1
|
Demandt N, Bierbach D, Kurvers RHJM, Krause J, Kurtz J, Scharsack JP. Parasite infection impairs the shoaling behaviour of uninfected shoal members under predator attack. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
A key benefit of sociality is a reduction in predation risk. Cohesive group behaviour and rapid collective decision making are essential for reducing predation risk in groups. Parasite infection might reduce an individuals’ grouping behaviours and thereby change the behaviour of the group as a whole. To investigate the relationship between parasite infection and grouping behaviours, we studied groups of three-spined sticklebacks, Gasterosteus aculeatus, varying the number of individuals experimentally infected with the cestode Schistocephalus solidus. We studied groups of six sticklebacks containing 0, 2, 3, 4 or 6 infected individuals before and after a simulated bird attack. We predicted that infected individuals would have reduced shoaling and swimming speed and that the presence of infected individuals within a group would reduce group cohesion and speed. Uninfected fish increased shoaling and reduced swimming speed more than infected fish after the bird attack. In groups containing both infected and uninfected fish, the group behaviours were dominated by the more frequent character (uninfected versus infected). Interestingly, groups with equal numbers of uninfected and infected fish showed the least shoaling and had the lowest swimming speeds, suggesting that these groups failed to generate a majority and therefore displayed signs of indecisiveness by reducing their swimming speed the most. Our results provide evidence for a negative effect of infection on a group’s shoaling behaviour, thereby potentially deteriorating collective decision making. The presence of infected individuals might thus have far-reaching consequences in natural populations under predation risk.
Significance statement
Parasite-infected individuals often show deviating group behaviours. This might reduce the anti-predator benefits of group living. However, it is unknown whether such deviations in group behaviour might influence the shoaling behaviour of uninfected group members and thereby the behaviour of the group as a whole. By experimentally infecting sticklebacks and investigating groups varying in infection rates, we show that infected sticklebacks differ in their shoaling behaviours from uninfected sticklebacks. Additionally, the presence of infected sticklebacks within the group affected the behaviour of uninfected shoal members. We show that shoals of infected fish are less cohesive and move slower compared to shoals of uninfected fish. Furthermore, we show that the infection rate of the shoal is crucial for how the group behaves.
Collapse
|
2
|
Scharsack JP, Wieczorek B, Schmidt-Drewello A, Büscher J, Franke F, Moore A, Branca A, Witten A, Stoll M, Bornberg-Bauer E, Wicke S, Kurtz J. Climate change facilitates a parasite's host exploitation via temperature-mediated immunometabolic processes. GLOBAL CHANGE BIOLOGY 2021; 27:94-107. [PMID: 33067869 DOI: 10.1111/gcb.15402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 05/09/2023]
Abstract
Global climate change can influence organismic interactions like those between hosts and parasites. Rising temperatures may exacerbate the exploitation of hosts by parasites, especially in ectothermic systems. The metabolic activity of ectotherms is strongly linked to temperature and generally increases when temperatures rise. We hypothesized that temperature change in combination with parasite infection interferes with the host's immunometabolism. We used a parasite, the avian cestode Schistocephalus solidus, which taps most of its resources from the metabolism of an ectothermic intermediate host, the three-spined stickleback. We experimentally exposed sticklebacks to this parasite, and studied liver transcriptomes 50 days after infection at 13°C and 24°C, to assess their immunometabolic responses. Furthermore, we monitored fitness parameters of the parasite and examined immunity and body condition of the sticklebacks at 13°C, 18°C and 24°C after 36, 50 and 64 days of infection. At low temperatures (13°C), S. solidus growth was constrained, presumably also by the more active stickleback's immune system, thus delaying its infectivity for the final host to 64 days. Warmer temperature (18°C and 24°C) enhanced S. solidus growth, and it became infective to the final host already after 36 days. Overall, S. solidus produced many more viable offspring after development at elevated temperatures. In contrast, stickleback hosts had lower body conditions, and their immune system was less active at warm temperature. The stickleback's liver transcriptome revealed that mainly metabolic processes were differentially regulated between temperatures, whereas immune genes were not strongly affected. Temperature effects on gene expression were strongly enhanced in infected sticklebacks, and even in exposed-but-not-infected hosts. These data suggest that the parasite exposure in concert with rising temperature, as to be expected with global climate change, shifted the host's immunometabolism, thus providing nutrients for the enormous growth of the parasite and, at the same time suppressing immune defence.
Collapse
Affiliation(s)
- Jörn P Scharsack
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| | - Bartholomäus Wieczorek
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| | - Alexander Schmidt-Drewello
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
- Institute for Evolution and Biodiversity, Limnology, University of Münster, Münster, Germany
| | - Janine Büscher
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| | - Frederik Franke
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| | - Andrew Moore
- Institute for Evolution and Biodiversity, Molecular Evolution & Bioinformatics, University of Münster, Münster, Germany
| | - Antoine Branca
- Institute for Evolution and Biodiversity, Molecular Evolution & Bioinformatics, University of Münster, Münster, Germany
| | - Anika Witten
- Institute for Human Genetics, Core Facility Genomics, University of Münster, Münster, Germany
| | - Monika Stoll
- Institute for Human Genetics, Core Facility Genomics, University of Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Molecular Evolution & Bioinformatics, University of Münster, Münster, Germany
| | - Susann Wicke
- Institute for Evolution and Biodiversity, Plant Evolutionary Genomics, University of Münster, Münster, Germany
- Institute for Biology, Humboldt-University Berlin, Berlin, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Demandt N, Praetz M, Kurvers RHJM, Krause J, Kurtz J, Scharsack JP. Parasite infection disrupts escape behaviours in fish shoals. Proc Biol Sci 2020; 287:20201158. [PMID: 33143588 PMCID: PMC7735259 DOI: 10.1098/rspb.2020.1158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Many prey species have evolved collective responses to avoid predation. They rapidly transfer information about potential predators to trigger and coordinate escape waves. Predation avoidance behaviour is often manipulated by trophically transmitted parasites, to facilitate their transmission to the next host. We hypothesized that the presence of infected, behaviourally altered individuals might disturb the spread of escape waves. We used the tapeworm Schistocephalus solidus, which increases risk-taking behaviour and decreases social responsiveness of its host, the three-spined stickleback, to test this hypothesis. Three subgroups of sticklebacks were placed next to one another in separate compartments with shelter. The middle subgroup contained either uninfected or infected sticklebacks. We confronted an outer subgroup with an artificial bird strike and studied how the escape response spread through the subgroups. With uninfected sticklebacks in the middle, escape waves spread rapidly through the entire shoal and fish remained in shelter thereafter. With infected sticklebacks in the middle, the escape wave was disrupted and uninfected fish rarely used the shelter. Infected individuals can disrupt the transmission of flight responses, thereby not only increasing their own predation risk but also that of their uninfected shoal members. Our study uncovers a potentially far-reaching fitness consequence of grouping with infected individuals.
