1
|
Xu B, Liu L, Song G. Functions and Regulation of Translation Elongation Factors. Front Mol Biosci 2022; 8:816398. [PMID: 35127825 PMCID: PMC8807479 DOI: 10.3389/fmolb.2021.816398] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Translation elongation is a key step of protein synthesis, during which the nascent polypeptide chain extends by one amino acid residue during one elongation cycle. More and more data revealed that the elongation is a key regulatory node for translational control in health and disease. During elongation, elongation factor Tu (EF-Tu, eEF1A in eukaryotes) is used to deliver aminoacyl-tRNA (aa-tRNA) to the A-site of the ribosome, and elongation factor G (EF-G, EF2 in eukaryotes and archaea) is used to facilitate the translocation of the tRNA2-mRNA complex on the ribosome. Other elongation factors, such as EF-Ts/eEF1B, EF-P/eIF5A, EF4, eEF3, SelB/EFsec, TetO/Tet(M), RelA and BipA, have been found to affect the overall rate of elongation. Here, we made a systematic review on the canonical and non-canonical functions and regulation of these elongation factors. In particular, we discussed the close link between translational factors and human diseases, and clarified how post-translational modifications control the activity of translational factors in tumors.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Guangtao Song
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| |
Collapse
|
2
|
The molecular choreography of protein synthesis: translational control, regulation, and pathways. Q Rev Biophys 2016; 49:e11. [PMID: 27658712 DOI: 10.1017/s0033583516000056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of proteins by the ribosome regulates gene expression, with recent results underscoring the importance of translational control. Misregulation of translation underlies many diseases, including cancer and many genetic diseases. Decades of biochemical and structural studies have delineated many of the mechanistic details in prokaryotic translation, and sketched the outlines of eukaryotic translation. However, translation may not proceed linearly through a single mechanistic pathway, but likely involves multiple pathways and branchpoints. The stochastic nature of biological processes would allow different pathways to occur during translation that are biased by the interaction of the ribosome with other translation factors, with many of the steps kinetically controlled. These multiple pathways and branchpoints are potential regulatory nexus, allowing gene expression to be tuned at the translational level. As research focus shifts toward eukaryotic translation, certain themes will be echoed from studies on prokaryotic translation. This review provides a general overview of the dynamic data related to prokaryotic and eukaryotic translation, in particular recent findings with single-molecule methods, complemented by biochemical, kinetic, and structural findings. We will underscore the importance of viewing the process through the viewpoints of regulation, translational control, and heterogeneous pathways.
Collapse
|
3
|
Keeping the eIF2 alpha kinase Gcn2 in check. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1948-68. [PMID: 24732012 DOI: 10.1016/j.bbamcr.2014.04.006] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 12/31/2022]
Abstract
The protein kinase Gcn2 is present in virtually all eukaryotes and is of increasing interest due to its involvement in a large array of crucial biological processes. Some of these are universally conserved from yeast to humans, such as coping with nutrient starvation and oxidative stress. In mammals, Gcn2 is important for e.g. long-term memory formation, feeding behaviour and immune system regulation. Gcn2 has been also implicated in diseases such as cancer and Alzheimer's disease. Studies on Gcn2 have been conducted most extensively in Saccharomyces cerevisiae, where the mechanism of its activation by amino acid starvation has been revealed in most detail. Uncharged tRNAs stimulate Gcn2 which subsequently phosphorylates its substrate, eIF2α, leading to reduced global protein synthesis and simultaneously to increased translation of specific mRNAs, e.g. those coding for Gcn4 in yeast and ATF4 in mammals. Both proteins are transcription factors that regulate the expression of a myriad of genes, thereby enabling the cell to initiate a survival response to the initial activating cue. Given that Gcn2 participates in many diverse processes, Gcn2 itself must be tightly controlled. Indeed, Gcn2 is regulated by a vast network of proteins and RNAs, the list of which is still growing. Deciphering molecular mechanisms underlying Gcn2 regulation by effectors and inhibitors is fundamental for understanding how the cell keeps Gcn2 in check ensuring normal organismal function, and how Gcn2-associated diseases may develop or may be treated. This review provides a critical evaluation of the current knowledge on mechanisms controlling Gcn2 activation or activity.
