1
|
Negrón-Piñeiro LJ, Wu Y, Popsuj S, José-Edwards DS, Stolfi A, Di Gregorio A. Cis-regulatory interfaces reveal the molecular mechanisms underlying the notochord gene regulatory network of Ciona. Nat Commun 2024; 15:3025. [PMID: 38589372 PMCID: PMC11001920 DOI: 10.1038/s41467-024-46850-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Tissue-specific gene expression is fundamental in development and evolution, and is mediated by transcription factors and by the cis-regulatory regions (enhancers) that they control. Transcription factors and their respective tissue-specific enhancers are essential components of gene regulatory networks responsible for the development of tissues and organs. Although numerous transcription factors have been characterized from different organisms, the knowledge of the enhancers responsible for their tissue-specific expression remains fragmentary. Here we use Ciona to study the enhancers associated with ten transcription factors expressed in the notochord, an evolutionary hallmark of the chordate phylum. Our results illustrate how two evolutionarily conserved transcription factors, Brachyury and Foxa2, coordinate the deployment of other notochord transcription factors. The results of these detailed cis-regulatory analyses delineate a high-resolution view of the essential notochord gene regulatory network of Ciona, and provide a reference for studies of transcription factors, enhancers, and their roles in development, disease, and evolution.
Collapse
Affiliation(s)
- Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yushi Wu
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Sydney Popsuj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Diana S José-Edwards
- Post-Baccalaureate Premedical Program, Washington University, St. Louis, MO, 63130, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
2
|
Edwards-Faret G, de Vin F, Slezak M, Gollenbeck L, Karaman R, Shinmyo Y, Batiuk MY, Pando CM, Urschitz J, Rincon MY, Moisyadi S, Schnütgen F, Kawasaki H, Schmucker D, Holt MG. A New Technical Approach for Cross-species Examination of Neuronal Wiring and Adult Neuron-glia Functions. Neuroscience 2023; 508:40-51. [PMID: 36464177 DOI: 10.1016/j.neuroscience.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Advances in single cell sequencing have enabled the identification of a large number of genes, expressed in many different cell types, and across a variety of model organisms. In particular, the nervous system harbors an immense number of interacting cell types, which are poorly characterized. Future loss- and gain-of-function experiments will be essential in determining how novel genes play critical roles in diverse cellular, as well as evolutionarily adapted, contexts. However, functional analysis across species is often hampered by technical limitations, in non-genetic animal systems. Here, we describe a new single plasmid system, misPiggy. The system is based around the hyperactive piggyBac transposon system, which combines stable genomic integration of transgenes (for long-term expression) with large cargo capacity. Taking full advantage of these characteristics, we engineered novel expression modules into misPiggy that allow for cell-type specific loss- and gain-of-gene function. These modules work widely across species from frog to ferret. As a proof of principle, we present a loss-of-function analysis of the neuronal receptor Deleted in Colorectal Cancer (DCC) in retinal ganglion cells (RGCs) of Xenopus tropicalis tadpoles. Single axon tracings of mosaic knock-out cells reveal a specific cell-intrinsic requirement of DCC, specifically in axonal arborization within the frog tectum, rather than retina-to-brain axon guidance. Furthermore, we report additional technical advances that enable temporal control of knock-down or gain-of-function analysis. We applied this to visualize and manipulate labeled neurons, astrocytes and other glial cells in the central nervous system (CNS) of mouse, rat and ferret. We propose that misPiggy will be a valuable tool for rapid, flexible and cost-effective screening of gene function across a variety of animal models.
Collapse
Affiliation(s)
- Gabriela Edwards-Faret
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium; Neuronal Wiring Group, Life & Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, Bonn D53115, Germany
| | - Filip de Vin
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Michal Slezak
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Lennart Gollenbeck
- Neuronal Wiring Group, Life & Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, Bonn D53115, Germany
| | - Ruçhan Karaman
- VIB Center for Cancer Biology, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Oncology, Herestraat 49, Leuven 3000, Belgium
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medicine, Kanazawa University, Ishikawa 920-1192, Japan
| | - Mykhailo Y Batiuk
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Carmen Menacho Pando
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Johann Urschitz
- Institute for Biogenesis Research, University of Hawaii, 1960 East-West Rd. E-124, Honolulu, HI 96822, USA
| | - Melvin Y Rincon
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Stefan Moisyadi
- Institute for Biogenesis Research, University of Hawaii, 1960 East-West Rd. E-124, Honolulu, HI 96822, USA
| | - Frank Schnütgen
- Department of Medicine 2, University Hospital Frankfurt, Goethe University, Theodor Stern Kai 7, Frankfurt am Main D60590, Germany; LOEWE Center for Cell and Gene Therapy, University Hospital Frankfurt, Goethe University, Theodor Stern Kai 7, Frankfurt am Main D60590, Germany; FCI, Frankfurt Cancer Institute, University Hospital Frankfurt, Goethe University, Theodor Stern Kai 7, Frankfurt am Main D60590, Germany
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medicine, Kanazawa University, Ishikawa 920-1192, Japan
| | - Dietmar Schmucker
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium; Neuronal Wiring Group, Life & Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, Bonn D53115, Germany; Leuven Brain Institute, Herestraat 49, Leuven 3000, Belgium.
| | - Matthew G Holt
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium; Leuven Brain Institute, Herestraat 49, Leuven 3000, Belgium; University of Porto, Instituto de Investigaçāo e Inovaçāo em Saúde (i3S), Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
3
|
Wu Y, Devotta A, José-Edwards DS, Kugler JE, Negrón-Piñeiro LJ, Braslavskaya K, Addy J, Saint-Jeannet JP, Di Gregorio A. Xbp1 and Brachyury establish an evolutionarily conserved subcircuit of the notochord gene regulatory network. eLife 2022; 11:e73992. [PMID: 35049502 PMCID: PMC8803312 DOI: 10.7554/elife.73992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Gene regulatory networks coordinate the formation of organs and structures that compose the evolving body plans of different organisms. We are using a simple chordate model, the Ciona embryo, to investigate the essential gene regulatory network that orchestrates morphogenesis of the notochord, a structure necessary for the proper development of all chordate embryos. Although numerous transcription factors expressed in the notochord have been identified in different chordates, several of them remain to be positioned within a regulatory framework. Here, we focus on Xbp1, a transcription factor expressed during notochord formation in Ciona and other chordates. Through the identification of Xbp1-downstream notochord genes in Ciona, we found evidence of the early co-option of genes involved in the unfolded protein response to the notochord developmental program. We report the regulatory interplay between Xbp1 and Brachyury, and by extending these results to Xenopus, we show that Brachyury and Xbp1 form a cross-regulatory subcircuit of the notochord gene regulatory network that has been consolidated during chordate evolution.
Collapse
Affiliation(s)
- Yushi Wu
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Arun Devotta
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Diana S José-Edwards
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Jamie E Kugler
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Karina Braslavskaya
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Jermyn Addy
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | | | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| |
Collapse
|
4
|
Di Gregorio A. The notochord gene regulatory network in chordate evolution: Conservation and divergence from Ciona to vertebrates. Curr Top Dev Biol 2020; 139:325-374. [PMID: 32450965 DOI: 10.1016/bs.ctdb.2020.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The notochord is a structure required for support and patterning of all chordate embryos, from sea squirts to humans. An increasing amount of information on notochord development and on the molecular strategies that ensure its proper morphogenesis has been gleaned through studies in the sea squirt Ciona. This invertebrate chordate offers a fortunate combination of experimental advantages, ranging from translucent, fast-developing embryos to a compact genome and impressive biomolecular resources. These assets have enabled the rapid identification of numerous notochord genes and cis-regulatory regions, and provide a rather unique opportunity to reconstruct the gene regulatory network that controls the formation of this developmental and evolutionary chordate landmark. This chapter summarizes the morphogenetic milestones that punctuate notochord formation in Ciona, their molecular effectors, and the current knowledge of the gene regulatory network that ensures the accurate spatial and temporal orchestration of these processes.