Collapse
Affiliation(s)
- Nicolle Demandt
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| | - Marit Praetz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| | - Ralf H J M Kurvers
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Jens Krause
- Leibniz-Institute of Freshwater Ecology and Inland Fishery, Müggelseedamm 310, Berlin, Germany.,Faculty of Life Sciences, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| | - Jörn P Scharsack
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany.,Thünen Institute for Fisheries Ecology, Herwigstr. 31, 27572 Bremerhaven, Germany
| |
Collapse
|
4
|
Characterization of viruses in a tapeworm: phylogenetic position, vertical transmission, and transmission to the parasitized host. ISME JOURNAL 2020; 14:1755-1767. [PMID: 32286546 PMCID: PMC7305300 DOI: 10.1038/s41396-020-0642-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022]
Abstract
Parasitic flatworms (Neodermata) infect all vertebrates and represent a significant health and economic burden worldwide due to the debilitating diseases they cause. This study sheds light for the first time into the virome of a tapeworm by describing six novel RNA virus candidate species associated with Schistocephalus solidus, including three negative-strand RNA viruses (order Jingchuvirales, Mononegavirales, and Bunyavirales) and three double-stranded RNA viruses. Using in vitro culture of S. solidus, controlled experimental infections and field sampling, we demonstrate that five of these viruses are vertically transmitted, and persist throughout the S. solidus complex life cycle. Moreover, we show that one of the viruses, named Schistocephalus solidus rhabdovirus (SsRV1), is excreted by the parasite and transmitted to parasitized hosts indicating that it may impact S. solidus-host interactions. In addition, SsRV1 has a basal phylogenetic position relative to vertebrate rhabdoviruses suggesting that parasitic flatworms could have contributed to virus emergence. Viruses similar to four of the S. solidus viruses identified here were found in geographically distant S. solidus populations through data mining. Further studies are necessary to determine if flatworm viruses can replicate in parasitized hosts, how they contribute to parasite infection dynamics and if these viruses could be targeted for treatment of parasitic disease.
Collapse
|
5
|
Benesh DP. Tapeworm manipulation of copepod behaviour: parasite genotype has a larger effect than host genotype. Biol Lett 2019; 15:20190495. [PMID: 31506036 DOI: 10.1098/rsbl.2019.0495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Compared with uninfected individuals, infected animals can exhibit altered phenotypes. The changes often appear beneficial to parasites, leading to the notion that modified host phenotypes are extended parasite phenotypes, shaped by parasite genes. However, the phenotype of a parasitized individual may reflect parasitic manipulation, host responses to infection or both, and disentangling the contribution of parasite genes versus host genes to these altered phenotypes is challenging. Using a tapeworm (Schistocephalus solidus) infecting its copepod first intermediate host, I performed a full-factorial, cross-infection experiment with five host and five parasite genotypes. I found that a behavioural trait modified by infection, copepod activity, was affected by both host and parasite genotype. There was no clear evidence for host genotype by parasite genotype interactions. Several observations indicated that host behaviour was chiefly determined by parasite genes: (i) all infected copepods, regardless of host or parasite genotype, exhibited behavioural changes, (ii) parasitism reduced the differences among copepod genotypes, and (iii) within infected copepods, parasite genotype had twice as large an effect on behaviour as host genotype. I conclude that the altered behaviour of infected copepods primarily represents an extended parasite phenotype, and I discuss how genetic variation in parasitic host manipulation could be maintained.
Collapse
Affiliation(s)
- Daniel P Benesh
- Molecular Parasitology, Humboldt University, Philippstr. 13, Haus 14, 10115 Berlin, Germany.,Department of Evolutionary Ecology, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany
| |
Collapse
|
6
|
Piecyk A, Ritter M, Kalbe M. The right response at the right time: Exploring helminth immune modulation in sticklebacks by experimental coinfection. Mol Ecol 2019; 28:2668-2680. [PMID: 30993799 PMCID: PMC6852435 DOI: 10.1111/mec.15106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023]
Abstract
Parasites are one of the strongest selective agents in nature. They select for hosts that evolve counter‐adaptive strategies to cope with infection. Helminth parasites are special because they can modulate their hosts’ immune responses. This phenomenon is important in epidemiological contexts, where coinfections may be affected. How different types of hosts and helminths interact with each other is insufficiently investigated. We used the three‐spined stickleback (Gasterosteus aculeatus) – Schistocephalus solidus model to study mechanisms and temporal components of helminth immune modulation. Sticklebacks from two contrasting populations with either high resistance (HR) or low resistance (LR) against S. solidus, were individually exposed to S. solidus strains with characteristically high growth (HG) or low growth (LG) in G. aculeatus. We determined the susceptibility to another parasite, the eye fluke Diplostomum pseudospathaceum, and the expression of 23 key immune genes at three time points after S. solidus infection. D. pseudospathaceum infection rates and the gene expression responses depended on host and S. solidus type and changed over time. Whereas the effect of S. solidus type was not significant after three weeks, T regulatory responses and complement components were upregulated at later time points if hosts were infected with HG S. solidus. HR hosts showed a well orchestrated immune response, which was absent in LR hosts. Our results emphasize the role of regulatory T cells and the timing of specific immune responses during helminth infections. This study elucidates the importance to consider different coevolutionary trajectories and ecologies when studying host‐parasite interactions.
Collapse
Affiliation(s)
- Agnes Piecyk
- Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Marc Ritter
- Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Martin Kalbe
- Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
7
|
Demandt N, Saus B, Kurvers RHJM, Krause J, Kurtz J, Scharsack JP. Parasite-infected sticklebacks increase the risk-taking behaviour of uninfected group members. Proc Biol Sci 2019; 285:rspb.2018.0956. [PMID: 29925621 PMCID: PMC6030526 DOI: 10.1098/rspb.2018.0956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023] Open
Abstract
Trophically transmitted parasites frequently increase their hosts' risk-taking behaviour, to facilitate transmission to the next host. Whether such elevated risk-taking can spill over to uninfected group members is, however, unknown. To investigate this, we confronted groups of 6 three-spined sticklebacks, Gasterosteus aculeatus, containing 0, 2, 4 or 6 experimentally infected individuals with a simulated bird attack and studied their risk-taking behaviour. As a parasite, we used the tapeworm Schistocephalus solidus, which increases the risk-taking of infected sticklebacks, to facilitate transmission to its final host, most often piscivorous birds. Before the attack, infected and uninfected individuals did not differ in their risk-taking. However, after the attack, individuals in groups with only infected members showed lower escape responses and higher risk-taking than individuals from groups with only uninfected members. Importantly, uninfected individuals adjusted their risk-taking behaviour to the number of infected group members, taking more risk with an increasing number of infected group members. Infected individuals, however, did not adjust their risk-taking to the number of uninfected group members. Our results show that behavioural manipulation by parasites does not only affect the infected host, but also uninfected group members, shedding new light on the social dynamics involved in host–parasite interactions.
Collapse
Affiliation(s)
- Nicolle Demandt
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| | - Benedikt Saus
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| | - Ralf H J M Kurvers
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Jens Krause
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, Germany.,Faculty of Life Sciences Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| | - Jörn Peter Scharsack
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| |
Collapse
|
8
|
Franke F, Raifarth N, Kurtz J, Scharsack JP. Consequences of divergent temperature optima in a host–parasite system. OIKOS 2019. [DOI: 10.1111/oik.05864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Frederik Franke
- Inst. for Evolution and Biodiversity, Univ. of Münster Hüfferstrasse 1, DE‐48149 Münster Germany
| | - Nadja Raifarth
- Inst. for Evolution and Biodiversity, Univ. of Münster Hüfferstrasse 1, DE‐48149 Münster Germany
| | - Joachim Kurtz
- Inst. for Evolution and Biodiversity, Univ. of Münster Hüfferstrasse 1, DE‐48149 Münster Germany
| | - Jörn P. Scharsack
- Inst. for Evolution and Biodiversity, Univ. of Münster Hüfferstrasse 1, DE‐48149 Münster Germany
| |
Collapse
|
9
|
Wohlleben AM, Franke F, Hamley M, Kurtz J, Scharsack JP. Early stages of infection of three-spined stickleback (Gasterosteus aculeatus) with the cestode Schistocephalus solidus. JOURNAL OF FISH DISEASES 2018; 41:1701-1708. [PMID: 30066968 DOI: 10.1111/jfd.12876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Parasitic helminths have evolved strategies to evade their host's immune systems. Particularly, the early time of interactions between helminths and their hosts might be decisive for their infection success. We used the cestode Schistocephalus solidus, and its highly specific second intermediate host, the three-spined stickleback (Gasterosteus aculeatus) to investigate parasite infection and host cellular immune responses starting 1 day postexposure (dpe). We recovered live parasites from stickleback body cavities already 24 hr after exposure. Infection rates increased up to 50% and did not change from 4 dpe onwards. Thus, not all parasites had reached the body cavity at the early time points and clearance of the parasite at later time points did not occur. Stickleback head kidney leucocytes (HKLs) did not show distinct signs of activation and lymphocyte proliferation, granulocyte-to-lymphocyte ratios and respiratory burst activity of infected sticklebacks did not deviate from controls significantly. The immune system was activated only late, as indicated by an increase in the total count of HKL relative to stickleback weight (HKL per mg fish), which was significantly elevated in infected fish 32 dpe. S. solidus seems to evade leucocyte activity early during infection facilitating its establishment in the hosts' body cavity.
