible to infer the donor (feminizing Wolbachia closely related to the wVulC Wolbachia strain of A. vulgare) and the mechanism of integration (a nearly complete genome inserted by micro-homology-mediated recombination). In this review, we summarize our current knowledge of the f element and discuss arising perspectives regarding female sex determination, unstable inheritance, population dynamics and the molecular evolution of the f element. Overall, the f element unifies three major areas in evolutionary biology: symbiosis, HGT and sex determination. Its characterization highlights the tremendous impact sex ratio distorters can have on the evolution of sex determination mechanisms and sex chromosomes in animals and plants.
Collapse
Affiliation(s)
- Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B8, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Clément Gilbert
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B8, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
7
|
Becking T, Giraud I, Raimond M, Moumen B, Chandler C, Cordaux R, Gilbert C. Diversity and evolution of sex determination systems in terrestrial isopods. Sci Rep 2017; 7:1084. [PMID: 28439127 PMCID: PMC5430756 DOI: 10.1038/s41598-017-01195-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/27/2017] [Indexed: 11/17/2022] Open
Abstract
Sex determination systems are highly variable in many taxa, sometimes even between closely related species. Yet the number and direction of transitions between these systems have seldom been characterized, and the underlying mechanisms are still poorly understood. Here we generated transcriptomes for 19 species of terrestrial isopod crustaceans, many of which are infected by Wolbachia bacterial endosymbionts. Using 88 single-copy orthologous genes, we reconstructed a fully resolved and dated phylogeny of terrestrial isopods. An original approach involving crossings of sex-reversed individuals allowed us to characterize the heterogametic systems of five species (one XY/XX and four ZW/ZZ). Mapping of these and previously known heterogametic systems onto the terrestrial isopod phylogeny revealed between 3 and 13 transitions of sex determination systems during the evolution of these taxa, most frequently from female to male heterogamety. Our results support that WW individuals are viable in many species, suggesting sex chromosomes are at an incipient stage of their evolution. Together, these data are consistent with the hypothesis that nucleo-cytoplasmic conflicts generated by Wolbachia endosymbionts triggered recurrent turnovers of sex determination systems in terrestrial isopods. They further establish terrestrial isopods as a model to study evolutionary transitions in sex determination systems and pave the way to molecularly characterize these systems.
Collapse
Affiliation(s)
- Thomas Becking
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Isabelle Giraud
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Maryline Raimond
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Bouziane Moumen
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, TSA 51106, 86073, Poitiers Cedex 9, France
| | | | - Richard Cordaux
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, TSA 51106, 86073, Poitiers Cedex 9, France.
| | - Clément Gilbert
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, TSA 51106, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
8
|
van Doorn GS. Evolutionary transitions between sex-determining mechanisms: a review of theory. Sex Dev 2013; 8:7-19. [PMID: 24335102 DOI: 10.1159/000357023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The extraordinary diversity of sex-determining mechanisms found in nature is thought to have arisen by the addition, modification or replacement of regulators at the upstream end of the sex-determining pathway. The spread of a novel regulator of sex determination can manifest itself by an evolutionary transition between environmental and genetic sex determination, for example, or between male and female heterogamety. Both kinds of transition have occurred frequently in the course of evolution. In this paper, various evolutionary forces acting on sex-determining mutations that can bias transitions in one direction or the other are reviewed. Furthermore, the adaptive significance of the main modes of sex determination are discussed, and the common principle underlying ultimate explanations for environmental sex determination, genetic sex determination and maternal control over sex determination in the offspring are highlighted. Most of the current theory concentrates on the population-genetic aspects of sex determination transitions, using models that do not reflect the developmental mechanisms involved in sex determination. However, the increasing availability of molecular data creates opportunities for the future development of mechanistic models that will further clarify how selection and developmental architecture interact to direct the evolution of sex determination genes.
