1
|
Pekary AE, Sattin A. Rifaximin modulates TRH and TRH-like peptide expression throughout the brain and peripheral tissues of male rats. BMC Neurosci 2022; 23:9. [PMID: 35189807 PMCID: PMC8862550 DOI: 10.1186/s12868-022-00694-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
Background The TRH/TRH-R1 receptor signaling pathway within the neurons of the dorsal vagal complex is an important mediator of the brain-gut axis. Mental health and protection from a variety of neuropathologies, such as autism, Attention Deficit Hyperactivity Disorder, Alzheimer’s and Parkinson’s disease, major depression, migraine and epilepsy are influenced by the gut microbiome and is mediated by the vagus nerve. The antibiotic rifaximin (RF) does not cross the gut-blood barrier. It changes the composition of the gut microbiome resulting in therapeutic benefits for traveler’s diarrhea, hepatic encephalopathy, and prostatitis. TRH and TRH-like peptides, with the structure pGlu-X-Pro-NH2, where “X” can be any amino acid residue, have reproduction-enhancing, caloric-restriction-like, anti-aging, pancreatic-β cell-, cardiovascular-, and neuroprotective effects. TRH and TRH-like peptides occur not only throughout the CNS but also in peripheral tissues. To elucidate the involvement of TRH-like peptides in brain-gut-reproductive system interactions 16 male Sprague–Dawley rats, 203 ± 6 g, were divided into 4 groups (n = 4/group): the control (CON) group remained on ad libitum Purina rodent chow and water for 10 days until decapitation, acute (AC) group receiving 150 mg RF/kg powdered rodent chow for 24 h providing 150 mg RF/kg body weight for 200 g rats, chronic (CHR) animals receiving RF for 10 days; withdrawal (WD) rats receiving RF for 8 days and then normal chow for 2 days. Results Significant changes in the levels of TRH and TRH-like peptides occurred throughout the brain and peripheral tissues in response to RF. The number of significant changes in TRH and TRH-like peptide levels in brain resulting from RF treatment, in descending order were: medulla (16), piriform cortex (8), nucleus accumbens (7), frontal cortex (5), striatum (3), amygdala (3), entorhinal cortex (3), anterior (2), and posterior cingulate (2), hippocampus (1), hypothalamus (0) and cerebellum (0). The corresponding ranking for peripheral tissues were: prostate (6), adrenals (4), pancreas (3), liver (2), testis (1), heart (0). Conclusions The sensitivity of TRH and TRH-like peptide expression to RF treatment, particularly in the medulla oblongata and prostate, is consistent with the participation of these peptides in the therapeutic effects of RF.
Collapse
Affiliation(s)
- Albert Eugene Pekary
- Research Services, VA Greater Los Angeles Healthcare System, Bldg. 114, Rm. 229B, 11301 Wilshire Blvd., Los Angeles, CA, 90073, USA. .,Center for Ulcer Research and Education, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA. .,Department of Medicine, University of California, Los Angeles, CA, 90073, USA.