Collapse
Affiliation(s)
| | - Frederik Franke
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Madeleine Hamley
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jörn Peter Scharsack
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
10
|
Ritter M, Kalbe M, Henrich T. Virulence in the three-spined stickleback specific parasite Schistocephalus solidus is inherited additively. Exp Parasitol 2017; 180:133-140. [DOI: 10.1016/j.exppara.2017.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/14/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
|
11
|
Detwiler JT, Caballero IC, Criscione CD. Role of parasite transmission in promoting inbreeding: I. Infection intensities drive individual parasite selfing rates. Mol Ecol 2017. [DOI: 10.1111/mec.14211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Franke F, Armitage SAO, Kutzer MAM, Kurtz J, Scharsack JP. Environmental temperature variation influences fitness trade-offs and tolerance in a fish-tapeworm association. Parasit Vectors 2017; 10:252. [PMID: 28571568 PMCID: PMC5455083 DOI: 10.1186/s13071-017-2192-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/11/2017] [Indexed: 11/29/2022] Open
Abstract
Background Increasing temperatures are predicted to strongly impact host-parasite interactions, but empirical tests are rare. Host species that are naturally exposed to a broad temperature spectrum offer the possibility to investigate the effects of elevated temperatures on hosts and parasites. Using three-spined sticklebacks, Gasterosteus aculeatus L., and tapeworms, Schistocephalus solidus (Müller, 1776), originating from a cold and a warm water site of a volcanic lake, we subjected sympatric and allopatric host-parasite combinations to cold and warm conditions in a fully crossed design. We predicted that warm temperatures would promote the development of the parasites, while the hosts might benefit from cooler temperatures. We further expected adaptations to the local temperature and mutual adaptations of local host-parasite pairs. Results Overall, S. solidus parasites grew faster at warm temperatures and stickleback hosts at cold temperatures. On a finer scale, we observed that parasites were able to exploit their hosts more efficiently at the parasite’s temperature of origin. In contrast, host tolerance towards parasite infection was higher when sticklebacks were infected with parasites at the parasite’s ‘foreign’ temperature. Cold-origin sticklebacks tended to grow faster and parasite infection induced a stronger immune response. Conclusions Our results suggest that increasing environmental temperatures promote the parasite rather than the host and that host tolerance is dependent on the interaction between parasite infection and temperature. Sticklebacks might use tolerance mechanisms towards parasite infection in combination with their high plasticity towards temperature changes to cope with increasing parasite infection pressures and rising temperatures. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2192-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frederik Franke
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany
| | - Sophie A O Armitage
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany
| | - Megan A M Kutzer
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany
| | - Jörn P Scharsack
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany.
| |
Collapse
|
13
|
Weber JN, Kalbe M, Shim KC, Erin NI, Steinel NC, Ma L, Bolnick DI. Resist Globally, Infect Locally: A Transcontinental Test of Adaptation by Stickleback and Their Tapeworm Parasite. Am Nat 2017; 189:43-57. [DOI: 10.1086/689597] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Ramm SA. Exploring the sexual diversity of flatworms: Ecology, evolution, and the molecular biology of reproduction. Mol Reprod Dev 2016; 84:120-131. [PMID: 27292123 DOI: 10.1002/mrd.22669] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
Flatworms exhibit huge diversity in their reproductive biology, making this group an excellent model system for exploring how differences among species in reproductive ecology are reflected in the physiological and molecular details of how reproduction is achieved. In this review, I consider five key "lifestyle choices" (i.e., alternative evolutionary/developmental outcomes) that collectively encompass much of flatworm sexual diversity, beginning with the decisions: (i) whether to be free-living or parasitic; (ii) whether to reproduce asexually or sexually; and (iii) whether to be gonochoristic (separate-sexed) or hermaphroditic. I then examine two further decisions involving hermaphroditism: (iv) outcrossing versus selfing and (v) the balance of investment into the male versus the female sex function (sex allocation). Collectively, these lifestyle choices set the basic rules for how reproduction occurs, but as I emphasize in the second part of the review, the reproductive biology of flatworms is also greatly impacted by the near-pervasive and powerful pressure of sexual selection, together with the related phenomena of sperm competition and sexual conflict. Exactly how this plays out, however, is strongly affected by the particular combination of reproductive strategies adopted by each species. Mol. Reprod. Dev. 84: 120-131, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Steven A Ramm
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
15
|
Kalbe M, Eizaguirre C, Scharsack JP, Jakobsen PJ. Reciprocal cross infection of sticklebacks with the diphyllobothriidean cestode Schistocephalus solidus reveals consistent population differences in parasite growth and host resistance. Parasit Vectors 2016; 9:130. [PMID: 26951744 PMCID: PMC4782366 DOI: 10.1186/s13071-016-1419-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/02/2016] [Indexed: 11/19/2022] Open
Abstract
Background In host-parasite evolutionary arms races, parasites are generally expected to adapt more rapidly, due to their large population sizes and short generation times. There exist systems, though, where parasites cannot outpace their hosts because of similar generation times in both antagonists. In those cases concomitant adaptation is expected. Methods We tested this hypothesis in the three-spined stickleback-Schistocephalus solidus tapeworm system, where generation times are comparable in both organisms. We chose two populations of sticklebacks which differ prominently in the prevalence of S. solidus and consequently in its level of selective pressure. We performed a full factorial common garden experiment. Particularly, Norwegian (NO) and German (DE) sticklebacks, as well as hybrids between both stickleback populations and in both parental combinations, were exposed each to a single S. solidus originating from the same two host populations. Results We found the infection phenotype to depend on the host population, the parasite population, but not their interaction. NO-parasites showed higher infectivity than DE-parasites, with NO-sticklebacks also being more resistant to DE-parasites than to the sympatric NO-parasite. Reciprocally, DE-hosts were more susceptible to the allopatric NO-parasite while DE-parasites grew less than NO-parasites in all stickleback groups. Despite this asymmetry, the ratio of worm to host weight, an indicator of parasite virulence, was identical in both sympatric combinations, suggesting an optimal virulence as a common outcome of parallel coevolved systems. In hybrid sticklebacks, intermediate infection rates and growth of S. solidus from either origin suggests a simple genetic basis of resistance. However, comparison of infection phenotypes in NO-maternal and DE-maternal hybrid sticklebacks indicates local adaptation to the sympatric counterpart in both the host and the parasite. Conclusions Host-parasite systems with similar generation time show evidence for concomitant reciprocal adaptation resulting in parasite optimal virulence and host parasite specific resistance. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1419-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Kalbe
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
| | - Christophe Eizaguirre
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany. .,School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Jörn P Scharsack
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany. .,Department of Animal Evolutionary Ecology, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149, Münster, Germany.
| | - Per J Jakobsen
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany. .,Institute for Biology, University of Bergen, Thor Møhlensgt. 55, 5020, Bergen, Norway.
