1
|
Gao N, Chen Y, Liu X, Zhao Y, Zhu L, Liu A, Jiang W, Peng X, Zhang C, Tang Z, Li X, Chen Y. Weighted single-step GWAS identified candidate genes associated with semen traits in a Duroc boar population. BMC Genomics 2019; 20:797. [PMID: 31666004 PMCID: PMC6822442 DOI: 10.1186/s12864-019-6164-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In the pig production industry, artificial insemination (AI) plays an important role in enlarging the beneficial impact of elite boars. Understanding the genetic architecture and detecting genetic markers associated with semen traits can help in improving genetic selection for such traits and accelerate genetic progress. In this study, we utilized a weighted single-step genome-wide association study (wssGWAS) procedure to detect genetic regions and further candidate genes associated with semen traits in a Duroc boar population. Overall, the full pedigree consists of 5284 pigs (12 generations), of which 2693 boars have semen data (143,113 ejaculations) and 1733 pigs were genotyped with 50 K single nucleotide polymorphism (SNP) array. RESULTS Results show that the most significant genetic regions (0.4 Mb windows) explained approximately 2%~ 6% of the total genetic variances for the studied traits. Totally, the identified significant windows (windows explaining more than 1% of total genetic variances) explained 28.29, 35.31, 41.98, and 20.60% of genetic variances (not phenotypic variance) for number of sperm cells, sperm motility, sperm progressive motility, and total morphological abnormalities, respectively. Several genes that have been previously reported to be associated with mammal spermiogenesis, testes functioning, and male fertility were detected and treated as candidate genes for the traits of interest: Number of sperm cells, TDRD5, QSOX1, BLK, TIMP3, THRA, CSF3, and ZPBP1; Sperm motility, PPP2R2B, NEK2, NDRG, ADAM7, SKP2, and RNASET2; Sperm progressive motility, SH2B1, BLK, LAMB1, VPS4A, SPAG9, LCN2, and DNM1; Total morphological abnormalities, GHR, SELENOP, SLC16A5, SLC9A3R1, and DNAI2. CONCLUSIONS In conclusion, candidate genes associated with Duroc boars' semen traits, including the number of sperm cells, sperm motility, sperm progressive motility, and total morphological abnormalities, were identified using wssGWAS. KEGG and GO enrichment analysis indicate that the identified candidate genes were enriched in biological processes and functional terms may be involved into spermiogenesis, testes functioning, and male fertility.
Collapse
Affiliation(s)
- Ning Gao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, North Third Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yilong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, North Third Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yunxiang Zhao
- Guangxi Xiubo genetics technology Co., LTD, Guigang, 537100, China
| | - Lin Zhu
- Guangxi Xiubo genetics technology Co., LTD, Guigang, 537100, China
| | - Ali Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Jiang
- Guangxi Xiubo genetics technology Co., LTD, Guigang, 537100, China
| | - Xing Peng
- Guangxi Xiubo genetics technology Co., LTD, Guigang, 537100, China
| | - Conglin Zhang
- Guangxi Yangxiang Agriculture and Husbandry Co., LTD, Guigang, 537100, China
| | - Zhenshuang Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, North Third Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Langton S, Gudas LJ. CYP26A1 knockout embryonic stem cells exhibit reduced differentiation and growth arrest in response to retinoic acid. Dev Biol 2007; 315:331-54. [PMID: 18241852 DOI: 10.1016/j.ydbio.2007.12.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 12/13/2007] [Accepted: 12/17/2007] [Indexed: 01/08/2023]
Abstract
CYP26A1, a cytochrome P450 enzyme, metabolizes all-trans-retinoic acid (RA) into polar metabolites, e.g. 4-oxo-RA and 4-OH-RA. To determine if altering RA metabolism affects embryonic stem (ES) cell differentiation, we disrupted both alleles of Cyp26a1 by homologous recombination. CYP26a1(-/-) ES cells had a 11.0+/-3.2-fold higher intracellular RA concentration than Wt ES cells after RA treatment for 48 h. RA-treated CYP26A1(-/-) ES cells exhibited 2-3 fold higher mRNA levels of Hoxa1, a primary RA target gene, than Wt ES cells. Despite increased intracellular RA levels, CYP26a1(-/-) ES cells were more resistant than Wt ES cells to RA-induced proliferation arrest. Transcripts for parietal endodermal differentiation markers, including laminin, J6(Hsp 47), and J31(SPARC, osteonectin) were expressed at lower levels in RA-treated CYP26a1(-/-) ES cells, indicating that the lack of CYP26A1 activity inhibits RA-associated differentiation. Microarray analyses revealed that RA-treated CYP26A1(-/-) ES cells exhibited lower mRNA levels than Wt ES cells for genes involved in differentiation, particularly in neural (Epha4, Pmp22, Nrp1, Gap43, Ndn) and smooth muscle differentiation (Madh3, Nrp1, Tagln Calponin, Caldesmon1). In contrast, genes involved in the stress response (e.g. Tlr2, Stk2, Fcgr2b, Bnip3, Pdk1) were expressed at higher levels in CYP26A1(-/-) than in Wt ES cells without RA. Collectively, our results show that CYP26A1 activity regulates intracellular RA levels, cell proliferation, transcriptional regulation of primary RA target genes, and ES cell differentiation to parietal endoderm.