Collapse
Affiliation(s)
- Anna Di Gregorio
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
5
|
Shimai K, Kusakabe TG. The Use of cis-Regulatory DNAs as Molecular Tools. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [DOI: 10.1007/978-981-10-7545-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Zeller RW. Electroporation in Ascidians: History, Theory and Protocols. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542079 DOI: 10.1007/978-981-10-7545-2_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Embryonic development depends on the orchestration of hundreds of regulatory and structural genes to initiate expression at the proper time, in the correct spatial domain(s), and in the amounts required for cells and tissues to become specified, determined, and ultimately to differentiate into a multicellular embryo. One of the key approaches to studying embryonic development is the generation of transgenic animals in which recombinant DNA molecules are transiently or stably introduced into embryos to alter gene expression, to manipulate gene function or to serve as reporters for specific cell types or subcellular compartments. In some model systems, such as the mouse, well-defined approaches for generating transgenic animals have been developed. In other systems, particularly non-model systems, a key challenge is to find a way of introducing molecules or other reagents into cells that produces large numbers of embryos with a minimal effect on normal development. A variety of methods have been developed, including the use of viral vectors, microinjection, and electroporation. Here, I describe how electroporation was adapted to generate transgenic embryos in the ascidian, a nontraditional invertebrate chordate model that is particularly well-suited for studying gene regulatory activity during development. I present a review of the electroporation process, describe how electroporation was first implemented in the ascidian, and provide a series of protocols describing the electroporation process, as implemented in our laboratory.
Collapse
Affiliation(s)
- Robert W Zeller
- Center for Applied and Experimental Genomics, Department of Biology, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
7
|
Abstract
Ascidians are invertebrate chordates with a biphasic life cycle characterized by a dual body plan that displays simplified versions of chordate structures, such as a premetamorphic 40-cell notochord topped by a dorsal nerve cord and postmetamorphic pharyngeal slits. These relatively simple chordates are characterized by rapid development, compact genomes and ease of transgenesis, and thus provide the opportunity to rapidly characterize the genomic organization, developmental function, and transcriptional regulation of evolutionarily conserved gene families. This review summarizes the current knowledge on members of the T-box family of transcription factors in Ciona and other ascidians. In both chordate and nonchordate animals, these genes control a variety of morphogenetic processes, and their mutations are responsible for malformations and developmental defects in organisms ranging from flies to humans. In ascidians, T-box transcription factors are required for the formation and specialization of essential structures, including notochord, muscle, heart, and differentiated neurons. In recent years, the experimental advantages offered by ascidian embryos have allowed the rapid accumulation of a wealth of information on the molecular mechanisms that regulate the expression of T-box genes. These studies have also elucidated the strategies employed by these transcription factors to orchestrate the appropriate spatial and temporal deployment of the numerous target genes that they control.
Collapse
Affiliation(s)
- A Di Gregorio
- New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
8
|
Garstang MG, Osborne PW, Ferrier DEK. TCF/Lef regulates the Gsx ParaHox gene in central nervous system development in chordates. BMC Evol Biol 2016; 16:57. [PMID: 26940763 PMCID: PMC4776371 DOI: 10.1186/s12862-016-0614-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ParaHox genes play an integral role in the anterior-posterior (A-P) patterning of the nervous system and gut of most animals. The ParaHox cluster is an ideal system in which to study the evolution and regulation of developmental genes and gene clusters, as it displays similar regulatory phenomena to its sister cluster, the Hox cluster, but offers a much simpler system with only three genes. RESULTS Using Ciona intestinalis transgenics, we isolated a regulatory element upstream of Branchiostoma floridae Gsx that drives expression within the central nervous system of Ciona embryos. The minimal amphioxus enhancer region required to drive CNS expression has been identified, along with surrounding sequence that increases the efficiency of reporter expression throughout the Ciona CNS. TCF/Lef binding sites were identified and mutagenized and found to be required to drive the CNS expression. Also, individual contributions of TCF/Lef sites varied across the regulatory region, revealing a partial division of function across the Bf-Gsx-Up regulatory element. Finally, when all TCF/Lef binding sites are mutated CNS expression is not only abolished, but a latent repressive function is also unmasked. CONCLUSIONS We have identified a B. floridae Gsx upstream regulatory element that drives CNS expression within transgenic Ciona intestinalis, and have shown that this CNS expression is dependent upon TCF/Lef binding sites. We examine the evolutionary and developmental implications of these results, and discuss the possibility of TCF/Lef not only as a regulator of chordate Gsx, but as a deeply conserved regulatory factor controlling all three ParaHox genes across the Metazoa.
Collapse
Affiliation(s)
- Myles G Garstang
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB, UK.
| | - Peter W Osborne
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB, UK.
| | - David E K Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB, UK.
| |
Collapse
|
9
|
Yokomori R, Shimai K, Nishitsuji K, Suzuki Y, Kusakabe TG, Nakai K. Genome-wide identification and characterization of transcription start sites and promoters in the tunicate Ciona intestinalis. Genome Res 2015; 26:140-50. [PMID: 26668163 PMCID: PMC4691747 DOI: 10.1101/gr.184648.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 10/13/2015] [Indexed: 02/05/2023]
Abstract
The tunicate Ciona intestinalis, an invertebrate chordate, has recently emerged as a powerful model organism for gene regulation analysis. However, few studies have been conducted to identify and characterize its transcription start sites (TSSs) and promoters at the genome-wide level. Here, using TSS-seq, we identified TSSs at the genome-wide scale and characterized promoters in C. intestinalis. Specifically, we identified TSS clusters (TSCs), high-density regions of TSS-seq tags, each of which appears to originate from an identical promoter. TSCs were found not only at known TSSs but also in other regions, suggesting the existence of many unknown transcription units in the genome. We also identified candidate promoters of 79 ribosomal protein (RP) genes, each of which had the major TSS in a polypyrimidine tract and showed a sharp TSS distribution like human RP gene promoters. Ciona RP gene promoters, however, did not appear to have typical TATA boxes, unlike human RP gene promoters. In Ciona non-RP promoters, two pyrimidine-purine dinucleotides, CA and TA, were frequently used as TSSs. Despite the absence of CpG islands, Ciona TATA-less promoters showed low expression specificity like CpG-associated human TATA-less promoters. By using TSS-seq, we also predicted trans-spliced gene TSSs and found that their downstream regions had higher G+T content than those of non-trans-spliced gene TSSs. Furthermore, we identified many putative alternative promoters, some of which were regulated in a tissue-specific manner. Our results provide valuable information about TSSs and promoter characteristics in C. intestinalis and will be helpful in future analysis of transcriptional regulation in chordates.