| |
Collapse
|
16
|
Benesh DP, Weinreich F, Kalbe M, Milinski M. LIFETIME INBREEDING DEPRESSION, PURGING, AND MATING SYSTEM EVOLUTION IN A SIMULTANEOUS HERMAPHRODITE TAPEWORM. Evolution 2014; 68:1762-74. [DOI: 10.1111/evo.12388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/10/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel P. Benesh
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Strasse 2 24306 Plön Germany
| | - Friederike Weinreich
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Strasse 2 24306 Plön Germany
| | - Martin Kalbe
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Strasse 2 24306 Plön Germany
| | - Manfred Milinski
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Strasse 2 24306 Plön Germany
| |
Collapse
|
17
|
Weinreich F, Kalbe M, Benesh DP. Making the in vitro breeding of Schistocephalus solidus more flexible. Exp Parasitol 2014; 139:1-5. [PMID: 24560832 DOI: 10.1016/j.exppara.2014.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 12/16/2013] [Accepted: 02/09/2014] [Indexed: 11/19/2022]
Abstract
Schistocephalus solidus is one of the few cestodes that can be bred in vitro. Worms have typically been bred in pairs, so the parents of each offspring can clearly be assigned. From a genetic perspective, it would be useful to be able to mate an individual worm to multiple partners while still being able to distinguish among different parents. As each adult S. solidus possesses numerous reproductive complexes, cutting worms and breeding the pieces separately would facilitate such breeding designs. We halved worms before in vitro breeding and evaluated whether this affected outcrossing rates and reproductive output. Cutting did not influence clutch mass, i.e. egg number and size, or outcrossing rates, but eggs from cut worms had a lower hatching rate than eggs from uncut worms. We found that when two anterior worm halves were bred together, they produced fewer, smaller eggs with higher hatching rates, compared to two posterior halves. Moreover, once we controlled for this effect of 'worm half', the two halves of an individual worm tended to reproduce similarly under comparable circumstances. We conclude that cutting plerocercoids increases the flexibility with which this tapeworm can be experimentally bred without dramatically affecting the production of viable, outcrossed eggs.
Collapse
Affiliation(s)
- Friederike Weinreich
- Department of Evolutionary Ecology, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany
| | - Martin Kalbe
- Department of Evolutionary Ecology, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany
| | - Daniel P Benesh
- Department of Evolutionary Ecology, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany.
| |
Collapse
|
18
|
Copulation order, density cues and variance in fertilization success in a cestode. Parasitology 2014; 141:934-9. [PMID: 24560286 DOI: 10.1017/s0031182014000043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Simultaneous hermaphrodites maximize their fitness by optimizing their investment into male or female functions. Allocation of resources to male function (tissues, traits, and/or behaviours increasing paternity) is predicted to increase as density, and the associated level of sperm competition, increases. We tested whether the simultaneous hermaphroditic cestode Schistocephalus solidus uses cues of potential partner densities in its fish intermediate host to improve its male reproductive success in the final host. We had two worms, one originating from a multiple infection in the fish intermediate host and one from a single infection, sequentially compete to fertilize the eggs of a third worm. The fertilization rates of the two competitors nearly always differed from the 50-50 null expectation, sometimes considerably, implying there was a 'winner' in each experimental competition. However, we did not find a significant effect of density in the fish host (single vs multiple) or mating order on paternity. Additional work will be needed to identify the traits and environmental conditions that explain the high variance in male reproductive success observed in this experiment.
Collapse
|
19
|
Scharsack JP, Gossens A, Franke F, Kurtz J. Excretory products of the cestode, Schistocephalus solidus, modulate in vitro responses of leukocytes from its specific host, the three-spined stickleback (Gasterosteus aculeatus). FISH & SHELLFISH IMMUNOLOGY 2013; 35:1779-1787. [PMID: 24036333 DOI: 10.1016/j.fsi.2013.08.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/10/2013] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
Helminth parasites have evolved remarkable strategies to manipulate the immune system of their hosts. During infections of three-spined stickleback (Gasterosteus aculeatus) with the cestode Schistocephalus solidus prominent immunological changes occur, presumably due to manipulative activity of the parasite. We hypothesise that excretory/secretory products of the parasite are involved in the manipulation of the stickleback's immune system and that this may depend on the individual parasite and its origin. We therefore produced S. solidus conditioned cell culture media (SSCM) with parasites from different origins (Norway, Spain and Germany) and exposed head kidney leukocytes (HKL) from un-infected sticklebacks in cell cultures to SSCM. After in vitro culture, HKL were subjected to differential cell counts (granulocytes/lymphocytes) by means of flow cytometry. Leukocyte sub-populations were analysed for cell viability and changes in cell morphology. The respiratory burst activity was measured with a luminescence assay. Exposure of HKL to SSCM induced an up-regulation of respiratory burst activity after already 1 h, which was still elevated at 24 h, but which was in some cases significantly down-regulated after 96 h. Respiratory burst was positively correlated with the number of live granulocytes in the culture, suggesting that the respiratory burst activity was changed by SSCM effects on granulocyte viability. After 1 h and 24 h of HKL culture, no lymphocyte responses to SSCM were detectable, but after 96 h lymphocyte viability was significantly decreased with SSCM from Spanish S. solidus. In these cultures, residual lymphocytes increased in size, suggesting that cell death and activation might have occurred in parallel. The highest respiratory burst activity was induced by SSCM from Spanish parasites, in particular when they were grown in sympatric sticklebacks. The in vitro HKL responses to SSCM depended on the individual parasite and its population of origin, suggesting that in vivo, S. solidus excretory products are regulated individually, possibly to balance the interplay of each individual host-parasite pair.
Collapse
Affiliation(s)
- Jörn Peter Scharsack
- Department of Animal Evolutionary Ecology, Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany.
| | | | | | | |
Collapse
|
20
|
Benesh DP. Parental effects on the larval performance of a tapeworm in its copepod first host. J Evol Biol 2013; 26:1625-33. [PMID: 23859276 DOI: 10.1111/jeb.12165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/19/2013] [Accepted: 03/26/2013] [Indexed: 01/08/2023]
Abstract
Parents can influence the phenotype of their offspring through various mechanisms, besides the direct effect of heredity. Such parental effects are little explored in parasitic organisms, perhaps because in many parasites, per capita investment into offspring is low. I investigated whether parental identity, beyond direct genetic effects, could explain variation in the performance of the tapeworm Schistocephalus solidus in its first intermediate host, a copepod. I first determined that two breeding worms could be separated from one another after ~48 h of in vitro incubation and that the isolated worms continued producing outcrossed eggs, that is, rates self-fertilization did not increase after separation. Thus, from a breeding pair, two sets of genetically comparable eggs can be collected that have unambiguous parental identities. In an infection experiment, I found that the development of larval worms tended to vary between the two parental worms within breeding pairs, but infection success and growth rate in copepods did not. Accounting for this parental effect decreased the estimated heritability for development by nearly half. These results suggest that larval performance is not simply a function of a worm's genotype; who mothered or fathered an offspring can also affect offspring fitness, contradicting the perhaps naïve idea that parasites simply produce large quantities of uniformly low-quality offspring.