Collapse
Affiliation(s)
- Simne Langton
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, Rm. E-409, New York, NY 10021, USA
| | | |
Collapse
|
3
|
Sharif KA, Baker H, Gudas LJ. Differential regulation of laminin b1 transgene expression in the neonatal and adult mouse brain. Neuroscience 2004; 126:967-78. [PMID: 15207330 DOI: 10.1016/j.neuroscience.2004.03.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2004] [Indexed: 11/29/2022]
Abstract
Laminins are the major glycoproteins present in basement membrane, a type of extracellular matrix. We showed that the LAMB1 gene, which encodes the laminin beta1 subunit, is transcriptionally activated by retinoic acid in embryonic stem cells. However, little information is available concerning LAMB1 developmental regulation and spatial expression in the adult mouse brain. In this study we used transgenic mice expressing different lengths of LAMB1 promoter driving beta-galactosidase to investigate developmental and adult transcriptional regulation in the regions of the brain in which the laminin beta1 protein is expressed. CNS expression was not observed in transgenic mice carrying a 1.4LAMB1betagal construct. Mice carrying a 2.5LAMB1betagal construct expressed the LAMB1 transgene, as assayed by X-gal staining, only in the molecular layer of the neonatal cerebellum. In contrast, a 3.9LAMB1betagal transgene showed broad regional expression in the adult mouse brain, including the hippocampus, entorhinal cortex, colliculi, striatum, and substantia nigra. Similar expression patterns were observed for the endogenous laminin beta1 protein and for the 3.9LAMB1betagal transgene, analyzed with an antibody against the beta-galactosidase protein. The 3.9LAMB1betagal transgene expression in the hippocampal tri-synaptic circuit suggests a role for the LAMB1 gene in learning and memory.
Collapse
Affiliation(s)
- K A Sharif
- Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
5
|
Sharif KA, Li C, Gudas LJ. cis-acting DNA regulatory elements, including the retinoic acid response element, are required for tissue specific laminin B1 promoter/lacZ expression in transgenic mice. Mech Dev 2001; 103:13-25. [PMID: 11335108 DOI: 10.1016/s0925-4773(01)00326-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The LAMB1 gene encodes the laminin beta1 subunit of laminin, an extracellular matrix protein. Using several transgenic mouse lines containing various lengths of the LAMB1 promoter driving lacZ reporter gene expression, regions of LAMB1 promoter that contain cis-acting DNA regulatory element(s) have been identified. The 3.9LAMB1betagal transgene is expressed in various tissues during development. LAMB1 transgene expression is observed in a selective set of nephrons of the neonatal and adult kidneys. The cis-acting DNA regulatory elements responsible for LAMB1 transgene expression in ovaries and in juvenile kidneys are present between -'1.4 and -0.7 kb relative to the transcription start site, while those of adult kidneys are located between -2.5 and -1.4 kb. The LAMB1 transgene is also expressed in the epididymis of 1 week old transgenic mice. Mutation of the retinoic acid response element (RARE) in the context of the 3.9LAMB1betagal transgene results in loss of LAMB1 transgene expression in all tissues. Thus, sequences between -2.5 and -0.7 kb plus the RARE are required for appropriate expression of the LAMB1 transgene in mice.
Collapse
Affiliation(s)
- K A Sharif
- Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
6
|
Mackay S. Gonadal development in mammals at the cellular and molecular levels. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 200:47-99. [PMID: 10965466 DOI: 10.1016/s0074-7696(00)00002-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In mammals, although sex is determined chromosomally, gonads in both sexes begin development as similar structures. Until recently it was widely held that female development constituted a "default" pathway of development, which would occur in the absence of a testis-determining gene. This master gene on the Y chromosome, SRY in the human and Sry in the mouse, is thought to act in a cell-autonomous fashion to determine that cells in the gonadal somatic population develop as pre-Sertoli cells. Triggering of somatic cell differentiation along the Sertoli cell pathway is therefore a key event; it was thought that further steps in gonadal differentiation would follow in a developmental cascade. In the absence of Sertoli cells, the lack of anti-Mullerian hormone would allow development of the female Mullerian duct and absence of Leydig cells would prevent maintenance of the Wolffian duct. Recent findings that female signals not only maintain the Mullerian duct and repress the Wolffian duct but also suppress the development of Leydig cells and maintain meiotic germ cells, together with the finding that an X-linked gene is required for ovarian development and must be silenced in the male, have shown that the female default pathway model is an oversimplification. Morphological steps in gonadal differentiation can be correlated with emerging evidence of molecular mechanisms; growth factors, cell adhesion, and signaling molecules interact together, often acting within short time windows via reciprocal control relationships.
Collapse
Affiliation(s)
- S Mackay
- Division of Neuroscience and Biomedical Systems, University of Glasgow, United Kingdom
| |
Collapse
|