Collapse
|
4
|
Visweswaraiah J, Lee SJ, Hinnebusch AG, Sattlegger E. Overexpression of eukaryotic translation elongation factor 3 impairs Gcn2 protein activation. J Biol Chem 2012; 287:37757-68. [PMID: 22888004 DOI: 10.1074/jbc.m112.368266] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, phosphorylation of translation initiation factor 2α (eIF2α) by the kinase Gcn2 (general control nonderepressible 2) is a key response to amino acid starvation. Sensing starvation requires that Gcn2 directly contacts its effector protein Gcn1, and both must contact the ribosome. We have proposed that Gcn2 is activated by uncharged tRNA bound to the ribosomal decoding (A) site, in a manner facilitated by ribosome-bound Gcn1. Protein synthesis requires cyclical association of eukaryotic elongation factors (eEFs) with the ribosome. Gcn1 and Gcn2 are large proteins, raising the question of whether translation and monitoring amino acid availability can occur on the same ribosome. Part of the ribosome-binding domain in Gcn1 has homology to one of the ribosome-binding domains in eEF3, suggesting that these proteins utilize overlapping binding sites on the ribosome and consequently cannot function simultaneously on the same ribosome. Supporting this idea, we found that eEF3 overexpression in Saccharomyces cerevisiae diminished growth on amino acid starvation medium (Gcn(-) phenotype) and decreased eIF2α phosphorylation, and that the growth defect associated with constitutively active Gcn2 was diminished by eEF3 overexpression. Overexpression of the eEF3 HEAT domain, or C terminus, was sufficient to confer a Gcn(-) phenotype, and both fragments have ribosome affinity. eEF3 overexpression did not significantly affect Gcn1-ribosome association, but it exacerbated the Gcn(-) phenotype of Gcn1-M7A that has reduced ribosome affinity. Together, this suggests that eEF3 blocks Gcn1 regulatory function on the ribosome. We propose that the Gcn1-Gcn2 complex only functions on ribosomes with A-site-bound uncharged tRNA, because eEF3 does not occupy these stalled complexes.
Collapse
|
5
|
Babu M, Aoki H, Chowdhury WQ, Gagarinova A, Graham C, Phanse S, Laliberte B, Sunba N, Jessulat M, Golshani A, Emili A, Greenblatt JF, Ganoza MC. Ribosome-dependent ATPase interacts with conserved membrane protein in Escherichia coli to modulate protein synthesis and oxidative phosphorylation. PLoS One 2011; 6:e18510. [PMID: 21556145 PMCID: PMC3083400 DOI: 10.1371/journal.pone.0018510] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 03/09/2011] [Indexed: 01/15/2023] Open
Abstract
Elongation factor RbbA is required for ATP-dependent deacyl-tRNA release presumably after each peptide bond formation; however, there is no information about the cellular role. Proteomic analysis in Escherichia coli revealed that RbbA reciprocally co-purified with a conserved inner membrane protein of unknown function, YhjD. Both proteins are also physically associated with the 30S ribosome and with members of the lipopolysaccharide transport machinery. Genome-wide genetic screens of rbbA and yhjD deletion mutants revealed aggravating genetic interactions with mutants deficient in the electron transport chain. Cells lacking both rbbA and yhjD exhibited reduced cell division, respiration and global protein synthesis as well as increased sensitivity to antibiotics targeting the ETC and the accuracy of protein synthesis. Our results suggest that RbbA appears to function together with YhjD as part of a regulatory network that impacts bacterial oxidative phosphorylation and translation efficiency.
Collapse
Affiliation(s)
- Mohan Babu
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Hiroyuki Aoki
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Wasimul Q. Chowdhury
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Alla Gagarinova
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Chris Graham
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Sadhna Phanse
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Ben Laliberte
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Canada
| | - Noor Sunba
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Canada
| | - Matthew Jessulat
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Canada
| | - Ashkan Golshani
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Canada
| | - Andrew Emili
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jack F. Greenblatt
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - M. Clelia Ganoza
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
6
|
Tenson T, Hauryliuk V. Does the ribosome have initiation and elongation modes of translation? Mol Microbiol 2009; 72:1310-5. [PMID: 19486296 DOI: 10.1111/j.1365-2958.2009.06741.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RNA polymerases differ functionally and structurally in the initiation phase of transcription, when polymerization of 8-12 nucleotides occurs, from the later phases of transcription. Here we argue that the ribosome also might have different properties when translating the first codons in open reading frames, as compared with the later phases of translation.