| | - Albert Sattin
- Research Services, VA Greater Los Angeles Healthcare System, Bldg. 114, Rm. 229B, 11301 Wilshire Blvd., Los Angeles, CA, 90073, USA.,Psychiatry Services, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.,Departments of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, 90073, USA.,Brain Research Institute, University of California, CA, 90073, Los Angeles, USA
| |
Collapse
|
2
|
Lazcano I, Rodríguez Rodríguez A, Uribe RM, Orozco A, Joseph-Bravo P, Charli JL. Evolution of thyrotropin-releasing factor extracellular communication units. Gen Comp Endocrinol 2021; 305:113642. [PMID: 33039406 DOI: 10.1016/j.ygcen.2020.113642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 09/12/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
Thyroid hormones (THs) are ancient signaling molecules that contribute to the regulation of metabolism, energy homeostasis and growth. In vertebrates, the hypothalamus-pituitary-thyroid (HPT) axis links the corresponding organs through hormonal signals, including thyrotropin releasing factor (TRF), and thyroid stimulating hormone (TSH) that ultimately activates the synthesis and secretion of THs from the thyroid gland. Although this axis is conserved among most vertebrates, the identity of the hypothalamic TRF that positively regulates TSH synthesis and secretion varies. We review the evolution of the hypothalamic factors that induce TSH secretion, including thyrotropin-releasing hormone (TRH), corticotrophin-releasing hormone (CRH), urotensin-1-3, and sauvagine, and non-mammalian glucagon-like peptide in metazoans. Each of these peptides is part of an extracellular communication unit likely composed of at least 3 elements: the peptide, G-protein coupled receptor and bioavailability regulator, set up on the central neuroendocrine articulation. The bioavailability regulators include a TRH-specific ecto-peptidase, pyroglutamyl peptidase II, and a CRH-binding protein, that together with peptide secretion/transport rate and transduction coupling and efficiency at receptor level shape TRF signal intensity and duration. These vertebrate TRF communication units were coopted from bilaterian ancestors. The bona fide elements appeared early in chordates, and are either used alternatively, in parallel, or sequentially, in different vertebrate classes to control centrally the activity of the HPT axis. Available data also suggest coincidence between apparition of ligand and bioavailability regulator.
Collapse
Affiliation(s)
- Iván Lazcano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Adair Rodríguez Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Aurea Orozco
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico.
| |
Collapse
|
3
|
Charli JL, Rodríguez-Rodríguez A, Hernández-Ortega K, Cote-Vélez A, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P. The Thyrotropin-Releasing Hormone-Degrading Ectoenzyme, a Therapeutic Target? Front Pharmacol 2020; 11:640. [PMID: 32457627 PMCID: PMC7225337 DOI: 10.3389/fphar.2020.00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Thyrotropin releasing hormone (TRH: Glp-His-Pro-NH2) is a peptide mainly produced by brain neurons. In mammals, hypophysiotropic TRH neurons of the paraventricular nucleus of the hypothalamus integrate metabolic information and drive the secretion of thyrotropin from the anterior pituitary, and thus the activity of the thyroid axis. Other hypothalamic or extrahypothalamic TRH neurons have less understood functions although pharmacological studies have shown that TRH has multiple central effects, such as promoting arousal, anorexia and anxiolysis, as well as controlling gastric, cardiac and respiratory autonomic functions. Two G-protein-coupled TRH receptors (TRH-R1 and TRH-R2) transduce TRH effects in some mammals although humans lack TRH-R2. TRH effects are of short duration, in part because the peptide is hydrolyzed in blood and extracellular space by a M1 family metallopeptidase, the TRH-degrading ectoenzyme (TRH-DE), also called pyroglutamyl peptidase II. TRH-DE is enriched in various brain regions but is also expressed in peripheral tissues including the anterior pituitary and the liver, which secretes a soluble form into blood. Among the M1 metallopeptidases, TRH-DE is the only member with a very narrow specificity; its best characterized biological substrate is TRH, making it a target for the specific manipulation of TRH activity. Two other substrates of TRH-DE, Glp-Phe-Pro-NH2 and Glp-Tyr-Pro-NH2, are also present in many tissues. Analogs of TRH resistant to hydrolysis by TRH-DE have prolonged central efficiency. Structure-activity studies allowed the identification of residues critical for activity and specificity. Research with specific inhibitors has confirmed that TRH-DE controls TRH actions. TRH-DE expression by β2-tanycytes of the median eminence of the hypothalamus allows the control of TRH flux into the hypothalamus-pituitary portal vessels and may regulate serum thyrotropin secretion. In this review we describe the critical evidences that suggest that modification of TRH-DE activity in tanycytes, and/or in other brain regions, may generate beneficial consequences in some central and metabolic disorders and identify potential drawbacks and missing information needed to test these hypotheses.