Collapse
Affiliation(s)
- Rui Yokomori
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan
| | - Kotaro Shimai
- Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| | - Koki Nishitsuji
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan
| | - Takehiro G Kusakabe
- Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| | - Kenta Nakai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan; Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
10
|
Thompson JM, Di Gregorio A. Insulin-like genes in ascidians: findings in Ciona and hypotheses on the evolutionary origins of the pancreas. Genesis 2014; 53:82-104. [PMID: 25378051 DOI: 10.1002/dvg.22832] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/13/2014] [Accepted: 10/16/2014] [Indexed: 12/22/2022]
Abstract
Insulin plays an extensively characterized role in the control of sugar metabolism, growth and homeostasis in a wide range of organisms. In vertebrate chordates, insulin is mainly produced by the beta cells of the endocrine pancreas, while in non-chordate animals insulin-producing cells are mainly found in the nervous system and/or scattered along the digestive tract. However, recent studies have indicated the notochord, the defining feature of the chordate phylum, as an additional site of expression of insulin-like peptides. Here we show that two of the three insulin-like genes identified in Ciona intestinalis, an invertebrate chordate with a dual life cycle, are first expressed in the developing notochord during embryogenesis and transition to distinct areas of the adult digestive tract after metamorphosis. In addition, we present data suggesting that the transcription factor Ciona Brachyury is involved in the control of notochord expression of at least one of these genes, Ciona insulin-like 2. Finally, we review the information currently available on insulin-producing cells in ascidians and on pancreas-related transcription factors that might control their expression.
Collapse
Affiliation(s)
- Jordan M Thompson
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York
| | | |
Collapse
|
11
|
Katikala L, Aihara H, Passamaneck YJ, Gazdoiu S, José-Edwards DS, Kugler JE, Oda-Ishii I, Imai JH, Nibu Y, Di Gregorio A. Functional Brachyury binding sites establish a temporal read-out of gene expression in the Ciona notochord. PLoS Biol 2013; 11:e1001697. [PMID: 24204212 PMCID: PMC3812116 DOI: 10.1371/journal.pbio.1001697] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022] Open
Abstract
During notochord formation in chordate embryos, the transcription factor Brachyury employs different regulatory strategies to ensure the sequential activation of downstream genes and thereby the deployment of a specific developmental program at the right time and place. The appearance of the notochord represented a milestone in Deuterostome evolution. The notochord is necessary for the development of the chordate body plan and for the formation of the vertebral column and numerous organs. It is known that the transcription factor Brachyury is required for notochord formation in all chordates, and that it controls transcription of a large number of target genes. However, studies of the structure of the cis-regulatory modules (CRMs) through which this control is exerted are complicated in vertebrates by the genomic complexity and the pan-mesodermal expression territory of Brachyury. We used the ascidian Ciona, in which the single-copy Brachyury is notochord-specific and CRMs are easily identifiable, to carry out a systematic characterization of Brachyury-downstream notochord CRMs. We found that Ciona Brachyury (Ci-Bra) controls most of its targets directly, through non-palindromic binding sites that function either synergistically or individually to activate early- and middle-onset genes, respectively, while late-onset target CRMs are controlled indirectly, via transcriptional intermediaries. These results illustrate how a transcriptional regulator can efficiently shape a shallow gene regulatory network into a multi-tiered transcriptional output, and provide insights into the mechanisms that establish temporal read-outs of gene expression in a fast-developing chordate embryo. Transcription factors control where and when gene expression is switched on by binding to specific stretches of DNA known as cis-regulatory modules (CRMs). In this study, we investigated the architecture and composition of CRMs that direct gene expression in the notochord—a transient rod-like structure found in all embryos that belong to the phylum chordata, which includes humans. Here we used the sea squirt Ciona, a simple chordate, and analyzed how the transcription factor Brachyury ensures the appropriate deployment of its target genes at specific times during the sequential steps of notochord formation. We compared CRMs found in different notochord genes downstream of Brachyury, expecting to find genes associated with greater numbers of Brachyury binding sites to be expressed at higher levels. To our surprise, we found instead that a higher number of functional Brachyury binding sites is typical of CRMs associated with genes that are expressed early in notochord development, while single-site CRMs are characteristic of genes that are turned on during the intermediate stages of this process. Finally, CRMs associated with genes expressed late in notochord development do not contain functional Brachyury binding sites but are controlled by Brachyury indirectly, through the action of intermediary transcription factors. These differences explain how a transcription factor that is present at all stages in a certain cell type can generate a sequential transcriptional output of gene expression.
Collapse
Affiliation(s)
- Lavanya Katikala
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Hitoshi Aihara
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Yale J. Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Stefan Gazdoiu
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Diana S. José-Edwards
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Jamie E. Kugler
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Izumi Oda-Ishii
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Janice H. Imai
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Yutaka Nibu
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail: (YN); (ADG)
| | - Anna Di Gregorio
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail: (YN); (ADG)
| |
Collapse
|
12
|
José-Edwards DS, Oda-Ishii I, Nibu Y, Di Gregorio A. Tbx2/3 is an essential mediator within the Brachyury gene network during Ciona notochord development. Development 2013; 140:2422-33. [PMID: 23674602 DOI: 10.1242/dev.094227] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
T-box genes are potent regulators of mesoderm development in many metazoans. In chordate embryos, the T-box transcription factor Brachyury (Bra) is required for specification and differentiation of the notochord. In some chordates, including the ascidian Ciona, members of the Tbx2 subfamily of T-box genes are also expressed in this tissue; however, their regulatory relationships with Bra and their contributions to the development of the notochord remain uncharacterized. We determined that the notochord expression of Ciona Tbx2/3 (Ci-Tbx2/3) requires Ci-Bra, and identified a Ci-Tbx2/3 notochord CRM that necessitates multiple Ci-Bra binding sites for its activity. Expression of mutant forms of Ci-Tbx2/3 in the developing notochord revealed a role for this transcription factor primarily in convergent extension. Through microarray screens, we uncovered numerous Ci-Tbx2/3 targets, some of which overlap with known Ci-Bra-downstream notochord genes. Among the Ci-Tbx2/3 notochord targets are evolutionarily conserved genes, including caspases, lineage-specific genes, such as Noto4, and newly identified genes, such as MLKL. This work sheds light on a large section of the notochord regulatory circuitry controlled by T-box factors, and reveals new components of the complement of genes required for the proper formation of this structure.
Collapse
Affiliation(s)
- Diana S José-Edwards
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | | | | | | |
Collapse
|
13
|
Hozumi A, Mita K, Miskey C, Mates L, Izsvak Z, Ivics Z, Satake H, Sasakura Y. Germline transgenesis of the chordate Ciona intestinalis with hyperactive variants of sleeping beauty transposable element. Dev Dyn 2012; 242:30-43. [PMID: 23073965 DOI: 10.1002/dvdy.23891] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2012] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Transposon-mediated transgenesis is an excellent method for creating stable transgenic lines and insertional mutants. In the chordate Ciona intestinalis, Minos is the only transposon that has been used as the tool for germline transformation. Adding another transposon system in this organism enables us to conduct genetic techniques which can only be realized with the use of two transposons. RESULTS In the present study, we found that another Tc1/mariner superfamily transposon, sleeping beauty (SB), retains sufficient activity for germline transformation of C. intestinalis. SB shows efficiencies of germline transformation, insertion into gene coding regions, and enhancer detection comparable to those of Minos. We have developed a system for the remobilization of SB copies in the C. intestinalis genome by using transgenic lines expressing SB transposase in the germ cells. With this system, we examined the manner of SB mobilization in the C. intestinalis genome. SB shows intrachromosomal transposition more frequently than Minos. CONCLUSIONS SB-based germline transformation and the establishment of a new method that uses its frequent intrachromosomal transposition will result in breakthroughs in genetic approaches that use C. intestinalis together with Minos.