Collapse
Affiliation(s)
- G S van Doorn
- Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Kikuchi K, Hamaguchi S. Novel sex-determining genes in fish and sex chromosome evolution. Dev Dyn 2013; 242:339-53. [PMID: 23335327 DOI: 10.1002/dvdy.23927] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 12/13/2022] Open
Abstract
Although the molecular mechanisms underlying many developmental events are conserved across vertebrate taxa, the lability at the top of the sex-determining (SD) cascade has been evident from the fact that four master SD genes have been identified: mammalian Sry; chicken DMRT1; medaka Dmy; and Xenopus laevis DM-W. This diversity is thought to be associated with the turnover of sex chromosomes, which is likely to be more frequent in fishes and other poikilotherms than in therian mammals and birds. Recently, four novel candidates for vertebrate SD genes were reported, all of them in fishes. These include amhy in the Patagonian pejerrey, Gsdf in Oryzias luzonensis, Amhr2 in fugu and sdY in rainbow trout. These studies provide a good opportunity to infer patterns from the seemingly chaotic picture of sex determination systems. Here, we review recent advances in our understanding of the master SD genes in fishes.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Fisheries Laboratory, University of Tokyo, Hamamatsu, Shizuoka, Japan.
| | | |
Collapse
|
10
|
Grossen C, Neuenschwander S, Perrin N. The Balanced Lethal System of Crested Newts: A Ghost of Sex Chromosomes Past? Am Nat 2012; 180:E174-83. [DOI: 10.1086/668076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Blaser O, Grossen C, Neuenschwander S, Perrin N. SEX-CHROMOSOME TURNOVERS INDUCED BY DELETERIOUS MUTATION LOAD. Evolution 2012; 67:635-45. [DOI: 10.1111/j.1558-5646.2012.01810.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
The impact of endosymbionts on the evolution of host sex-determination mechanisms. Trends Genet 2011; 27:332-41. [PMID: 21663992 DOI: 10.1016/j.tig.2011.05.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/02/2011] [Accepted: 05/04/2011] [Indexed: 12/11/2022]
Abstract
The past years have revealed that inherited bacterial endosymbionts are important sources of evolutionary novelty for their eukaryotic hosts. In this review we discuss a fundamental biological process of eukaryotes influenced by bacterial endosymbionts: the mechanisms of sex determination. Because they are maternally inherited, several endosymbionts of arthropods, known as reproductive parasites, have developed strategies to convert non-transmitting male hosts into transmitting females through feminization of genetic males and parthenogenesis induction. Recent investigations have also highlighted that endosymbionts can impact upon host sex determination more subtly through genetic conflicts, resulting in selection of host nuclear genes resisting endosymbiont effects. Paradoxically, it is because of their selfish nature that reproductive parasites are such powerful agents of evolutionary change in their host sex-determination mechanisms. They might therefore represent excellent models for studying transitions between sex-determining systems and, more generally, the evolution of sex-determination mechanisms in eukaryotes.
Collapse
|
13
|
Ironside JE. No amicable divorce? Challenging the notion that sexual antagonism drives sex chromosome evolution. Bioessays 2010; 32:718-26. [PMID: 20658710 DOI: 10.1002/bies.200900124] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although sexual antagonism may have played a role in forming some sex chromosome systems, there appears to be little empirical or theoretical justification in assuming that it is the driving force in all cases of sex chromosome evolution. In many species, sex chromosomes have diverged in size and shape through the accumulation of mutations in regions of suppressed recombination. It is commonly assumed that recombination is suppressed in sex chromosomes due to selection to resolve sexually antagonistic pleiotropy. However, the requirement for a sex chromosome-specific mechanism for suppressing recombination is questionable, since more general models of recombination suppression on autosomes also appear to be applicable to sex chromosomes. Direct tests of the predictions of the sexual antagonism hypothesis offer only limited support in specific sex chromosome systems and circumstantial evidence remains open to interpretation.
Collapse
Affiliation(s)
- Joseph E Ironside
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK.