Collapse
Affiliation(s)
- Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | | | | | | | | | | | | |
Collapse
|
4
|
Rodríguez-Rodríguez A, Lazcano I, Sánchez-Jaramillo E, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P, Charli JL. Tanycytes and the Control of Thyrotropin-Releasing Hormone Flux Into Portal Capillaries. Front Endocrinol (Lausanne) 2019; 10:401. [PMID: 31293518 PMCID: PMC6603095 DOI: 10.3389/fendo.2019.00401] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
Central and peripheral mechanisms that modulate energy intake, partition and expenditure determine energy homeostasis. Thyroid hormones (TH) regulate energy expenditure through the control of basal metabolic rate and thermogenesis; they also modulate food intake. TH concentrations are regulated by the hypothalamus-pituitary-thyroid (HPT) axis, and by transport and metabolism in blood and target tissues. In mammals, hypophysiotropic thyrotropin-releasing hormone (TRH) neurons of the paraventricular nucleus of the hypothalamus integrate energy-related information. They project to the external zone of the median eminence (ME), a brain circumventricular organ rich in neuron terminal varicosities and buttons, tanycytes, other glial cells and capillaries. These capillary vessels form a portal system that links the base of the hypothalamus with the anterior pituitary. Tanycytes of the medio-basal hypothalamus express a repertoire of proteins involved in transport, sensing, and metabolism of TH; among them is type 2 deiodinase, a source of 3,3',5-triiodo-L-thyronine necessary for negative feedback on TRH neurons. Tanycytes subtypes are distinguished by position and phenotype. The end-feet of β2-tanycytes intermingle with TRH varicosities and terminals in the external layer of the ME and terminate close to the ME capillaries. Besides type 2 deiodinase, β2-tanycytes express the TRH-degrading ectoenzyme (TRH-DE); this enzyme likely controls the amount of TRH entering portal vessels. TRH-DE is rapidly upregulated by TH, contributing to TH negative feedback on HPT axis. Alterations in energy balance also regulate the expression and activity of TRH-DE in the ME, making β2-tanycytes a hub for energy-related regulation of HPT axis activity. β2-tanycytes also express TRH-R1, which mediates positive effects of TRH on TRH-DE activity and the size of β2-tanycyte end-feet contacts with the basal lamina adjacent to ME capillaries. These end-feet associations with ME capillaries, and TRH-DE activity, appear to coordinately control HPT axis activity. Thus, down-stream of neuronal control of TRH release by action potentials arrival in the external layer of the median eminence, imbricated intercellular processes may coordinate the flux of TRH into the portal capillaries. In conclusion, β2-tanycytes appear as a critical cellular element for the somatic and post-secretory control of TRH flux into portal vessels, and HPT axis regulation in mammals.
Collapse
Affiliation(s)
- Adair Rodríguez-Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Iván Lazcano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Edith Sánchez-Jaramillo
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
5
|
Abstract
The activity of the hypothalamus-pituitary-thyroid axis (HPT) is coordinated by hypophysiotropic thyrotropin releasing hormone (TRH) neurons present in the paraventricular nucleus of the hypothalamus. Hypophysiotropic TRH neurons act as energy sensors. TRH controls the synthesis and release of thyrotropin, which activates the synthesis and secretion of thyroid hormones; in target tissues, transporters and deiodinases control their local availability. Thyroid hormones regulate many functions, including energy homeostasis. This review discusses recent evidence that covers several aspects of TRH role in HPT axis regulation. Knowledge about the mechanisms of TRH signaling has steadily increased. New transcription factors engaged in TRH gene expression have been identified, and advances made on how they interact with signaling pathways and define the dynamics of TRH neurons response to acute and/or long-term influences. Albeit yet incomplete, the relationship of TRH neurons activity with positive energy balance has emerged. The importance of tanycytes as a central relay for the feedback control of the axis, as well as for HPT responses to alterations in energy balance, and other stimuli has been reinforced. Finally, some studies have started to shed light on the interference of prenatal and postnatal stress and nutrition on HPT axis programing, which have confirmed the axis susceptibility to early insults.
Collapse
Affiliation(s)
- Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, 62250, Cuernavaca MOR, Morelos, México.