Collapse
Affiliation(s)
- Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Woznica A, Haeussler M, Starobinska E, Jemmett J, Li Y, Mount D, Davidson B. Initial deployment of the cardiogenic gene regulatory network in the basal chordate, Ciona intestinalis. Dev Biol 2012; 368:127-39. [PMID: 22595514 DOI: 10.1016/j.ydbio.2012.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/26/2012] [Accepted: 05/04/2012] [Indexed: 12/31/2022]
Abstract
The complex, partially redundant gene regulatory architecture underlying vertebrate heart formation has been difficult to characterize. Here, we dissect the primary cardiac gene regulatory network in the invertebrate chordate, Ciona intestinalis. The Ciona heart progenitor lineage is first specified by Fibroblast Growth Factor/Map Kinase (FGF/MapK) activation of the transcription factor Ets1/2 (Ets). Through microarray analysis of sorted heart progenitor cells, we identified the complete set of primary genes upregulated by FGF/Ets shortly after heart progenitor emergence. Combinatorial sequence analysis of these co-regulated genes generated a hypothetical regulatory code consisting of Ets binding sites associated with a specific co-motif, ATTA. Through extensive reporter analysis, we confirmed the functional importance of the ATTA co-motif in primary heart progenitor gene regulation. We then used the Ets/ATTA combination motif to successfully predict a number of additional heart progenitor gene regulatory elements, including an intronic element driving expression of the core conserved cardiac transcription factor, GATAa. This work significantly advances our understanding of the Ciona heart gene network. Furthermore, this work has begun to elucidate the precise regulatory architecture underlying the conserved, primary role of FGF/Ets in chordate heart lineage specification.
Collapse
Affiliation(s)
- Arielle Woznica
- Department of Molecular and Cellular Biology, Molecular Cardiovascular Research Program, University of Arizona, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Esposito R, D'Aniello S, Squarzoni P, Pezzotti MR, Ristoratore F, Spagnuolo A. New insights into the evolution of metazoan tyrosinase gene family. PLoS One 2012; 7:e35731. [PMID: 22536431 PMCID: PMC3334994 DOI: 10.1371/journal.pone.0035731] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 03/24/2012] [Indexed: 11/19/2022] Open
Abstract
Tyrosinases, widely distributed among animals, plants and fungi, are involved in the biosynthesis of melanin, a pigment that has been exploited, in the course of evolution, to serve different functions. We conducted a deep evolutionary analysis of tyrosinase family amongst metazoa, thanks to the availability of new sequenced genomes, assessing that tyrosinases (tyr) represent a distinctive feature of all the organisms included in our study and, interestingly, they show an independent expansion in most of the analyzed phyla. Tyrosinase-related proteins (tyrp), which derive from tyr but show distinct key residues in the catalytic domain, constitute an invention of chordate lineage. In addition we here reported a detailed study of the expression territories of the ascidian Ciona intestinalis tyr and tyrps. Furthermore, we put efforts in the identification of the regulatory sequences responsible for their expression in pigment cell lineage. Collectively, the results reported here enlarge our knowledge about the tyrosinase gene family as valuable resource for understanding the genetic components involved in pigment cells evolution and development.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonietta Spagnuolo
- Cellular and Developmental Biology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| |
Collapse
|
16
|
Optimized conditions for transgenesis of the ascidian Ciona using square wave electroporation. Dev Genes Evol 2012; 222:55-61. [DOI: 10.1007/s00427-011-0386-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
17
|
D'Aniello E, Pezzotti MR, Locascio A, Branno M. Onecut is a direct neural-specific transcriptional activator of Rx in Ciona intestinalis. Dev Biol 2011; 355:358-71. [PMID: 21600895 DOI: 10.1016/j.ydbio.2011.05.584] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 04/21/2011] [Accepted: 05/04/2011] [Indexed: 11/28/2022]
Abstract
Retinal homeobox (Rx) genes play a crucial and conserved role in the development of the anterior neural plate of metazoans. During chordate evolution, they have also acquired a novel function in the control of eye formation and neurogenesis. To characterize the Rx genetic cascade and shed light on the mechanisms that led to the acquisition of this new role in eye development, we studied Rx transcriptional regulation using the ascidian, Ciona intestinalis. Through deletion analysis of the Ci-Rx promoter, we have identified two distinct enhancer elements able to induce Ci-Rx specific expression in the anterior part of the CNS and in the photosensory organ at tailbud and larva stages. Bioinformatic analysis highlighted the presence of two Onecut binding sites contained in these enhancers, so we explored the role of this transcription factor in the regulation of Ci-Rx. By in situ hybridization, we first confirmed that these genes are co-expressed in the same cells. Through a series of in vivo and in vitro experiments, we then demonstrated that the two Onecut sites are responsible for enhancer activation in Ci-Rx endogenous territories. We also demonstrated in vivo that Onecut misexpression is able to induce ectopic activation of the Rx promoter. Finally, we demonstrated that Ci-Onecut is able to promote Ci-Rx expression in the sensory vesicle. Together, these results support the conclusion that in Ciona embryogenesis, Ci-Rx expression is under the control of the Onecut transcription factor and that this factor is necessary and sufficient to specifically activate Ci-Rx through two enhancer elements.
Collapse
Affiliation(s)
- Enrico D'Aniello
- Cellular and Developmental Biology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | | | | | | |
Collapse
|
18
|
Farley EK, Gale E, Chambers D, Li M. Effects of in ovo electroporation on endogenous gene expression: genome-wide analysis. Neural Dev 2011; 6:17. [PMID: 21527010 PMCID: PMC3105949 DOI: 10.1186/1749-8104-6-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/28/2011] [Indexed: 11/23/2022] Open
Abstract
Background In ovo electroporation is a widely used technique to study gene function in developmental biology. Despite the widespread acceptance of this technique, no genome-wide analysis of the effects of in ovo electroporation, principally the current applied across the tissue and exogenous vector DNA introduced, on endogenous gene expression has been undertaken. Here, the effects of electric current and expression of a GFP-containing construct, via electroporation into the midbrain of Hamburger-Hamilton stage 10 chicken embryos, are analysed by microarray. Results Both current alone and in combination with exogenous DNA expression have a small but reproducible effect on endogenous gene expression, changing the expression of the genes represented on the array by less than 0.1% (current) and less than 0.5% (current + DNA), respectively. The subset of genes regulated by electric current and exogenous DNA span a disparate set of cellular functions. However, no genes involved in the regional identity were affected. In sharp contrast to this, electroporation of a known transcription factor, Dmrt5, caused a much greater change in gene expression. Conclusions These findings represent the first systematic genome-wide analysis of the effects of in ovo electroporation on gene expression during embryonic development. The analysis reveals that this process has minimal impact on the genetic basis of cell fate specification. Thus, the study demonstrates the validity of the in ovo electroporation technique to study gene function and expression during development. Furthermore, the data presented here can be used as a resource to refine the set of transcriptional responders in future in ovo electroporation studies of specific gene function.