Collapse
Affiliation(s)
- D P Benesh
- Department of Evolutionary Ecology, Max-Planck-Institute for Evolutionary Biology, Plön, Germany.
| |
Collapse
|
21
|
Rieger JK, Haase D, Reusch TB, Kalbe M. Genetic compatibilities, outcrossing rates and fitness consequences across life stages of the trematode Diplostomum pseudospathaceum. Int J Parasitol 2013; 43:485-91. [DOI: 10.1016/j.ijpara.2013.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 11/26/2022]
|
22
|
Henrich T, Benesh DP, Kalbe M. Hybridization between two cestode species and its consequences for intermediate host range. Parasit Vectors 2013; 6:33. [PMID: 23390985 PMCID: PMC3584927 DOI: 10.1186/1756-3305-6-33] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/01/2013] [Indexed: 11/29/2022] Open
Abstract
Background Many parasites show an extraordinary degree of host specificity, even though a narrow range of host species reduces the likelihood of successful transmission. In this study, we evaluate the genetic basis of host specificity and transmission success of experimental F1 hybrids from two closely related tapeworm species (Schistocephalus solidus and S. pungitii), both highly specific to their respective vertebrate second intermediate hosts (three- and nine-spined sticklebacks, respectively). Methods We used an in vitro breeding system to hybridize Schistocephalus solidus and S. pungitii; hybridization rate was quantified using microsatellite markers. We measured several fitness relevant traits in pure lines of the parental parasite species as well as in their hybrids: hatching rates, infection rates in the copepod first host, and infection rates and growth in the two species of stickleback second hosts. Results We show that the parasites can hybridize in the in vitro system, although the proportion of self-fertilized offspring was higher in the heterospecific breeding pairs than in the control pure parental species. Hybrids have a lower hatching rate, but do not show any disadvantages in infection of copepods. In fish, hybrids were able to infect both stickleback species with equal frequency, whereas the pure lines were only able to infect their normal host species. Conclusions Although not yet documented in nature, our study shows that hybridization in Schistocephalus spp. is in principle possible and that, in respect to their expanded host range, the hybrids are fitter. Further studies are needed to find the reason for the maintenance of the species boundaries in wild populations.
Collapse
Affiliation(s)
- Tina Henrich
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary, Biology, August-Thienemann-Strasse 2, Plön 24306, Germany
| | | | | |
Collapse
|
23
|
Benesh DP, Hafer N. Growth and ontogeny of the tapeworm Schistocephalus solidus in its copepod first host affects performance in its stickleback second intermediate host. Parasit Vectors 2012; 5:90. [PMID: 22564512 PMCID: PMC3403952 DOI: 10.1186/1756-3305-5-90] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/07/2012] [Indexed: 11/25/2022] Open
Abstract
Background For parasites with complex life cycles, size at transmission can impact performance in the next host, thereby coupling parasite phenotypes in the two consecutive hosts. However, a handful of studies with parasites, and numerous studies with free-living, complex-life-cycle animals, have found that larval size correlates poorly with fitness under particular conditions, implying that other traits, such as physiological or ontogenetic variation, may predict fitness more reliably. Using the tapeworm Schistocephalus solidus, we evaluated how parasite size, age, and ontogeny in the copepod first host interact to determine performance in the stickleback second host. Methods We raised infected copepods under two feeding treatments (to manipulate parasite growth), and then exposed fish to worms of two different ages (to manipulate parasite ontogeny). We assessed how growth and ontogeny in copepods affected three measures of fitness in fish: infection probability, growth rate, and energy storage. Results Our main, novel finding is that the increase in fitness (infection probability and growth in fish) with larval size and age observed in previous studies on S. solidus seems to be largely mediated by ontogenetic variation. Worms that developed rapidly (had a cercomer after 9 days in copepods) were able to infect fish at an earlier age, and they grew to larger sizes with larger energy reserves in fish. Infection probability in fish increased with larval size chiefly in young worms, when size and ontogeny are positively correlated, but not in older worms that had essentially completed their larval development in copepods. Conclusions Transmission to sticklebacks as a small, not-yet-fully developed larva has clear costs for S. solidus, but it remains unclear what prevents the evolution of faster growth and development in this species.
Collapse
Affiliation(s)
- Daniel P Benesh
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany.
| | | |
Collapse
|
24
|
In vitro transition of Schistocephalus solidus (Cestoda) from coracidium to procercoid and from procercoid to plerocercoid. Exp Parasitol 2012; 130:267-73. [DOI: 10.1016/j.exppara.2011.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 11/21/2022]
|
25
|
Benesh DP, Weinreich F, Kalbe M. The relationship between larval size and fitness in the tapeworm Schistocephalus solidus: bigger is better? OIKOS 2012. [DOI: 10.1111/j.1600-0706.2011.19925.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Heins DC, Baker JA, Green DM. Processes Influencing the Duration and Decline of Epizootics in Schistocephalus solidus. J Parasitol 2011; 97:371-6. [DOI: 10.1645/ge-2699.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
27
|
Escobar JS, Auld JR, Correa AC, Alonso JM, Bony YK, Coutellec M, Koene JM, Pointier J, Jarne P, David P. PATTERNS OF MATING‐SYSTEM EVOLUTION IN HERMAPHRODITIC ANIMALS: CORRELATIONS AMONG SELFING RATE, INBREEDING DEPRESSION, AND THE TIMING OF REPRODUCTION. Evolution 2011; 65:1233-53. [DOI: 10.1111/j.1558-5646.2011.01218.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Juan S. Escobar
- Centre d’Ecologie Fonctionnelle et Evolutive UMR 5175, 1919 Route de Mende, Campus CNRS, 34293 Montpellier Cedex 5, France
- E‐mail:
| | - Josh R. Auld
- University of Pittsburgh, Department of Biological Sciences, 101 Clapp Hall, 4249 Fifth Avenue, Pittsburgh, Pennsylvania 15260
| | - Ana C. Correa
- Institut de Recherche pour le Développement, GEMI UMR 2724 CNRS‐IRD, 911 Avenue Agropolis, 34394 Montpellier, France
- Programa de Estudio y Control de Enfermedades Tropicales, Universidad de Antioquia, Calle 62 N° 52–59, Sede de Investigación Universitaria, Medellin, Colombia
| | - Juan M. Alonso
- USR 3278 CNRS‐EPHE CRIOBE, Université de Perpignan, 68860 Perpignan cedex, France
| | - Yves K. Bony
- USR 3278 CNRS‐EPHE CRIOBE, Université de Perpignan, 68860 Perpignan cedex, France
- Department of Biological Sciences, Laboratoire d’Environnement et de Biologie Aquatique (LEBA), URES de Daloa (University of Abobo‐Adjamé), 28 BP 465, Abidjan 28, Ivory Coast
| | - Marie‐Agnès Coutellec
- Institut National de Recherche Agronomique, UMR0985 Ecologie et Santé des Ecosystèmes, 65 rue de Saint‐Brieuc, CS 84215, F‐35042 Rennes Cedex, France
| | - Joris M. Koene
- Animal Ecology, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Jean‐Pierre Pointier
- USR 3278 CNRS‐EPHE CRIOBE, Université de Perpignan, 68860 Perpignan cedex, France
| | - Philippe Jarne
- Centre d’Ecologie Fonctionnelle et Evolutive UMR 5175, 1919 Route de Mende, Campus CNRS, 34293 Montpellier Cedex 5, France
| | - Patrice David
- Centre d’Ecologie Fonctionnelle et Evolutive UMR 5175, 1919 Route de Mende, Campus CNRS, 34293 Montpellier Cedex 5, France
| |
Collapse
|
28
|
Anthes N, David P, Auld JR, Hoffer JNA, Jarne P, Koene JM, Kokko H, Lorenzi MC, Pélissié B, Sprenger D, Staikou A, Schärer L. Bateman gradients in hermaphrodites: an extended approach to quantify sexual selection. Am Nat 2010; 176:249-63. [PMID: 20636132 DOI: 10.1086/655218] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sexual selection is often quantified using Bateman gradients, which represent sex-specific regression slopes of reproductive success on mating success and thus describe the expected fitness returns from mating more often. Although the analytical framework for Bateman gradients aimed at covering all sexual systems, empirical studies are biased toward separate-sex organisms, probably because important characteristics of other systems remain incompletely treated. Our synthesis complements the existing Bateman gradient approach with three essential reproductive features of simultaneous hermaphrodites. First, mating in one sex may affect fitness via the opposite sex, for example, through energetic trade-offs. We integrate cross-sex selection effects and show how they help characterizing sexually mutualistic versus antagonistic selection. Second, male and female mating successes may be correlated, complicating the interpretation of Bateman gradients. We show how to quantify the impact of this correlation on sexual selection and propose a principal component analysis on male and female mating success to facilitate interpretation. Third, self-fertilization is accounted for by adding selfed progeny as a separate category of reproductive success to analyses of Bateman gradients. Finally, using a worked example from the snail Biomphalaria glabrata, we illustrate how the extended analytical framework can enhance our understanding of sexual selection in hermaphroditic animals and plants.