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, 62250, Cuernavaca MOR, Morelos, México
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, 62250, Cuernavaca MOR, Morelos, México
| |
Collapse
|
6
|
Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol 2016; 6:1387-428. [PMID: 27347897 DOI: 10.1002/cphy.c150027] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis determines the set point of thyroid hormone (TH) production. Hypothalamic thyrotropin-releasing hormone (TRH) stimulates the synthesis and secretion of pituitary thyrotropin (thyroid-stimulating hormone, TSH), which acts at the thyroid to stimulate all steps of TH biosynthesis and secretion. The THs thyroxine (T4) and triiodothyronine (T3) control the secretion of TRH and TSH by negative feedback to maintain physiological levels of the main hormones of the HPT axis. Reduction of circulating TH levels due to primary thyroid failure results in increased TRH and TSH production, whereas the opposite occurs when circulating THs are in excess. Other neural, humoral, and local factors modulate the HPT axis and, in specific situations, determine alterations in the physiological function of the axis. The roles of THs are vital to nervous system development, linear growth, energetic metabolism, and thermogenesis. THs also regulate the hepatic metabolism of nutrients, fluid balance and the cardiovascular system. In cells, TH actions are mediated mainly by nuclear TH receptors (210), which modify gene expression. T3 is the preferred ligand of THR, whereas T4, the serum concentration of which is 100-fold higher than that of T3, undergoes extra-thyroidal conversion to T3. This conversion is catalyzed by 5'-deiodinases (D1 and D2), which are TH-activating enzymes. T4 can also be inactivated by conversion to reverse T3, which has very low affinity for THR, by 5-deiodinase (D3). The regulation of deiodinases, particularly D2, and TH transporters at the cell membrane control T3 availability, which is fundamental for TH action. © 2016 American Physiological Society. Compr Physiol 6:1387-1428, 2016.
Collapse
Affiliation(s)
- Tania M Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Maria I Chiamolera
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Carmen C Pazos-Moura
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Fredic E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
7
|
Lazcano I, Cabral A, Uribe RM, Jaimes-Hoy L, Perello M, Joseph-Bravo P, Sánchez-Jaramillo E, Charli JL. Fasting Enhances Pyroglutamyl Peptidase II Activity in Tanycytes of the Mediobasal Hypothalamus of Male Adult Rats. Endocrinology 2015; 156:2713-23. [PMID: 25942072 DOI: 10.1210/en.2014-1885] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Fasting down-regulates the hypothalamus-pituitary-thyroid (HPT) axis activity through a reduction of TRH synthesis in neurons of the parvocellular paraventricular nucleus of the hypothalamus (PVN). These TRH neurons project to the median eminence (ME), where TRH terminals are close to the cytoplasmic extensions of β2 tanycytes. Tanycytes express pyroglutamyl peptidase II (PPII), the TRH-degrading ectoenzyme that controls the amount of TRH that reaches the anterior pituitary. We tested the hypothesis that regulation of ME PPII activity is another mechanism by which fasting affects the activity of the HPT axis. Semiquantitative in situ hybridization histochemistry data indicated that PPII and deiodinase 2 mRNA levels increased in tanycytes after 48 hours of fasting. This increase was transitory, followed by an increase of PPII activity in the ME, and a partial reversion of the reduction in PVN pro-TRH mRNA levels and the number of TRH neurons detected by immunohistochemistry. In fed animals, adrenalectomy and corticosterone treatment did not change ME PPII activity 72 hours later. Methimazole-induced hypothyroidism produced a profound drop in tanycytes PPII mRNA levels, which was reverted by 3 days of treatment with T4. The activity of thyroliberinase, the serum isoform of PPII, was increased at most fasting time points studied. We conclude that delayed increases in both the ME PPII as well as the thyroliberinase activities in fasted male rats may facilitate the maintenance of the deep down-regulation of the HPT axis function, despite a partial reactivation of TRH expression in the PVN.