Collapse
Affiliation(s)
- Emma K Farley
- MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK.
| | | | | | | |
Collapse
|
19
|
Kugler JE, Kerner P, Bouquet JM, Jiang D, Di Gregorio A. Evolutionary changes in the notochord genetic toolkit: a comparative analysis of notochord genes in the ascidian Ciona and the larvacean Oikopleura. BMC Evol Biol 2011; 11:21. [PMID: 21251251 PMCID: PMC3034685 DOI: 10.1186/1471-2148-11-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 01/20/2011] [Indexed: 11/12/2022] Open
Abstract
Background The notochord is a defining feature of the chordate clade, and invertebrate chordates, such as tunicates, are uniquely suited for studies of this structure. Here we used a well-characterized set of 50 notochord genes known to be targets of the notochord-specific Brachyury transcription factor in one tunicate, Ciona intestinalis (Class Ascidiacea), to begin determining whether the same genetic toolkit is employed to build the notochord in another tunicate, Oikopleura dioica (Class Larvacea). We identified Oikopleura orthologs of the Ciona notochord genes, as well as lineage-specific duplicates for which we determined the phylogenetic relationships with related genes from other chordates, and we analyzed their expression patterns in Oikopleura embryos. Results Of the 50 Ciona notochord genes that were used as a reference, only 26 had clearly identifiable orthologs in Oikopleura. Two of these conserved genes appeared to have undergone Oikopleura- and/or tunicate-specific duplications, and one was present in three copies in Oikopleura, thus bringing the number of genes to test to 30. We were able to clone and test 28 of these genes. Thirteen of the 28 Oikopleura orthologs of Ciona notochord genes showed clear expression in all or in part of the Oikopleura notochord, seven were diffusely expressed throughout the tail, six were expressed in tissues other than the notochord, while two probes did not provide a detectable signal at any of the stages analyzed. One of the notochord genes identified, Oikopleura netrin, was found to be unevenly expressed in notochord cells, in a pattern reminiscent of that previously observed for one of the Oikopleura Hox genes. Conclusions A surprisingly high number of Ciona notochord genes do not have apparent counterparts in Oikopleura, and only a fraction of the evolutionarily conserved genes show clear notochord expression. This suggests that Ciona and Oikopleura, despite the morphological similarities of their notochords, have developed rather divergent sets of notochord genes after their split from a common tunicate ancestor. This study demonstrates that comparisons between divergent tunicates can lead to insights into the basic complement of genes sufficient for notochord development, and elucidate the constraints that control its composition.
Collapse
Affiliation(s)
- Jamie E Kugler
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
20
|
Kugler JE, Gazdoiu S, Oda-Ishii I, Passamaneck YJ, Erives AJ, Di Gregorio A. Temporal regulation of the muscle gene cascade by Macho1 and Tbx6 transcription factors in Ciona intestinalis. J Cell Sci 2010; 123:2453-63. [PMID: 20592183 DOI: 10.1242/jcs.066910] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For over a century, muscle formation in the ascidian embryo has been representative of 'mosaic' development. The molecular basis of muscle-fate predetermination has been partly elucidated with the discovery of Macho1, a maternal zinc-finger transcription factor necessary and sufficient for primary muscle development, and of its transcriptional intermediaries Tbx6b and Tbx6c. However, the molecular mechanisms by which the maternal information is decoded by cis-regulatory modules (CRMs) associated with muscle transcription factor and structural genes, and the ways by which a seamless transition from maternal to zygotic transcription is ensured, are still mostly unclear. By combining misexpression assays with CRM analyses, we have identified the mechanisms through which Ciona Macho1 (Ci-Macho1) initiates expression of Ci-Tbx6b and Ci-Tbx6c, and we have unveiled the cross-regulatory interactions between the latter transcription factors. Knowledge acquired from the analysis of the Ci-Tbx6b CRM facilitated both the identification of a related CRM in the Ci-Tbx6c locus and the characterization of two CRMs associated with the structural muscle gene fibrillar collagen 1 (CiFCol1). We use these representative examples to reconstruct how compact CRMs orchestrate the muscle developmental program from pre-localized ooplasmic determinants to differentiated larval muscle in ascidian embryos.
Collapse
Affiliation(s)
- Jamie E Kugler
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Irvine SQ, Fonseca VC, Zompa MA, Antony R. Cis-regulatory organization of the Pax6 gene in the ascidian Ciona intestinalis. Dev Biol 2008; 317:649-59. [PMID: 18342846 DOI: 10.1016/j.ydbio.2008.01.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 01/17/2008] [Accepted: 01/19/2008] [Indexed: 10/22/2022]
Abstract
The Pax6 gene has attracted intense research interest due to its apparently important role in the development of eyes and the central nervous system (CNS) in many animal groups. Pax6 is also of interest for comparative genomics since it has not been duplicated in tetrapods, making for a direct orthology between the Ciona intestinalis gene CiPax6 and Pax6 in mammals. CiPax6 has been shown to be expressed in the anterior brain, caudal nerve cord, and in parts of the brain associated with the photoreceptive ocellus. This information was extended here using in-situ hybridization, and shows that CiPax6 transcripts mark the lateral regions of the nerve cord, remarkably similar to Pax6 expression in the mouse. As a means of dissecting the cis-regulation of CiPax6 we tested 8 kb of sequence using transient reporter transgene assays. Three separate regions were found that work together to drive the overall CiPax6 expression pattern. A 211 bp sequence 2 kb upstream of the first exon was found to be a major enhancer driving expression in the sensory vesicle (the anterior portion of the ascidian brain). Other upstream sequences were shown to work with the sensory vesicle enhancer to drive expression in the remainder of the CNS. An "eye enhancer" was localized to the first intron, which controls specific expression in the central portion of the sensory vesicle, including photoreceptor cells. The fourth intron was found to repress ectopic expression of the reporter gene in middle portions of the embryonic brain. Aspects of this overall regulatory organization are similar to the organization of the Pax6 homologs in mice and Drosophila, particularly the presence of intronic elements driving expression in the eye, brain and nerve cord.
Collapse
Affiliation(s)
- Steven Q Irvine
- Department of Biological Sciences, University of Rhode Island, 100 Flagg Road, Kingston, RI 02840, USA.
| | | | | | | |
Collapse
|
23
|
Falk J, Drinjakovic J, Leung KM, Dwivedy A, Regan AG, Piper M, Holt CE. Electroporation of cDNA/Morpholinos to targeted areas of embryonic CNS in Xenopus. BMC DEVELOPMENTAL BIOLOGY 2007; 7:107. [PMID: 17900342 PMCID: PMC2147031 DOI: 10.1186/1471-213x-7-107] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 09/27/2007] [Indexed: 02/07/2023]
Abstract
Background Blastomere injection of mRNA or antisense oligonucleotides has proven effective in analyzing early gene function in Xenopus. However, functional analysis of genes involved in neuronal differentiation and axon pathfinding by this method is often hampered by earlier function of these genes during development. Therefore, fine spatio-temporal control of over-expression or knock-down approaches is required to specifically address the role of a given gene in these processes. Results We describe here an electroporation procedure that can be used with high efficiency and low toxicity for targeting DNA and antisense morpholino oligonucleotides (MOs) into spatially restricted regions of the Xenopus CNS at a critical time-window of development (22–50 hour post-fertilization) when axonal tracts are first forming. The approach relies on the design of "electroporation chambers" that enable reproducible positioning of fixed-spaced electrodes coupled with accurate DNA/MO injection. Simple adjustments can be made to the electroporation chamber to suit the shape of different aged embryos and to alter the size and location of the targeted region. This procedure can be used to electroporate separate regions of the CNS in the same embryo allowing separate manipulation of growing axons and their intermediate and final targets in the brain. Conclusion Our study demonstrates that electroporation can be used as a versatile tool to investigate molecular pathways involved in axon extension during Xenopus embryogenesis. Electroporation enables gain or loss of function studies to be performed with easy monitoring of electroporated cells. Double-targeted transfection provides a unique opportunity to monitor axon-target interaction in vivo. Finally, electroporated embryos represent a valuable source of MO-loaded or DNA transfected cells for in vitro analysis. The technique has broad applications as it can be tailored easily to other developing organ systems and to other organisms by making simple adjustments to the electroporation chamber.