Collapse
Affiliation(s)
- Tanel Tenson
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia.
| | | |
Collapse
|
7
|
Wilson DN, Nierhaus KH. The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol 2007; 42:187-219. [PMID: 17562451 DOI: 10.1080/10409230701360843] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In every organism, translation of the genetic information into functional proteins is performed on the ribosome. In Escherichia coli up to 40% of the cell's total energy turnover is channelled toward the ribosome and protein synthesis. Thus, elaborate networks of translation regulation pathways have evolved to modulate gene expression in response to growth rate and external factors, ranging from nutrient deprivation, to chemical (pH, ionic strength) and physical (temperature) fluctuations. Since the fundamental players involved in regulation of the different phases of translation have already been extensively reviewed elsewhere, this review focuses on lesser known and characterized factors that regulate the ribosome, ranging from processing, modification and assembly factors, unusual initiation and elongation factors, to a variety of stress response proteins.
Collapse
Affiliation(s)
- Daniel N Wilson
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, Munich, Germany.
| | | |
Collapse
|
8
|
Abstract
During translation, mRNA is threaded through the ribosome in precise and directional three-nucleotide steps. A recent paper identifies a new GTPase, LepA, which catalyzes unexpected one-codon backward movement on the ribosome.
Collapse
Affiliation(s)
- Elaine M Youngman
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
9
|
Anand M, Balar B, Ulloque R, Gross SR, Kinzy TG. Domain and nucleotide dependence of the interaction between Saccharomyces cerevisiae translation elongation factors 3 and 1A. J Biol Chem 2006; 281:32318-26. [PMID: 16954224 DOI: 10.1074/jbc.m601899200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic translation elongation factor 3 (eEF3) is a fungal-specific ATPase proposed to catalyze the release of deacylated-tRNA from the ribosomal E-site. In addition, it has been shown to interact with the aminoacyl-tRNA binding GTPase elongation factor 1A (eEF1A), perhaps linking the E and A sites. Domain mapping demonstrates that amino acids 775-980 contain the eEF1A binding sites. Domain III of eEF1A, which is also involved in actin-related functions, is the site of eEF3 binding. The binding of eEF3 to eEF1A is enhanced by ADP, indicating the interaction is favored post-ATP hydrolysis but is not dependent on the eEF1A-bound nucleotide. A temperature-sensitive P915L mutant in the eEF1A binding site of eEF3 has reduced ATPase activity and affinity for eEF1A. These results support the model that upon ATP hydrolysis, eEF3 interacts with eEF1A to help catalyze the delivery of aminoacyl-tRNA at the A-site of the ribosome. The dynamics of when eEF3 interacts with eEF1A may be part of the signal for transition of the post to pre-translocational ribosomal state in yeast.
Collapse
Affiliation(s)
- Monika Anand
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
10
|
Xu J, Kiel MC, Golshani A, Chosay JG, Aoki H, Ganoza MC. Molecular localization of a ribosome-dependent ATPase on Escherichia coli ribosomes. Nucleic Acids Res 2006; 34:1158-65. [PMID: 16495476 PMCID: PMC1383619 DOI: 10.1093/nar/gkj508] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have previously isolated and described an Escherichia coli ribosome-bound ATPase, RbbA, that is required for protein synthesis in the presence of ATP, GTP and the elongation factors, EF-Tu and EF-G. The gene encoding RbbA, yhih, has been cloned and the deduced protein sequence harbors two ATP-motifs and one RNA-binding motif and is homologous to the fungal EF-3. Here, we describe the isolation and assay of a truncated form of the RbbA protein that is stable to overproduction and purification. Chemical protection results show that the truncated RbbA specifically protects nucleotide A937 on the 30S subunit of ribosomes, and the protected site occurs at the E-site where the tRNA is ejected upon A-site occupation. Other weakly protected bases in the region occur at or near the mRNA binding site. Using radiolabeled tRNAs, we study the stimulating effect of this truncated RbbA on the binding and release of different tRNAs bound to the (aminoacyl) A-, (peptidyl) P- and (exit) E-sites of 70S ribosomes. The combined data suggest plausible mechanisms for the function of RbbA in translation.