Collapse
Affiliation(s)
- Iván Lazcano
- Departamento de Genética del Desarrollo y Fisiología Molecular (I.L., R.M.U., L.J.-H., P.J.-B., J.-L.C.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México; Laboratory of Neurophysiology (A.C., M.P.), Multidisciplinary Institute of Cell Biology (Argentine Research Council and Scientific Research Commission, Province of Buenos Aires), La Plata, Buenos Aires 1900, Argentina; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México D.F. 14370, México
| | - Agustina Cabral
- Departamento de Genética del Desarrollo y Fisiología Molecular (I.L., R.M.U., L.J.-H., P.J.-B., J.-L.C.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México; Laboratory of Neurophysiology (A.C., M.P.), Multidisciplinary Institute of Cell Biology (Argentine Research Council and Scientific Research Commission, Province of Buenos Aires), La Plata, Buenos Aires 1900, Argentina; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México D.F. 14370, México
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular (I.L., R.M.U., L.J.-H., P.J.-B., J.-L.C.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México; Laboratory of Neurophysiology (A.C., M.P.), Multidisciplinary Institute of Cell Biology (Argentine Research Council and Scientific Research Commission, Province of Buenos Aires), La Plata, Buenos Aires 1900, Argentina; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México D.F. 14370, México
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular (I.L., R.M.U., L.J.-H., P.J.-B., J.-L.C.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México; Laboratory of Neurophysiology (A.C., M.P.), Multidisciplinary Institute of Cell Biology (Argentine Research Council and Scientific Research Commission, Province of Buenos Aires), La Plata, Buenos Aires 1900, Argentina; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México D.F. 14370, México
| | - Mario Perello
- Departamento de Genética del Desarrollo y Fisiología Molecular (I.L., R.M.U., L.J.-H., P.J.-B., J.-L.C.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México; Laboratory of Neurophysiology (A.C., M.P.), Multidisciplinary Institute of Cell Biology (Argentine Research Council and Scientific Research Commission, Province of Buenos Aires), La Plata, Buenos Aires 1900, Argentina; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México D.F. 14370, México
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular (I.L., R.M.U., L.J.-H., P.J.-B., J.-L.C.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México; Laboratory of Neurophysiology (A.C., M.P.), Multidisciplinary Institute of Cell Biology (Argentine Research Council and Scientific Research Commission, Province of Buenos Aires), La Plata, Buenos Aires 1900, Argentina; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México D.F. 14370, México
| | - Edith Sánchez-Jaramillo
- Departamento de Genética del Desarrollo y Fisiología Molecular (I.L., R.M.U., L.J.-H., P.J.-B., J.-L.C.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México; Laboratory of Neurophysiology (A.C., M.P.), Multidisciplinary Institute of Cell Biology (Argentine Research Council and Scientific Research Commission, Province of Buenos Aires), La Plata, Buenos Aires 1900, Argentina; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México D.F. 14370, México
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular (I.L., R.M.U., L.J.-H., P.J.-B., J.-L.C.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México; Laboratory of Neurophysiology (A.C., M.P.), Multidisciplinary Institute of Cell Biology (Argentine Research Council and Scientific Research Commission, Province of Buenos Aires), La Plata, Buenos Aires 1900, Argentina; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México D.F. 14370, México
| |
Collapse
|
8
|
Fekete C, Lechan RM. Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev 2014; 35:159-94. [PMID: 24423980 PMCID: PMC3963261 DOI: 10.1210/er.2013-1087] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 11/05/2013] [Indexed: 12/18/2022]
Abstract
TRH is a tripeptide amide that functions as a neurotransmitter but also serves as a neurohormone that has a critical role in the central regulation of the hypothalamic-pituitary-thyroid axis. Hypophysiotropic TRH neurons involved in this neuroendocrine process are located in the hypothalamic paraventricular nucleus and secrete TRH into the pericapillary space of the external zone of the median eminence for conveyance to anterior pituitary thyrotrophs. Under basal conditions, the activity of hypophysiotropic TRH neurons is regulated by the negative feedback effects of thyroid hormone to ensure stable, circulating, thyroid hormone concentrations, a mechanism that involves complex interactions between hypophysiotropic TRH neurons and the vascular system, cerebrospinal fluid, and specialized glial cells called tanycytes. Hypophysiotropic TRH neurons also integrate other humoral and neuronal inputs that can alter the setpoint for negative feedback regulation by thyroid hormone. This mechanism facilitates adaptation of the organism to changing environmental conditions, including the shortage of food and a cold environment. The thyroid axis is also affected by other adverse conditions such as infection, but the central mechanisms mediating suppression of hypophysiotropic TRH may be pathophysiological. In this review, we discuss current knowledge about the mechanisms that contribute to the regulation of hypophysiotropic TRH neurons under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Csaba Fekete