Collapse
Affiliation(s)
- Julien Falk
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Jovana Drinjakovic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Kin Mei Leung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Asha Dwivedy
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Aoife G Regan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Michael Piper
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
- The Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
24
|
Irvine SQ, Cangiano MC, Millette BJ, Gutter ES. Non-overlapping expression patterns of the clustered Dll-A/B genes in the ascidian Ciona intestinalis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:428-41. [PMID: 17559091 DOI: 10.1002/jez.b.21169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Ci-Dll-A and Ci-Dll-B genes of Ciona intestinalis are arranged in a convergently transcribed gene cluster. This genomic arrangement is similar to that of the multiple bigene clusters of the Dlx homologs in vertebrates. Analysis of whole genome sequences showed that linkage to the Hox cluster is conserved with the vertebrate clusters. Phylogenetic analysis supports gene trees consistent with homology of the ascidian and vertebrate Dlx clusters, and in combination with the apparent conservation of genomic arrangement, it is concluded that the ascidian cluster is most likely homologous with the vertebrate clusters. Using whole-mount in situ hybridization, Ci-Dll-B transcripts were detected in all ectodermal lineages through gastrulation. Expression is radically downregulated in the neurula with detectable expression disappearing around the time that Ci-Dll-A expression appears in the anterior ectoderm. By the late tailbud stage Ci-Dll-Atranscripts were detected in the bilateral atrial primordia and persisted in the atrial rudiments to the larval stage, suggesting a role in development of these neural placode-like structures. This non-overlapping expression contradicts a common pattern seen in clustered genes, where as adjacent paralogs have largely overlapping expression domains. Enhancer sharing is often proposed as an explanation for the overlapping expression of gene cluster members. For this case of non-overlapping expression a model is proposed in which repressors acting at different stages override one or more shared enhancers. The enhancer sharing prevents breakup of the cluster while the independent temporal suppressors hide the presence of the shared enhancers.
Collapse
Affiliation(s)
- Steven Q Irvine
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02840, USA.
| | | | | | | |
Collapse
|
25
|
Small KS, Brudno M, Hill MM, Sidow A. A haplome alignment and reference sequence of the highly polymorphic Ciona savignyi genome. Genome Biol 2007; 8:R41. [PMID: 17374142 PMCID: PMC1868934 DOI: 10.1186/gb-2007-8-3-r41] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 02/15/2007] [Accepted: 03/20/2007] [Indexed: 01/11/2023] Open
Abstract
The high degree of polymorphism in the genome of the sea squirt Ciona savignyi complicated the assembly of sequence contigs, but a new alignment method results in a much improved sequence. The sequence of Ciona savignyi was determined using a whole-genome shotgun strategy, but a high degree of polymorphism resulted in a fractured assembly wherein allelic sequences from the same genomic region assembled separately. We designed a multistep strategy to generate a nonredundant reference sequence from the original assembly by reconstructing and aligning the two 'haplomes' (haploid genomes). In the resultant 174 megabase reference sequence, each locus is represented once, misassemblies are corrected, and contiguity and continuity are dramatically improved.
Collapse
Affiliation(s)
- Kerrin S Small
- Departments of Pathology and of Genetics, Stanford University Medical Center, 300 Pasteur Drive, Stanford, California 94305-5324, USA
| | - Michael Brudno
- Department of Computer Science, Banting and Best Department of Medical Research, University of Toronto, Toronto, 6 King's College Rd, Ontario, M5S 3G4, Canada
| | - Matthew M Hill
- Departments of Pathology and of Genetics, Stanford University Medical Center, 300 Pasteur Drive, Stanford, California 94305-5324, USA
| | - Arend Sidow
- Departments of Pathology and of Genetics, Stanford University Medical Center, 300 Pasteur Drive, Stanford, California 94305-5324, USA
| |
Collapse
|
26
|
Abstract
The primitive chordate Ciona intestinalis has emerged as a significant model system for the study of heart development. The Ciona embryo employs a conserved heart gene network in the context of extremely low cell numbers and reduced genetic redundancy. Here, I review recent studies on the molecular genetics of Ciona cardiogenesis as well as classic work on heart anatomy and physiology. I also discuss the potential of employing Ciona to decipher a comprehensive chordate gene network and to determine how this network controls heart morphogenesis.
Collapse
Affiliation(s)
- Brad Davidson
- Department of Molecular and Cellular Biology, Division of Genetics & Development, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
27
|
Passamaneck YJ, Di Gregorio A, Papaioannou VE, Hadjantonakis AK. Live imaging of fluorescent proteins in chordate embryos: from ascidians to mice. Microsc Res Tech 2006; 69:160-7. [PMID: 16538622 DOI: 10.1002/jemt.20284] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although we have advanced in our understanding of the molecular mechanisms intrinsic to the morphogenesis of chordate embryos, the question of how individual developmental events are integrated to generate the final morphological form is still unresolved. Microscopic observation is a pivotal tool in developmental biology, both for determining the normal course of events and for contrasting this with the results of experimental and pathological perturbations. Since embryonic development takes place in three dimensions over time, to fully understand the events required to build an embryo we must investigate embryo morphogenesis in multiple dimensions in situ. Recent advances in the isolation of naturally fluorescent proteins, and the refinement of techniques for in vivo microscopy offer unprecedented opportunities to study the cellular and molecular events within living, intact embryos using optical imaging. These technologies allow direct visual access to complex events as they happen in their native environment, and thus provide greater insights into cell behaviors operating during embryonic development. Since most fluorescent protein probes and modes of data acquisition are common across species, we have chosen the mouse and the ascidian, two model organisms at opposite ends of the chordate clade, to review the use of some of the current genetically-encoded fluorescent proteins and their visualization in vivo in living embryos for the generation of high-resolution imaging data.
Collapse
Affiliation(s)
- Yale J Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
28
|
Zeller RW, Weldon DS, Pellatiro MA, Cone AC. Optimized green fluorescent protein variants provide improved single cell resolution of transgene expression in ascidian embryos. Dev Dyn 2006; 235:456-67. [PMID: 16287050 DOI: 10.1002/dvdy.20644] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The green fluorescent protein (GFP) is used extensively to monitor gene expression and protein localization in living cells, particularly in developing embryos from a variety of species. Several GFP mutations have been characterized that improve protein expression and alter the emission spectra to produce proteins that emit green, blue, cyan, and yellow wavelengths. DsRed and its variants encode proteins that emit in the orange to red wavelengths. Many of these commercially available fluorescent proteins have been "codon optimized" for maximal levels of expression in mammalian cells. We have generated several fluorescent protein color variants that have been codon optimized for maximal expression in the ascidian Ciona intestinalis. By analyzing quantitative time-lapse recordings of transgenic embryos, we demonstrate that, in general, our Ciona optimized variants are detected and expressed at higher levels than commercially available fluorescent proteins. We show that three of these proteins, expressed simultaneously in different spatial domains within the same transgenic embryo are easily detectable using optimized fluorescent filter sets for epifluorescent microscopy. Coupled with recently developed quantitative imaging techniques, our GFP variants should provide useful reagents for monitoring the simultaneous expression of multiple genes in transgenic ascidian embryos.