Collapse
Affiliation(s)
- Nils Anthes
- Institute for Evolution and Ecology, University of Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Reappraising the theme of breeding systems in Echinococcus: is outcrossing a rare phenomenon? Parasitology 2010; 138:298-302. [PMID: 20880421 DOI: 10.1017/s0031182010001307] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Selfing has been considered the most common mode of reproduction in Echinococcus flatworms. However, population genetic studies on the asexual larval stage involving nuclear co-dominant markers have not always revealed significant heterozygote deficiencies--the expected outcome of a regularly and highly inbred population. In this study, we analysed the genetic structure of Echinococcus granulosus sensu lato populations from Southern Brazil during their adult (sexual) stage using 1 mitochondrial and 1 nuclear marker (cox 1 and mdh, respectively). We show that parasite genetic differentiation is largest among definitive hosts (domestic dogs) from different farms, suggesting that transmission is mostly maintained within a farm. Moreover, we show that heterozygote deficiencies are not significant, and we suggest that outbreeding is the most common mode of reproduction of the parasite in that region.
Collapse
|
30
|
HEINS DAVIDC, BAKER JOHNA, TOUPS MELISSAA, BIRDEN EMILYL. Evolutionary significance of fecundity reduction in threespine stickleback infected by the diphyllobothriidean cestode Schistocephalus solidus. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01486.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Benesh DP. What are the evolutionary constraints on larval growth in a trophically transmitted parasite? Oecologia 2010; 162:599-608. [PMID: 19921268 PMCID: PMC2821511 DOI: 10.1007/s00442-009-1507-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 10/29/2009] [Indexed: 11/07/2022]
Abstract
For organisms with a complex life cycle, a large larval size is generally beneficial, but it may come at the expense of prolonged development. Individuals that grow fast may avoid this tradeoff and switch habitats at both a larger size and younger age. A fast growth rate itself can be costly, however, as it requires greater resource intake. For parasites, fast larval growth is assumed to increase the likelihood of host death before transmission to the next host occurs. Using the tapeworm Schistocephalus solidus in its copepod first intermediate host, I investigated potential constraints in the parasite’s larval life history. Fast-growing parasites developed infectivity earlier, indicating there is no functional tradeoff between size and developmental time. There was significant growth variation among full-sib worm families, but fast-growing sibships were not characterized by lower host survival or more predation-risky host behavior. Parental investment also had little effect on larval growth rates. The commonly assumed constraints on larval growth and development were not observed in this system, so it remains unclear what prevents worms from exploiting their intermediate hosts more aggressively.
Collapse
Affiliation(s)
- Daniel P Benesh
- Department of Evolutionary Ecology, Max-Planck-Institute for Evolutionary Biology, Plön, Germany.
| |
Collapse
|
32
|
DI BONA VALERIA, LORENZI MARIACRISTINA, SELLA GABRIELLA. Functional males in pair-mating outcrossing hermaphrodites. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01435.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Benesh DP. Developmental inflexibility of larval tapeworms in response to resource variation. Int J Parasitol 2009; 40:487-97. [PMID: 19853609 DOI: 10.1016/j.ijpara.2009.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 11/30/2022]
Abstract
The timing of habitat switching in organisms with complex life cycles is an important life history characteristic that is often influenced by the larval growth environment. Under starvation, longer developmental times are frequently observed, probably as a consequence of developmental thresholds, but prolonged ontogeny sometimes also occurs under good conditions, as organisms may take advantage of the large potential gains in body size. I investigated whether variation in growth conditions affects the larval development time of a complex life cycle tapeworm (Schistocephalus solidus) in its copepod first host. Moreover, I reviewed patterns of developmental plasticity in larval tapeworms to assess the generality of my findings. Copepod starvation weakly retarded parasite growth but did not affect development. Worms grew bigger in larger copepods, but they developed at a similar rate in large and small hosts. Thus, S. solidus does not delay ontogeny under good conditions nor does it fail to reach a developmental threshold under poor conditions. Although unusual in comparison to free-living organisms, such inflexibility is common in tapeworms. Plasticity, namely prolonged ontogeny, has been mainly observed at high infection intensities. For S. solidus, there were large cross-environment genetic correlations for development, suggesting there may be genetic constraints on the evolution of developmental plasticity.
Collapse
Affiliation(s)
- Daniel P Benesh
- Department of Evolutionary Ecology, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany.
| |
Collapse
|
34
|
Bedhomme S, Bernasconi G, Koene JM, Lankinen A, Arathi HS, Michiels NK, Anthes N. How does breeding system variation modulate sexual antagonism? Biol Lett 2009; 5:717-20. [PMID: 19553248 DOI: 10.1098/rsbl.2009.0401] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The study of sexually antagonistic (SA) traits remains largely limited to dioecious (separate sex), mobile animals. However, the occurrence of sexual conflict is restricted neither by breeding system (the mode of sexual reproduction, e.g. dioecy or hermaphroditism) nor by sessility. Here, we synthesize how variation in breeding system can affect the evolution and expression of intra- and inter-locus sexual conflicts in plants and animals. We predict that, in hermaphrodites, SA traits will (i) display lower levels of polymorphism; (ii) respond more quickly to selection; and (iii) involve unique forms of interlocus conflict over sex allocation, mating roles and selfing rates. Explicit modelling and empirical tests in a broader range of breeding systems are necessary to obtain a general understanding of the evolution of SA traits.
Collapse
Affiliation(s)
- Stéphanie Bedhomme
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Schjørring S. Sex allocation and mate choice of selfed and outcrossed Schistocephalus solidus (Cestoda). Behav Ecol 2009. [DOI: 10.1093/beheco/arp046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
Valkiūnas G, Iezhova TA, Kri Anauskiene A, Palinauskas V, Bensch S. In vitro hybridization of Haemoproteus spp.: an experimental approach for direct investigation of reproductive isolation of parasites. J Parasitol 2009; 94:1385-94. [PMID: 19127967 DOI: 10.1645/ge-1569.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 04/02/2008] [Indexed: 11/10/2022] Open
Abstract
In spite of their potential as model organisms and their medical importance, parasite speciation processes have been insufficiently discussed in the general literature. Scarcity of experimental data regarding reproductive isolation of parasites is a serious obstacle. Toward this end we developed a method for the investigation of hybridization of hemosporidian parasites in vitro. Five species of Haemoproteus (Haemosporida, Haemoproteidae) were isolated from naturally infected passerine birds. They were identified to species based on morphology of their gametocytes and PCR amplification of a segment of the parasite's mitochondrial cytochrome b gene. Hybridization of Haemoproteus spp. was initiated in vitro by mixing blood containing mature gametocytes of different species with a 3.7% solution of sodium citrate and exposure of the mixture to air. The following hybridization experiments were performed: (1) Haemoproteus minutus x Haemoproteus pallidus, (2) Haemoproteus balmorali x Haemoproteus tartakovskyi, and (3) Haemoproteus fringillae x H. tartakovskyi. The development of ookinetes of both species was blocked in the first experiment. Ookinetes of all species developed in other experiments, but presumed hybrids were distinguished only in the third experiment. Illustrations of ookinetes of all species are given. The present communication indicates that controlled experiments for direct hybridization of hemosporidians can be carried out in vitro. Such experimental research can be used to reconcile molecular and morphological data and to define biological species for this group of parasites.