- Department of Endocrine Neurobiology (C.F.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (C.F., R.M.L.), Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; and Department of Neuroscience (R.M.L.), Tufts University School of Medicine, Boston, Massachusetts 02111
| | | |
Collapse
|
9
|
Sánchez E, Vargas MA, Singru PS, Pascual I, Romero F, Fekete C, Charli JL, Lechan RM. Tanycyte pyroglutamyl peptidase II contributes to regulation of the hypothalamic-pituitary-thyroid axis through glial-axonal associations in the median eminence. Endocrinology 2009; 150:2283-91. [PMID: 19179432 PMCID: PMC2671897 DOI: 10.1210/en.2008-1643] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pyroglutamyl peptidase II (PPII), a highly specific membrane-bound metallopeptidase that inactivates TRH in the extracellular space, is tightly regulated by thyroid hormone in cells of the anterior pituitary. Whether PPII has any role in the region where axons containing hypophysiotropic TRH terminate, the median eminence, is unknown. For this purpose, we analyzed the cellular localization and regulation of PPII mRNA in the mediobasal hypothalamus in adult, male rats. PPII mRNA was localized in cells lining the floor and infralateral walls of the third ventricle and coexpressed with vimentin, establishing these cells as tanycytes. PPII mRNA extended in a linear fashion from the tanycyte cell bodies in the base of the third ventricle to its cytoplasmic and end-feet processes in the external zone of the median eminence in close apposition to pro-TRH-containing axon terminals. Compared with vehicle-treated, euthyroid controls, animals made thyrotoxic by the i.p. administration of 10 microg L-T(4) daily for 1-3 d, showed dramatically increased accumulation of silver grains in the mediobasal hypothalamus and an approximately 80% increase in enzymatic activity. PPII inhibition in mediobasal hypothalamic explants increased TRH secretion, whereas i.p. injection of a specific PPII inhibitor increased cold stress- and TRH-induced TSH levels in plasma. We propose that an increase in circulating thyroid hormone up-regulates PPII activity in tanycytes and enhances degradation of extracellular TRH in the median eminence through glial-axonal associations, contributing to the feedback regulation of thyroid hormone on anterior pituitary TSH secretion.
Collapse
Affiliation(s)
- Edith Sánchez
- Tupper Research Institute and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center, 750 Washington Street, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Cruz R, Vargas MA, Uribe RM, Pascual I, Lazcano I, Yiotakis A, Matziari M, Joseph-Bravo P, Charli JL. Anterior pituitary pyroglutamyl peptidase II activity controls TRH-induced prolactin release. Peptides 2008; 29:1953-64. [PMID: 18703099 DOI: 10.1016/j.peptides.2008.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 06/30/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
Abstract
Ecto-peptidases modulate the action of peptides in the extracellular space. The relationship between peptide receptor and ecto-peptidase localization, and the physiological role of peptidases is poorly understood. Current evidence suggests that pyroglutamyl peptidase II (PPII) inactivates neuronally released thyrotropin-releasing hormone (TRH). The impact of PPII localization in the anterior pituitary on the endocrine activities of TRH is unknown. We have studied whether PPII influences TRH signaling in anterior pituitary cells in primary culture. In situ hybridization (ISH) experiments showed that PPII mRNA was expressed only in 5-6% of cells. ISH for PPII mRNA combined with immunocytochemistry for prolactin, beta-thyrotropin, or growth hormone, showed that 66% of PPII mRNA expressing cells are lactotrophs, 34% somatotrophs while none are thyrotrophs. PPII activity was reduced using a specific phosphorothioate antisense oligodeoxynucleotide or inhibitors. Compared with mock or scrambled oligodeoxynucleotide-treated controls, knock-down of PPII expression by antisense targeting increased TRH-induced release of prolactin, but not of thyrotropin. Similar data were obtained with either a transition-state or a tight binding inhibitor. These results demonstrate that PPII expression in lactotrophs coincides with its ability to control prolactin release. It may play a specialized role in TRH signaling in the anterior pituitary. Anterior pituitary ecto-peptidases may fulfill unique functions associated with their restricted cell-specific expression.