Collapse
Affiliation(s)
- Robert W Zeller
- Molecular Biology Institute and Coastal and Marine Institute, San Diego State University, San Diego, California 92182-4614, USA.
| | | | | | | |
Collapse
|
29
|
Zeller RW, Virata MJ, Cone AC. Predictable mosaic transgene expression in ascidian embryos produced with a simple electroporation device. Dev Dyn 2006; 235:1921-32. [PMID: 16607640 DOI: 10.1002/dvdy.20815] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Two customized electroporators were specifically designed for creating transgenic ascidian embryos. These electroporators were simple to build, inexpensive, and produced transgenic embryos with efficiencies that equaled or rivaled commercially available machines. A key design feature of these machines resulted in the generation of consistent electroporation pulses providing repeatability between experiments. These devices were used to optimize experimental parameters allowing for the creation of transient transgenic embryos with predictable patterns of mosaic transgene expression. We used these new electroporators to examine the expression of two different fluorescent protein reporter genes with regard to embryonic cell lineage. In general, transgene expression followed the embryonic cell lineage and coelectroporated transgenes were always expressed in the same embryonic cells. Our analysis also indicated that, during development, transgenes could be lost from embryonic cells, suggesting that transgenes may be present in extrachromosomal arrays, as has been observed in other organisms. Our new electroporator designs will allow ascidian researchers to inexpensively produce transgenic ascidians and should prove useful for adapting the electroporation technique to other marine embryo systems.
Collapse
Affiliation(s)
- Robert W Zeller
- Molecular Biology Institute and Coastal and Marine Institute, San Diego State University, San Diego, California 92182-4614, USA.
| | | | | |
Collapse
|
30
|
Abstract
Thanks to their transparent and rapidly developing mosaic embryos, ascidians (or sea squirts) have been a model system for embryological studies for over a century. Recently, ascidians have entered the postgenomic era, with the sequencing of the Ciona intestinalis genome and the accumulation of molecular resources that rival those available for fruit flies and mice. One strength of ascidians as a model system is their close similarity to vertebrates. Literature reporting molecular homologies between vertebrate and ascidian tissues has flourished over the past 15 years, since the first ascidian genes were cloned. However, it should not be forgotten that ascidians diverged from the lineage leading to vertebrates over 500 million years ago. Here, we review the main similarities and differences so far identified, at the molecular level, between ascidian and vertebrate tissues and discuss the evolution of the compact ascidian genome.
Collapse
Affiliation(s)
- Yale J Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
31
|
Stemple DL. Structure and function of the notochord: an essential organ for chordate development. Development 2005; 132:2503-12. [PMID: 15890825 DOI: 10.1242/dev.01812] [Citation(s) in RCA: 317] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The notochord is the defining structure of the chordates, and has essential roles in vertebrate development. It serves as a source of midline signals that pattern surrounding tissues and as a major skeletal element of the developing embryo. Genetic and embryological studies over the past decade have informed us about the development and function of the notochord. In this review, I discuss the embryonic origin, signalling roles and ultimate fate of the notochord, with an emphasis on structural aspects of notochord biology.
Collapse
Affiliation(s)
- Derek L Stemple
- Vertebrate Development and Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
32
|
Abstract
Ascidians, or sea squirts, are lower chordates, and share basic gene repertoires and many characteristics, both developmental and physiological, with vertebrates. Therefore, decoding cis-regulatory systems in ascidians will contribute toward elucidating the genetic regulatory systems underlying the developmental and physiological processes of vertebrates. cis-Regulatory DNAs can also be used for tissue-specific genetic manipulation, a powerful tool for studying ascidian development and physiology. Because the ascidian genome is compact compared with vertebrate genomes, both intergenic regions and introns are relatively small in ascidians. Short upstream intergenic regions contain a complete set of cis-regulatory elements for spatially regulated expression of a majority of ascidian genes. These features of the ascidian genome are a great advantage in identifying cis-regulatory sequences and in analyzing their functions. Function of cis-regulatory DNAs has been analyzed for a number of tissue-specific and developmentally regulated genes of ascidians by introducing promoter-reporter fusion constructs into ascidian embryos. The availability of the whole genome sequences of the two Ciona species, Ciona intestinalis and Ciona savignyi, facilitates comparative genomics approaches to identify cis-regulatory DNAs. Recent studies demonstrate that computational methods can help identify cis-regulatory elements in the ascidian genome. This review presents a comprehensive list of ascidian genes whose cis-regulatory regions have been subjected to functional analysis, and highlights the recent advances in bioinformatics and comparative genomics approaches to cis-regulatory systems in ascidians.
Collapse
Affiliation(s)
- Takehiro Kusakabe
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Japan.
| |
Collapse
|
33
|
Affiliation(s)
- Robert W Zeller
- Department of Biology, San Diego State University, San Diego, California 92182, USA
| |
Collapse
|
34
|
Kawai N, Takahashi H, Nishida H, Yokosawa H. Regulation of NF-kappaB/Rel by IkappaB is essential for ascidian notochord formation. Dev Biol 2005; 277:80-91. [PMID: 15572141 DOI: 10.1016/j.ydbio.2004.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 09/07/2004] [Accepted: 09/07/2004] [Indexed: 10/26/2022]
Abstract
We previously reported that two NF-kappaB/Rel family members are involved in notochord formation of the ascidian Halocynthia roretzi. Here, we present evidence that the NF-kappaB/Rel signaling pathway plays important roles in the notochord formation in another ascidian, Ciona intestinalis. We first found that two NF-kappaB/Rel family members of C. intestinalis, Ci-rel1 and Ci-rel2, are splice variants: Ci-rel1 is a typical member, while Ci-rel2 is a C-terminally truncated short one. Ectopic expression of GFP-fusion proteins in the C. intestinalis notochord revealed that Ci-rel1 transiently moved into the nucleus in the initial tailbud stage, when concomitant expression of Ci-IkappaB, a C. intestinalis IkappaB homologue, was observed, indicating that Ci-rel1 is transiently activated in this stage. Ci-rel1, as well as Ci-rel2, is capable of binding to the kappaB sequence present upstream of Ci-IkappaB, suggesting that Ci-IkappaB is a target gene of Ci-rel1. Reporter gene assay suggests that the expression of Ci-IkappaB in the notochord is controlled by its kappaB sequence. Gene silencing of Ci-IkappaB by injection of the corresponding antisense morpholino oligonucleotide resulted in impairment of notochord formation in C. intestinalis, particularly in a defect in intercalation of notochord cells. Taken together, the results suggest that the regulation of Ci-rel1 by Ci-IkappaB, whose transcription is regulated by Ci-rel1, in the tailbud stage is essential for notochord formation in C. intestinalis.