Collapse
Affiliation(s)
- Gediminas Valkiūnas
- Institute of Ecology, Vilnius University, Akademijos 2, Vilnius 21, LT-08412, Lithuania.
| | | | | | | | | |
Collapse
|
37
|
Scharsack JP, Koch K, Hammerschmidt K. Who is in control of the stickleback immune system: interactions between Schistocephalus solidus and its specific vertebrate host. Proc Biol Sci 2008; 274:3151-8. [PMID: 17939987 DOI: 10.1098/rspb.2007.1148] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The cestode Schistocephalus solidus is a frequent parasite of three-spined sticklebacks and has a large impact on its host's fitness. Selection pressure should therefore be high on stickleback defence mechanisms, like an efficient immune system, and also on parasite strategies to overcome these. Even though there are indications for manipulation of the immune system of its specific second intermediate host by the cestode, nothing is yet known about the chronology of specific interactions of S. solidus with the stickleback immune system. We here expected sticklebacks to first mount an innate immune response directly post-exposure to the parasite to clear the infection at an early stage and after an initial lag phase to upregulate adaptive immunity. Most interestingly, we did not find any upregulation of the specific lymphocyte-mediated immune response. Also, the pattern of activation of the innate immune system did not match our expectations: the proliferation of monocytes followed fluctuating kinetics suggesting that the parasite repeatedly installs a new surface coat not immunogenic to the host. Furthermore, the respiratory burst activity, which has the potential to clear an early S. solidus infection, was upregulated very late during infection, when the parasite was too big to be cleared but ready for transmission to its final host. We here suggest that the late activation of the innate immune system interferes with the neuroendocrine system, which mediates reduced predation avoidance behaviour and so facilitates the transmission to the final host.
Collapse
Affiliation(s)
- Jörn Peter Scharsack
- Department of Evolutionary Ecology, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany
| | | | | |
Collapse
|
38
|
Hammerschmidt K, Kurtz J. Schistocephalus solidus: Establishment of tapeworms in sticklebacks – fast food or fast lane? Exp Parasitol 2007; 116:142-9. [PMID: 17296178 DOI: 10.1016/j.exppara.2006.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/13/2006] [Accepted: 12/15/2006] [Indexed: 12/01/2022]
Abstract
The penetration of the intestinal mucosal wall is supposed to be critical for helminth parasite infestation, but has rarely been analyzed in detail. We here studied the establishment process of Schistocephalus solidus tapeworms in their second intermediate host, the three-spined stickleback, from oral uptake after experimental exposure, to passage through the gastro-intestinal tract and arrival in the fish body cavity. Using histological techniques, we found tapeworms to penetrate the intestine within 14-24 h, spending most of the time in the stomach lumen and only a very short period in the intestine. Unexpectedly, tapeworms lost their outer layer, together with the cercomer, in the intestine lumen rather than later during intestine wall penetration. Once exposed, the underlying tegument with microtriches might serve to facilitate migration of the parasite into the body cavity.
Collapse
Affiliation(s)
- Katrin Hammerschmidt
- Department of Evolutionary Ecology, Max Planck Institute for Limnology, August-Thienemann-Strasse 2, D-24306 Plön, Germany.
| | | |
Collapse
|
39
|
Jager I, Schorring S. MULTIPLE INFECTIONS: RELATEDNESS AND TIME BETWEEN INFECTIONS AFFECT THE ESTABLISHMENT AND GROWTH OF THE CESTODE
SCHISTOCEPHALUS SOLIDUS
IN ITS STICKLEBACK HOST. Evolution 2007. [DOI: 10.1111/j.0014-3820.2006.tb01141.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ilonka Jager
- Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, D‐24306 Plön, Germany
| | - Solveig Schorring
- Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, D‐24306 Plön, Germany
- Laboratoire de Parasitologie Evolutive, Université Pierre et Marie Curie, F‐75252 Paris, France
| |
Collapse
|
40
|
Schjørring S, Jäger I. INCESTUOUS MATE PREFERENCE BY A SIMULTANEOUS HERMAPHRODITE WITH STRONG INBREEDING DEPRESSION. Evolution 2007; 61:423-30. [PMID: 17348951 DOI: 10.1111/j.1558-5646.2007.00028.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inbreeding depression and its consequences for mate choice have been extensively studied in free-living animals. However, very little is known about its significance for parasites, although it is well recognized that the mating systems of parasites can have important implications for their epidemiology and evolution. In this article, we show that the cestode Schistocephalus solidus shows incestuous mate preference despite evidence for very strong inbreeding depression. When given the simultaneous choice between mating with a sibling and an unrelated partner, on average, the cestode preferred its sibling. To explain this surprising result, we present three hypotheses that suggest different benefits to fitness of incestuous mating, which could, alone or in concert, outweigh the cost of inbreeding depression.
Collapse
Affiliation(s)
- Solveig Schjørring
- Department of Evolutionary Ecology, Max Planck Institute of Limnology, D-24306 Plön, Germany.
| | | |
Collapse
|
41
|
Koffi BB, de Meeûs T, Barré N, Durand P, Arnathau C, Chevillon C. Founder effects, inbreeding and effective sizes in the Southern cattle tick: the effect of transmission dynamics and implications for pest management. Mol Ecol 2006; 15:4603-11. [PMID: 17107486 DOI: 10.1111/j.1365-294x.2006.03098.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Since its immigration in the Pacific island of New Caledonia in 1942 (i.e. about 240 tick-generations ago), the cattle tick Boophilus microplus has experienced a remarkable adaptive diversification there. In order to better understand the population factors involved, we have investigated the B. microplus population structure on that main host-species, Bos taurus. This study was based microsatellite loci and confirmed that the island colonization came along with a significant bottleneck. Knowledge on B. microplus biology led us to expect B. microplus populations to be composed of highly inbred lineages irregularly dispatched among the individual hosts belonging to the same herds. Instead, this study evidenced a weak inbreeding level and an absence of genetic differentiation within herds. Complementarily, a significant signal of isolation by distance exhibited that human-traffic of cattle does not promote high tick dispersal within the island. Finally, the tick density was found to be about a few hundreds of reproducing adults per squared kilometre, for a gene dispersal range of about a few hundred metres per tick generation. Results are discussed with regard to the evolution of new adaptive changes.
Collapse
Affiliation(s)
- Brou Basile Koffi
- Génétique et Evolution des Maladies Infectieuses (G.E.M.I.), UMR CNRS-IRD 2724, Centre IRD, 911 avenue Agropolis, BP 64501, 34 394 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
42
|
Hammerschmidt K, Kurtz J. Evolutionary implications of the adaptation to different immune systems in a parasite with a complex life cycle. Proc Biol Sci 2006; 272:2511-8. [PMID: 16271977 PMCID: PMC1599786 DOI: 10.1098/rspb.2005.3241] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many diseases are caused by parasites with complex life cycles that involve several hosts. If parasites cope better with only one of the different types of immune systems of their host species, we might expect a trade-off in parasite performance in the different hosts, that likely influences the evolution of virulence. We tested this hypothesis in a naturally co-evolving host-parasite system consisting of the tapeworm Schistocephalus solidus and its intermediate hosts, a copepod, Macrocyclops albidus, and the three-spined stickleback Gasterosteus aculeatus. We did not find a trade-off between infection success in the two hosts. Rather, tapeworms seem to trade-off adaptation towards different parts of their hosts' immune systems. Worm sibships that performed better in the invertebrate host also seem to be able to evade detection by the fish innate defence systems, i.e. induce lower levels of activation of innate immune components. These worm variants were less harmful for the fish host likely due to reduced costs of an activated innate immune system. These findings substantiate the impact of both hosts' immune systems on parasite performance and virulence.