Collapse
Affiliation(s)
- Raymundo Cruz
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Cuernavaca, Mor. 62271, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Schuhler S, Warner A, Finney N, Bennett GW, Ebling FJP, Brameld JM. Thyrotrophin-releasing hormone decreases feeding and increases body temperature, activity and oxygen consumption in Siberian hamsters. J Neuroendocrinol 2007; 19:239-49. [PMID: 17355315 DOI: 10.1111/j.1365-2826.2006.01524.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thyrotrophin-releasing hormone (TRH) is known to play an important role in the control of food intake and energy metabolism in addition to its actions on the pituitary-thyroid axis. We have previously shown that central administration of TRH decreases food intake in Siberian hamsters. This species is being increasingly used as a physiological rodent model in which to understand hypothalamic control of long-term changes in energy balance because it accumulates fat reserves in long summer photoperiods, and decreases food intake and body weight when exposed to short winter photoperiods. The objectives of our study in Siberian hamsters were: (i) to investigate whether peripheral administration of TRH would mimic the effects of central administration of TRH on food intake and whether these effects would differ dependent upon the ambient photoperiod; (ii) to determine whether TRH would have an effect on energy expenditure; and (iii) to investigate the potential sites of action of TRH. Both peripheral (5-50 mg/kg body weight; i.p.) and central (0.5 microg/ml; i.c.v.) administration of TRH decreased food intake, and increased locomotor activity, body temperature and oxygen consumption in the Siberian hamster, with a rapid onset and short duration of action. Systemic treatment with TRH was equally effective in suppressing feeding regardless of ambient photoperiod. The acute effects of TRH are likely to be centrally mediated and independent of its role in the control of the production of thyroid hormones. We conclude that TRH functions to promote a catabolic energetic state by co-ordinating acute central and chronic peripheral (thyroid-mediated) function.
Collapse
Affiliation(s)
- S Schuhler
- School of Biomedical Sciences, University of Nottingham Medical School, Queens Medical Centre, Nottingham, UK.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Prolyl endopeptidase and pyroglutamyl peptidase I are enzymes which participate in the degradation of thyrotropin-releasing hormone (TRH), a hormone which is thought to play an important role in the development of organs and tissues. Here, we have characterized the ontogeny of TRH degrading enzyme activity in the brain cortex, lung, heart, kidney and liver. Overall, prolyl endopeptidase activity was found to be 2 to 5 fold higher in newborn vs. adult rat tissues, with the exception of the soluble form in the liver and the particulate form in the lung. In contrast, the developmental profile of pyroglutamyl peptidase I activity was found to be more variable and tissue dependent. These results corroborate the idea that both enzymes play important, tissue-specific roles during the development and maturation of rat organs.