Collapse
Affiliation(s)
| | - M. C. Kiel
- Science Department, Marywood University2300 Adams Avenue, Scranton, PA 18509, USA
| | - A. Golshani
- Department of Science, Carleton University1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - J. G. Chosay
- Pfizer Pharmaceuticals5/MS-1, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | | | - M. C. Ganoza
- To whom correspondence should be addressed. Tel: +1 416 978 8918; Fax: +1 416 978 8528;
| |
Collapse
|
11
|
Abstract
Great advances have been made in the past three decades in understanding the molecular mechanics underlying protein synthesis in bacteria, but our understanding of the corresponding events in eukaryotic organisms is only beginning to catch up. In this review we describe the current state of our knowledge and ignorance of the molecular mechanics underlying eukaryotic translation. We discuss the mechanisms conserved across the three kingdoms of life as well as the important divergences that have taken place in the pathway.
Collapse
Affiliation(s)
- Lee D Kapp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.
| | | |
Collapse
|
12
|
Habib ESE, Scarsdale JN, Reynolds KA. Biosynthetic origin of hygromycin A. Antimicrob Agents Chemother 2003; 47:2065-71. [PMID: 12821448 PMCID: PMC161839 DOI: 10.1128/aac.47.7.2065-2071.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2003] [Revised: 03/25/2003] [Accepted: 04/21/2003] [Indexed: 11/20/2022] Open
Abstract
Hygromycin A, an antibiotic produced by Streptomyces hygroscopicus, is an inhibitor of bacterial ribosomal peptidyl transferase. The antibiotic binds to the ribosome in a distinct but overlapping manner with other antibiotics and offers a different template for generation of new agents effective against multidrug-resistant pathogens. Reported herein are the results from a series of stable-isotope-incorporation studies demonstrating the biosynthetic origins of the three distinct structural moieties which comprise hygromycin A. Incorporation of [1-(13)C]mannose and intact incorporation of D-[1,2-(13)C(2)]glucose into the 6-deoxy-5-keto-D-arabino-hexofuranose moiety are consistent with a pathway in which mannose is converted to an activated L-fucose, via a 4-keto-6-deoxy-D-mannose intermediate, with a subsequent unusual mutation of the pyranose to the corresponding furanose. The aminocyclitol moiety was labeled by D-[1,2-(13)C(2)]glucose in a manner consistent with formation of myo-inositol and a subsequent unprecedented oxidation and transamination of the C-2 hydroxyl group to generate neo-inosamine-2. Incorporation of [carboxy-(13)C]-4-hydroxybenzoic acid and intact incorporation of [2,3-(13)C(2)]propionate are consistent with a polyketide synthase-type decarboxylation condensation to generate the 3,4-dihydroxy-alpha-methylcinnamic acid moiety of hygromycin A. No labeling of hygromycin A was observed when [3-(13)C]tyrosine, [3-(13)C]phenylalanine, or [carboxy-(13)C]benzoic acid was used, suggesting that the 4-hydroxybenzoic acid is derived directly from chorismic acid. Consistent with this hypothesis was the observation that hygromycin A titers could be reduced by addition of N-(phosphonomethyl)-glycine (an inhibitor of chorismic acid biosynthesis) and restored by coaddition of 4-hydroxybenzoic acid. The convergent biosynthetic pathway established for hygromycin A offers significant versatility for applying the techniques of combinatorial and directed biosynthesis to production of new antibiotics which target the ribosomal peptidyl transferase activity.
Collapse
Affiliation(s)
- El-Sayed E Habib
- Departments of Medicinal Chemistry,Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | | | | |
Collapse
|
13
|
Ganoza MC, Kiel MC, Aoki H. Evolutionary conservation of reactions in translation. Microbiol Mol Biol Rev 2002; 66:460-85, table of contents. [PMID: 12209000 PMCID: PMC120792 DOI: 10.1128/mmbr.66.3.460-485.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current X-ray diffraction and cryoelectron microscopic data of ribosomes of eubacteria have shed considerable light on the molecular mechanisms of translation. Structural studies of the protein factors that activate ribosomes also point to many common features in the primary sequence and tertiary structure of these proteins. The reconstitution of the complex apparatus of translation has also revealed new information important to the mechanisms. Surprisingly, the latter approach has uncovered a number of proteins whose sequence and/or structure and function are conserved in all cells, indicating that the mechanisms are indeed conserved. The possible mechanisms of a new initiation factor and two elongation factors are discussed in this context.