Collapse
|
43
|
Jäger I, Schjørring S. Multiple infections: relatedness and time between infections affect the establishment and growth of the cestode Schistocephalus solidus in its stickleback host. Evolution 2006; 60:616-22. [PMID: 16637505 DOI: 10.1554/05-450.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We studied experimental double infections of the cestode Schistocephalus solidus in its stickleback host. In particular, we were interested in how two important components of the cestode's transmission success-establishment and growth within the fish host-were affected by the relatedness of the two parasites in a double exposure and by the timing of the two exposures, that is, whether they occurred simultaneously or sequentially. We found that male sticklebacks more often became infected (singly or doubly) if the two cestodes in the exposures were related, whereas female sticklebacks were more easily infected (singly or doubly) when exposed to two unrelated cestodes. Irrespective of the fish's gender, successful infections more often contained both cestodes when they were related. In sequential exposures with related as well as unrelated cestodes, the cestode in the later exposure survived better and also grew larger than the cestode from the first exposure, despite being one week younger. Our results emphasize that within-host dynamics and factors acting at this level can play an important role in determining a parasite's transmission success.
Collapse
Affiliation(s)
- Ilonka Jäger
- Department of Evolutionary Ecology, Max-Planck-Institute of Limnology, Plön, Germany.
| | | |
Collapse
|
44
|
Huyse T. Response to Giraud: Population genetics puts reproductive isolation back on track. Trends Parasitol 2006. [DOI: 10.1016/j.pt.2006.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Abstract
Immune systems are among the most diverse biological systems. An evolutionary arms race between hosts and rapidly evolving pathogens is supposed to be a reason for this diversity, and might explain why most eukaryotic hosts and parasites reproduce sexually. In this review, I will focus on possible benefits of sexual reproduction in hosts and parasites, using a model system consisting of a tapeworm and its two intermediate hosts, copepods and sticklebacks. We found that the hermaphroditic tapeworms can increase their infection success by reproducing sexually with a partner (outcrossing), instead of reproducing alone. The defence system of the copepods provides highly specific discrimination of antigenic characteristics of the tapeworms. This supports the finding that tapeworms benefit from outcrossing, but contradicts the conventional notion that the immune system of invertebrates, in contrast to vertebrates, is not able to react with specificity. Finally, sticklebacks seem to benefit from optimal diversity in their specific immune system. Previous studies showed that female sticklebacks prefer mates, which sire offspring with an optimal diversity in the MHC (genes involved in antigen presentation). We now found that these individuals suffer less from tapeworm infection. Furthermore, they are able to reduce the expression of an unspecific immune trait, thereby possibly avoiding harmful side effects of a highly activated, unspecific immune system.
Collapse
Affiliation(s)
- Joachim Kurtz
- Department of Evolutionary Ecology, Max Planck Institute of Limnology, Plön, Germany.
| |
Collapse
|
46
|
Hammerschmidt K, Kurtz J. Surface carbohydrate composition of a tapeworm in its consecutive intermediate hosts: Individual variation and fitness consequences. Int J Parasitol 2005; 35:1499-507. [PMID: 16198355 DOI: 10.1016/j.ijpara.2005.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 08/09/2005] [Accepted: 08/09/2005] [Indexed: 11/21/2022]
Abstract
Carbohydrates on parasite surfaces have been shown to play an important role in host-parasite coevolution, mediating host non-self recognition and parasite camouflage. Parasites that switch hosts can change their surface molecules to remain undetected by the diverse immune systems of their different hosts. However, the question of individual variation in surface sugar composition and its relation to infectivity, virulence, immune evasion and growth of a parasite in its different hosts is as yet largely unexplored. We studied such fitness consequences of variation in surface sugars in a sympatric host-parasite system consisting of the cestode Schistocephalus solidus and its intermediate hosts, a copepod and the three-spined stickleback. Using lectins to analyse the sugar composition, we show that the tapeworm changes its surface according to the invertebrate or vertebrate host. Importantly, sugar composition seems to be genetically variable, as shown by differences among tapeworm sibships. These differences are related to variation in parasite fitness in its second intermediate host, i.e. infectivity and growth. Surface sugar composition may thus be a proximate correlate of the evolutionarily relevant variability in infectivity and virulence of parasites in different hosts.
Collapse
Affiliation(s)
- Katrin Hammerschmidt
- Department of Evolutionary Ecology, Max-Planck-Institute for Limnology, August-Thienemann-Strasse 2, D-24306 Plön, Germany.
| | | |
Collapse
|
47
|
Huyse T, Poulin R, Théron A. Speciation in parasites: a population genetics approach. Trends Parasitol 2005; 21:469-75. [PMID: 16112615 DOI: 10.1016/j.pt.2005.08.009] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 07/04/2005] [Accepted: 08/03/2005] [Indexed: 11/24/2022]
Abstract
Parasite speciation and host-parasite coevolution should be studied at both macroevolutionary and microevolutionary levels. Studies on a macroevolutionary scale provide an essential framework for understanding the origins of parasite lineages and the patterns of diversification. However, because coevolutionary interactions can be highly divergent across time and space, it is important to quantify and compare the phylogeographic variation in both the host and the parasite throughout their geographical range. Furthermore, to evaluate demographic parameters that are relevant to population genetics structure, such as effective population size and parasite transmission, parasite populations must be studied using neutral genetic markers. Previous emphasis on larger-scale studies means that the connection between microevolutionary and macroevolutionary events is poorly explored. In this article, we focus on the spatial fragmentation of parasites and the population genetics processes behind their diversification in an effort to bridge the micro- and macro-scales.
Collapse
Affiliation(s)
- Tine Huyse
- Parasitic Worms Division, Department of Zoology, The Natural History Museum, Cromwell Road, London, UK, SW7 5BD.
| | | | | |
Collapse
|
48
|
Criscione CD, Poulin R, Blouin MS. Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol Ecol 2005; 14:2247-57. [PMID: 15969711 DOI: 10.1111/j.1365-294x.2005.02587.x] [Citation(s) in RCA: 284] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We review studies that have used molecular markers to address ecological and microevolutionary processes in parasites. Our goal is to highlight areas of research that may be of particular interest in relation to the parasitic lifestyle, and to draw attention to areas that require additional study. Topics include species identification, phylogeography, host specificity and speciation, population genetic structure, modes of reproduction and transmission patterns, and searching for loci under selection.
Collapse
Affiliation(s)
- Charles D Criscione
- Department of Zoology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA.
| | | | | |
Collapse
|
49
|
Schjørring S. DELAYED SELFING IN RELATION TO THE AVAILABILITY OF A MATING PARTNER IN THE CESTODE SCHISTOCEPHALUS SOLIDUS. Evolution 2004; 58:2591-6. [PMID: 15612301 DOI: 10.1111/j.0014-3820.2004.tb00887.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A hermaphroditic individual that prefers to outbreed but that has the potential of selfing faces a dilemma: in the absence of a partner, should it wait for one to arrive or should it produce offspring by selfing? Recent theory on this question suggests that the evolutionary solution is to find an optimal delay of reproduction that balances the potential benefit of outcrossing and the cost of delaying the onset of reproduction. Assuming that resources retained from breeding can be reallocated to future reproduction, isolated individuals, compared with individuals with available mates, are predicted to delay their age at first reproduction to wait for future outcrossing. Here, I present empirical support for this idea with experimental data from the hermaphroditic cestode Schistocephalus solidus. I show that individuals breeding alone delay their reproduction and initially produce their eggs at a slow rate relative to cestodes breeding in pairs. This delay is partly compensated for by a later higher egg production, although singly breeding cestodes still pay a cost of overall lower egg production.
Collapse
Affiliation(s)
- Solveig Schjørring
- Department of Evolutionary Ecology, Max Planck Institute for Limnology, D-24306 Plön, Germany.
| |
Collapse
|
50
|
Schjørring S. DELAYED SELFING IN RELATION TO THE AVAILABILITY OF A MATING PARTNER IN THE CESTODE SCHISTOCEPHALUS SOLIDUS. Evolution 2004. [DOI: 10.1554/04-270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|