| |
Collapse
|
14
|
KOBAYASHI Y, TELSCHOW A. Cytoplasmic feminizing elements in a two-population model: infection dynamics, gene flow modification, and the spread of autosomal suppressors. J Evol Biol 2010; 23:2558-68. [DOI: 10.1111/j.1420-9101.2010.02116.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Grossen C, Neuenschwander S, Perrin N. TEMPERATURE-DEPENDENT TURNOVERS IN SEX-DETERMINATION MECHANISMS: A QUANTITATIVE MODEL. Evolution 2010; 65:64-78. [DOI: 10.1111/j.1558-5646.2010.01098.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Engelstädter J, Hurst GD. The Ecology and Evolution of Microbes that Manipulate Host Reproduction. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2009. [DOI: 10.1146/annurev.ecolsys.110308.120206] [Citation(s) in RCA: 390] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jan Engelstädter
- Institute of Integrative Biology, Swiss Federal Institute of Technology, Zurich, CH-8092 Switzerland;
| | - Gregory D.D. Hurst
- School of Biological Sciences, University of Liverpool, Liverpool, L69 7ZB United Kingdom
| |
Collapse
|
17
|
Giorgini M, Monti MM, Caprio E, Stouthamer R, Hunter MS. Feminization and the collapse of haplodiploidy in an asexual parasitoid wasp harboring the bacterial symbiont Cardinium. Heredity (Edinb) 2009; 102:365-71. [DOI: 10.1038/hdy.2008.135] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
18
|
Roth O, Ebert D, Vizoso DB, Bieger A, Lass S. Male-biased sex-ratio distortion caused by Octosporea bayeri, a vertically and horizontally-transmitted parasite of Daphnia magna. Int J Parasitol 2007; 38:969-79. [PMID: 18190917 DOI: 10.1016/j.ijpara.2007.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 11/17/2007] [Accepted: 11/18/2007] [Indexed: 10/22/2022]
Abstract
Female-biased sex-ratio distortion is often observed in hosts infected with vertically-transmitted microsporidian parasites. This bias is assumed to benefit the spread of the parasite, because male offspring usually do not transmit the parasite further. The present study reports on sex-ratio distortion in a host-parasite system with both horizontal and vertical parasite transmission: the microsporidium Octosporea bayeri and its host, the planktonic cladoceran Daphnia magna. In laboratory and field experiments, we found an overall higher proportion of male offspring in infected than in uninfected hosts. In young males, there was no parasite effect on sperm production, but, later in life, infected males produced significantly less sperm than uninfected controls. This shows that infected males are fertile. As males are unlikely to transmit the parasite vertically, an increase in male production could be advantageous to the host during phases of sexual reproduction, because infected mothers may obtain uninfected grandchildren through their sons. Life-table experiments showed that, overall, sons harboured more parasite spores than their sisters, although they reached a smaller body size and died earlier. Male production may thus be beneficial for the parasite when horizontal transmission has a large pay-off as males may contribute more effectively to parasite spread than females.
Collapse
Affiliation(s)
- Olivia Roth
- Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
19
|
Abstract
We simulated a meta-population with random dispersal among demes but local mating within demes to investigate conditions under which a dominant female-determining gene W, with no individual selection advantage, can invade and become fixed in females, changing the population from male to female heterogamety. Starting with one mutant W in a single deme, the interaction of sex ratio selection and random genetic drift causes W to be fixed among females more often than a comparable neutral mutation with no influence on sex determination, even when YY males have slightly reduced viability. Meta-population structure and interdeme selection can also favour the fixation of W. The reverse transition from female to male heterogamety can also occur with higher probability than for a comparable neutral mutation. These results help to explain the involvement of sex-determining genes in the evolution of sex chromosomes and in sexual selection and speciation.
Collapse
Affiliation(s)
- S Vuilleumier
- Eawag Ecology Centre, Kastanienbaum (Lucerne), Switzerland.
| | | | | | | |
Collapse
|
20
|
Kozielska M, Pen I, Beukeboom LW, Weissing FJ. Sex ratio selection and multi-factorial sex determination in the housefly: a dynamic model. J Evol Biol 2006; 19:879-88. [PMID: 16674584 DOI: 10.1111/j.1420-9101.2005.01040.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sex determining (SD) mechanisms are highly variable between different taxonomic groups and appear to change relatively quickly during evolution. Sex ratio selection could be a dominant force causing such changes. We investigate theoretically the effect of sex ratio selection on the dynamics of a multi-factorial SD system. The system considered resembles the naturally occurring three-locus system of the housefly, which allows for male heterogamety, female heterogamety and a variety of other mechanisms. Sex ratio selection is modelled by assuming cost differences in the production of sons and daughters, a scenario leading to a strong sex ratio bias in the absence of constraints imposed by the mechanism of sex determination. We show that, despite of the presumed flexibility of the SD system considered, equilibrium sex ratios never deviate strongly from 1 : 1. Even if daughters are very costly, a male-biased sex ratio can never evolve. If sons are more costly, sex ratio can be slightly female biased but even in case of large cost differences the bias is very small (<10% from 1 : 1). Sex ratio selection can lead to a shift in the SD mechanism, but cannot be the sole cause of complete switches from one SD system to another. In fact, more than one locus remains polymorphic at equilibrium. We discuss our results in the context of evolution of the variable SD mechanism found in natural housefly populations.