Collapse
Affiliation(s)
- M Clelia Ganoza
- C. H. Best Institute, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6.
| | | | | |
Collapse
|
14
|
Aoki H, Ke L, Poppe SM, Poel TJ, Weaver EA, Gadwood RC, Thomas RC, Shinabarger DL, Ganoza MC. Oxazolidinone antibiotics target the P site on Escherichia coli ribosomes. Antimicrob Agents Chemother 2002; 46:1080-5. [PMID: 11897593 PMCID: PMC127084 DOI: 10.1128/aac.46.4.1080-1085.2002] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oxazolidinones are a novel class of antimicrobial agents that target protein synthesis in a wide spectrum of gram-positive and anaerobic bacteria. The oxazolidinone PNU-100766 (linezolid) inhibits the binding of fMet-tRNA to 70S ribosomes. Mutations to oxazolidinone resistance in Halobacterium halobium, Staphylococcus aureus, and Escherichia coli map at or near domain V of the 23S rRNA, suggesting that the oxazolidinones may target the peptidyl transferase region responsible for binding fMet-tRNA. This study demonstrates that the potency of oxazolidinones corresponds to increased inhibition of fMet-tRNA binding. The inhibition of fMet-tRNA binding is competitive with respect to the fMet-tRNA concentration, suggesting that the P site is affected. The fMet-tRNA reacts with puromycin to form peptide bonds in the presence of elongation factor P (EF-P), which is needed for optimum specificity and efficiency of peptide bond synthesis. Oxazolidinone inhibition of the P site was evaluated by first binding fMet-tRNA to the A site, followed by translocation to the P site with EF-G. All three of the oxazolidinones used in this study inhibited translocation of fMet-tRNA. We propose that the oxazolidinones target the ribosomal P site and pleiotropically affect fMet-tRNA binding, EF-P stimulated synthesis of peptide bonds, and, most markedly, EF-G-mediated translocation of fMet-tRNA into the P site.
Collapse
Affiliation(s)
- Hiroyuki Aoki
- Banting and Best Department of Medical Research, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ganoza MC, Kiel MC. A ribosomal ATPase is a target for hygromycin B inhibition on Escherichia coli ribosomes. Antimicrob Agents Chemother 2001; 45:2813-9. [PMID: 11557474 PMCID: PMC90736 DOI: 10.1128/aac.45.10.2813-2819.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrate that the transfer of fully charged aminoacyl-tRNAs into peptides directed by the MS2 RNA template requires both ATP and GTP, initiation factors (IF1, IF2, and IF3), elongation factors (EF-Tu, EF-Ts, and EF-G), and the ribosomal ATPase (RbbA). The nonhydrolyzable analogue AMPPCP inhibits the reactions, suggesting that hydrolysis of ATP is required for synthesis. The RbbA protein occurs bound to ribosomes and stimulates the ATPase activity of Escherichia coli 70S and 30S particles. The gene encoding RbbA harbors four ATP binding domains; the C-terminal half of the protein bears extensive sequence similarity to EF-3, a ribosome-dependent ATPase. Here, we show that the antibiotic hygromycin B selectively inhibits the ATPase activity of RbbA. Other antibiotics with similar effects on miscoding, streptomycin and neomycin, as well as antibiotics that impair peptide bond synthesis and translocation, had little effect on the ATPase activity of RbbA on 70S ribosomes. Immunoblot analysis indicates that at physiological concentrations, hygromycin B selectively releases RbbA from 70S ribosomes. Hygromycin B protects G1494 and A1408 in the decoding region, and RbbA enhances the reactivity of A889 and G890 of the 16S rRNA switch helix region. Cross-linking and X-ray diffraction data have revealed that this helix switch and the decoding region are in close proximity. Mutations in the switch helix (889-890) region affect translational fidelity and translocation. The binding site of hygromycin B and its known dual effect on the fidelity of decoding and translocation suggest a model for the action of this drug on ribosomes.
Collapse
Affiliation(s)
- M C Ganoza
- Banting and Best Department of Medical Research, University of Toronto, 112 College St., Toronto, Ontario M5G 1L6, Canada.
| | | |
Collapse
|