Collapse
Affiliation(s)
- Narudo Kawai
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
35
|
Cone AC, Zeller RW. Using ascidian embryos to study the evolution of developmental gene regulatory networks. CAN J ZOOL 2005. [DOI: 10.1139/z04-165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ascidians are ideally positioned taxonomically at the base of the chordate tree to provide a point of comparison for developmental regulatory mechanisms that operate among protostomes, non-chordate deuterostomes, invertebrate chordates, and vertebrates. In this review, we propose a model for the gene regulatory network that gives rise to the ascidian notochord. The purpose of this model is not to clarify all of the interactions between molecules of this network, but to provide a working schematic of the regulatory architecture that leads to the specification of endoderm and the patterning of mesoderm in ascidian embryos. We describe a series of approaches, both computational and biological, that are currently being used, or are in development, for the study of ascidian embryo gene regulatory networks. It is our belief that the tools now available to ascidian biologists, in combination with a streamlined mode of development and small genome size, will allow for more rapid dissection of developmental gene regulatory networks than in more complex organisms such as vertebrates. It is our hope that the analysis of gene regulatory networks in ascidians can provide a basic template which will allow developmental biologists to superimpose the modifications and novelties that have arisen during deuterostome evolution.
Collapse
|
36
|
Rhee JM, Oda-Ishii I, Passamaneck YJ, Hadjantonakis AK, Di Gregorio A. Live imaging and morphometric analysis of embryonic development in the ascidianCiona intestinalis. Genesis 2005; 43:136-47. [PMID: 16267822 DOI: 10.1002/gene.20164] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ascidian Ciona intestinalis is one of the model organisms of choice for comparative investigations of chordate development and for unraveling the molecular mechanisms underlying morphogenesis and cell fate specification. Taking advantage of the availability of various genetically encoded fluorescent proteins and of defined cis-regulatory elements, we combined transient transgenesis with laser scanning confocal imaging to acquire and quantitate 3D time-lapse data from living Ciona embryos. We used Ciona tissue-specific enhancers to drive expression of spectrally distinct fluorescent protein reporters to label and simultaneously visualize axially and paraxially positioned mesodermal derivatives, as well as neural precursors in individual embryos. We observed morphogenetic movements, without perturbing development, from the early gastrula throughout the larval stage, including gastrulation, neurulation, convergent extension of the presumptive notochord, and tail elongation. These multidimensional data allowed us to establish a reference system of metrics to quantify key developmental events including blastopore closure and muscle extension. The approach we describe can be used to document morphogenetic cell and tissue rearrangements in living embryos and paves the way for a live digitized anatomical atlas of Ciona.
Collapse
Affiliation(s)
- Jerry M Rhee
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
37
|
Satoh N, Satou Y, Davidson B, Levine M. Ciona intestinalis: an emerging model for whole-genome analyses. Trends Genet 2003; 19:376-81. [PMID: 12850442 DOI: 10.1016/s0168-9525(03)00144-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Nori Satoh
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
38
|
Sasakura Y, Awazu S, Chiba S, Satoh N. Germ-line transgenesis of the Tc1/mariner superfamily transposon Minos in Ciona intestinalis. Proc Natl Acad Sci U S A 2003; 100:7726-30. [PMID: 12788975 PMCID: PMC164655 DOI: 10.1073/pnas.1230736100] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tadpole larva of the basal chordate Ciona intestinalis has the most simplified, basic body-plan of chordates. Because it has a compact genome with a complete draft sequence, a large quantity of EST/cDNA information, and a short generation time, Ciona is a suitable model for future genetics. We establish here a transgenic technique in Ciona that uses the Tc1/mariner superfamily transposon Minos. Minos was integrated efficiently into the genome of germ cells and transmitted stably to subsequent generations. In addition, an enhancer-trap line was obtained. This is a demonstration of efficient, Minos-mediated transgenesis in marine invertebrates.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
39
|
Kusakabe R, Tochinai S, Kuratani S. Expression of foreign genes in lamprey embryos: an approach to study evolutionary changes in gene regulation. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 296:87-97. [PMID: 12658713 DOI: 10.1002/jez.b.11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Evolution in development can be viewed as a sequence of changes in gene regulation. To investigate the cross-species compatibility of 5' upstream regulatory regions, we introduced exogenous gene constructs derived from a gnathostome genome into fertilized eggs of the Japanese lamprey, Lampetra japonica, a sister group of the gnathostomes. Eggs were injected with gene constructs in which a sequence encoding the green fluorescent protein (GFP) had been located downstream of either a virus promoter or 5' regulatory regions of medaka actin genes. Reporter gene expression was recorded for more than a month starting two days after injection. Although the expression patterns were highly mosaic and differed among individuals, GFP was expressed predominantly in the striated muscles of lamprey embryos when driven by the 5' upstream regions of the medaka muscle actin genes. This implies that a pan-vertebrate muscle-specific gene regulatory mechanism may have evolved before the agnathan/gnathostome divergence. This gene-transfer technique potentially facilitates the visualization of cells in various differentiating tissues throughout development. The introduction of developmental genes of the lamprey or other animals into lamprey embryos is another potentially important application, one that could provide us with information on the evolutionary changes in functions of genes or gene cascades.
Collapse
Affiliation(s)
- Rie Kusakabe
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, Japan.
| | | | | |
Collapse
|
40
|
Abstract
Evolution is of interest not only to developmental biology but also to genetics and genomics. We are witnessing a new era in which evolution, development, genetics and genomics are merging to form a new discipline, a good example of which is the study of the origin and evolution of the chordates. Recent studies on the formation of the notochord and the dorsal neural tube in the increasingly famous Ciona intestinalis tadpole larva, and the availability of its draft genome, show how the combination of comparative molecular development and evolutionary genomics might help us to better understand our chordate ancestor.
Collapse
Affiliation(s)
- Nori Satoh
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
41
|
Deschet K, Nakatani Y, Smith WC. Generation of Ci-Brachyury-GFP stable transgenic lines in the ascidian Ciona savignyi. Genesis 2003; 35:248-59. [PMID: 12717736 DOI: 10.1002/gene.10195] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report generation of stable transgenic lines of the ascidian Ciona savignyi carrying a Ciona intestinalis-Brachyury-promoter/Green Fluorescent Protein-reporter (Ci-Bra-GFP) construct. The transgenic lines were made using a technique in which the endonuclease I-SceI was coinjected into fertilized eggs with a transgene construct containing flanking recognition sites for I-SceI. Two founder animals, out of 12 F(0) adults tested, were found to transmit the transgene to their offspring (F(1)s) at frequencies of 42% and 23%. The transgene was further inherited by the F(2) in a Mendelian fashion and displayed nonmosaic expression, indicating integration into the genome. The Mendelian inheritance and the absence of mosaicism persisted through the F(3) and F(4) generations. Southern blot analyses showed that the transgene was organized in tandem arrays of no more than 10 copies. Using these Ci-Bra-GFP transgenics, we describe cellular movements and shape changes involved in notochord morphogenesis in both wildtype and mutant embryos.
Collapse
Affiliation(s)
- Karine Deschet
- Molecular Cellular and Developmental Biology Department, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
42
|
Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KEM, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang HG, Awazu S, Azumi K, Boore J, Branno M, Chin-Bow S, DeSantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee BI, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 2002; 298:2157-67. [PMID: 12481130 DOI: 10.1126/science.1080049] [Citation(s) in RCA: 1191] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains approximately 16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.
Collapse
Affiliation(s)
- Paramvir Dehal
- U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|