Collapse
Affiliation(s)
- M Kozielska
- Evolutionary Genetics Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Haren, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Hatcher MJ, Hogg JC, Dunn AM. Local adaptation and enhanced virulence of Nosema granulosis artificially introduced into novel populations of its crustacean host, Gammarus duebeni. Int J Parasitol 2005; 35:265-74. [PMID: 15722078 DOI: 10.1016/j.ijpara.2004.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 12/03/2004] [Indexed: 11/29/2022]
Abstract
Local adaptation theory predicts that, on average, most parasite species should be locally adapted to their hosts (more suited to hosts from local than distant populations). Local adaptation has been studied for many horizontally transmitted parasites, however, vertically transmitted parasites have received little attention. Here we present the first study of local adaptation in an animal/parasite system where the parasite is vertically transmitted. We investigate local adaptation and patterns of virulence in a crustacean host infected with the vertically transmitted microsporidian Nosema granulosis. Nosema granulosis is vertically transmitted to successive generations of its crustacean host, Gammarus duebeni and infects up to 46% of adult females in natural populations. We investigate local adaptation using artificial horizontal infection of different host populations in the UK. Parasites were artificially inoculated from a donor population into recipient hosts from the sympatric population and into hosts from three allopatric populations in the UK. The parasite was successfully established in hosts from all populations regardless of location, infecting 45% of the recipients. Nosema granulosis was vertically (transovarially) transmitted to 39% of the offspring of artificially infected females. Parasite burden (intensity of infection) in developing embryos differed significantly between host populations and was an order of magnitude higher in the sympatric population, suggesting some degree of host population specificity with the parasite adapted to its local host population. In contrast with natural infections, artificial infection with the parasite resulted in substantial virulence, with reduced host fecundity (24%) and survival (44%) of infected hosts from all the populations regardless of location. We discuss our findings in relation to theories of local adaptation and parasite-host coevolution.
Collapse
Affiliation(s)
- Melanie J Hatcher
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK.
| | | | | |
Collapse
|
22
|
Terry RS, Smith JE, Sharpe RG, Rigaud T, Littlewood DTJ, Ironside JE, Rollinson D, Bouchon D, MacNeil C, Dick JTA, Dunn AM. Widespread vertical transmission and associated host sex-ratio distortion within the eukaryotic phylum Microspora. Proc Biol Sci 2004; 271:1783-9. [PMID: 15315893 PMCID: PMC1691802 DOI: 10.1098/rspb.2004.2793] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vertical transmission (VT) and associated manipulation of host reproduction are widely reported among prokaryotic endosymbionts. Here, we present evidence for widespread use of VT and associated sex-ratio distortion in a eukaryotic phylum. The Microspora are an unusual and diverse group of eukaryotic parasites that infect all animal phyla. Following our initial description of a microsporidian that feminizes its crustacean host, we survey the diversity and distribution of VT within the Microspora. We find that vertically transmitted microsporidia are ubiquitous in the amphipod hosts sampled and that they are also diverse, with 11 species of microsporidia detected within 16 host species. We found that infections were more common in females than males, suggesting that host sex-ratio distortion occurs in five out of eight parasite species tested. Phylogenetic reconstruction demonstrates that VT occurs in all major lineages of the phylum Microspora and that sex-ratio distorters are found on multiple branches of the phylogenetic tree. We propose that VT is either an ancestral trait or evolves with peculiar frequency in this phylum. If the association observed here between VT and host sex-ratio distortion holds true across other host taxa, these eukaryotic parasites may join the bacterial endosymbionts in their importance as sex-ratio distorters.
Collapse
|
23
|
Werren JH, Hatcher MJ, Godfray HCJ. Maternal-offspring conflict leads to the evolution of dominant zygotic sex determination. Heredity (Edinb) 2002; 88:102-11. [PMID: 11932768 DOI: 10.1038/sj.hdy.6800015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sex determination in many species involves interactions among maternally expressed genes (eg, mRNA's and proteins placed into the egg) and zygotically expressed genes. Recent studies have proposed that conflicting selective pressures can occur between maternally and zygotically expressed sex determining loci and that these may play a role in shaping the evolution of sex determining systems. Here we show that such genetic conflict occurs under very general circumstances. Whenever sex ratio among progeny in a family affects the fitness of either progeny in that family or maternal fitness, then maternal-zygotic genetic conflict occurs. Furthermore, we show that this conflict typically results in a "positive feedback loop" that leads to the evolution of a dominant zygotic sex determining locus. When males more negatively effect fitness within the family, a male heterogametic (XY male) sex determining system evolves, whereas when females more negatively effect fitness in the family, a female heterogametic (ZW female) system evolves. Individuals with the dominant sex allele are one sex, and the opposite sex is determined by maternally-expressed genes in individuals without the dominant sex allele. Results therefore suggest that maternal-zygotic conflict could play a role in the early evolution of chromosomal sex determining systems. Predictions are made concerning the patterns of expression of maternal and zygotic sex determining genes expected to result from conflict over sex determination.
Collapse
Affiliation(s)
- J H Werren
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | |
Collapse
|
24
|
Abstract
'Selfish genetic elements', such as transposons, homing endonucleases, meiotic drive chromosomes and heritable microorganisms, are common features of eukaryotes. However, their importance in the evolution of eukaryotic genomes is still controversial. In this review, we discuss these diverse elements and their potential importance in the evolution of genetic systems, adaptation, and the extinction and birth of species.
Collapse
Affiliation(s)
- G D Hurst
- Department of Biology, University College London, 4 Stephenson Way, London NW1 2HE, UK.
| | | |
Collapse
|
25
|
Abstract
The mechanisms by which sex is genetically determined are bewilderingly diverse and appear to change rapidly during evolution.(1) What makes the sex-determining process so prone to perturbations? Two recent articles(2,3) explore theoretically the role of genetic conflict in sex determination evolution. Both studies use the idea that selection on sex-determining genes may act differently in parents and in offspring and they suggest that the resulting conflict can drive changes in sex-determining mechanisms.
Collapse
Affiliation(s)
- L W Beukeboom
- Section Animal Ecology, Institute of Evolutionary and Ecological Sciences, University of Leiden, NL-2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
26
|
Randerson JP, Jiggins FM, Hurst LD. Male killing can select for male mate choice: a novel solution to the paradox of the lek. Proc Biol Sci 2000; 267:867-74. [PMID: 10853728 PMCID: PMC1690614 DOI: 10.1098/rspb.2000.1083] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In lekking species, intense directional selection is applied to aspects of the male genotype by female choice. Under conventional quantitative genetics theory, the expectation is that this will lead to a rapid loss in additive genetic variance for the trait in question. However, despite female choice, male variation is maintained and hence it pays females to continue choosing. This has been termed the 'paradox of the lek'. Here we present a theoretical analysis of a putative sex-role-reversed lek in the butterfly Acraea encedon. Sex-role reversal appears to have come about because of infection with a male-killing Wolbachia. The bacterium is highly prevalent in some populations, such that there is a dearth of males. Receptive females form dense aggregations, and it has been suggested that males preferentially select females uninfected with the bacterium. As with more conventional systems, this presents a theoretical problem exactly analogous to the lek paradox, namely what maintains female variation and hence why do males continue to choose? We model the evolution of a male choice gene that allows discrimination between infected and uninfected females, and show that the stable maintenance of both female variation and male choice is likely, so long as males make mistakes when discriminating between females. Furthermore, our model allows the maintenance, in a panmictic population, of a male killer that is perfectly transmitted. This is the first model to allow this result, and may explain the long-term persistence of a male killer in Hypolimnas bolina.
Collapse
Affiliation(s)
- J P Randerson
- Department of Biology and Biochemistry, University of Bath, Claverton Down, UK.
| | | | | |
Collapse
|