Collapse
|
13
|
Ontogeny of prolyl endopeptidase and pyroglutamyl peptidase I in rat tissues. ACTA ACUST UNITED AC 2006; 139:52-8. [PMID: 17123646 DOI: 10.1016/j.regpep.2006.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 10/02/2006] [Accepted: 10/03/2006] [Indexed: 11/26/2022]
Abstract
Prolyl endopeptidase and pyroglutamyl peptidase I are enzymes which participate in the degradation of thyrotropin-releasing hormone (TRH), a hormone which is thought to play an important role in the development of organs and tissues. Here, we have characterized the ontogeny of TRH degrading enzyme activity in the brain cortex, lung, heart, kidney and liver. Overall, prolyl endopeptidase activity was found to be 2 to 5 fold higher in newborn vs. adult rat tissues, with the exception of the soluble form in the liver and the particulate form in the lung. In contrast, the developmental profile of pyroglutamyl peptidase I activity was found to be more variable and tissue dependent. These results corroborate the idea that both enzymes play important, tissue-specific roles during the development and maturation of rat organs.
Collapse
|
14
|
Morty RE, Bulau P, Pellé R, Wilk S, Abe K. Pyroglutamyl peptidase type I from Trypanosoma brucei: a new virulence factor from African trypanosomes that de-blocks regulatory peptides in the plasma of infected hosts. Biochem J 2006; 394:635-45. [PMID: 16248854 PMCID: PMC1383713 DOI: 10.1042/bj20051593] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peptidases of parasitic protozoans are emerging as novel virulence factors and therapeutic targets in parasitic infections. A trypanosome-derived aminopeptidase that exclusively hydrolysed substrates with Glp (pyroglutamic acid) in P1 was purified 9248-fold from the plasma of rats infected with Trypanosoma brucei brucei. The enzyme responsible was cloned from a T. brucei brucei genomic DNA library and identified as type I PGP (pyroglutamyl peptidase), belonging to the C15 family of cysteine peptidases. We showed that PGP is expressed in all life cycle stages of T. brucei brucei and is expressed in four other blood-stream-form African trypanosomes. Trypanosome PGP was optimally active and stable at bloodstream pH, and was insensitive to host plasma cysteine peptidase inhibitors. Native purified and recombinant hyper-expressed trypanosome PGP removed the N-terminal Glp blocking groups from TRH (thyrotrophin-releasing hormone) and GnRH (gonadotropin-releasing hormone) with a k(cat)/K(m) value of 0.5 and 0.1 s(-1) x microM(-1) respectively. The half-life of TRH and GnRH was dramatically reduced in the plasma of trypanosome-infected rats, both in vitro and in vivo. Employing an activity-neutralizing anti-trypanosome PGP antibody, and pyroglutamyl diazomethyl ketone, a specific inhibitor of type I PGP, we demonstrated that trypanosome PGP is entirely responsible for the reduced plasma half-life of TRH, and partially responsible for the reduced plasma half-life of GnRH in a rodent model of African trypanosomiasis. The abnormal degradation of TRH and GnRH, and perhaps other neuropeptides N-terminally blocked with a pyroglutamyl moiety, by trypanosome PGP, may contribute to some of the endocrine lesions observed in African trypanosomiasis.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Internal Medicine, University Hospital Giessen and Marburg, Aulweg 123, D-35392 Giessen, Germany.
| | | | | | | | | |
Collapse
|
15
|
Chávez-Gutiérrez L, Bourdais J, Aranda G, Vargas MA, Matta-Camacho E, Ducancel F, Segovia L, Joseph-Bravo P, Charli JL. A truncated isoform of pyroglutamyl aminopeptidase II produced by exon extension has dominant-negative activity. J Neurochem 2005; 92:807-17. [PMID: 15686482 DOI: 10.1111/j.1471-4159.2004.02916.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thyrotropin-releasing hormone is inactivated in the extracellular space by a membrane-bound peptidase, pyroglutamyl aminopeptidase II (PPII), a member of the M1 family of zinc metallopeptidases. The functional significance of multiple PPII RNA species expression is unknown. We detected, in rat tissues, a RNA species derived from an alternative processing at the exon 14-intron 14 boundary. The alternatively processed RNA encoded a shorter version of PPII (PPII*), lacking part of the C-terminal domain. PPII* was expressed in COS-7 (or C6 glioma) cells but it did not exhibit any PPII activity. Co-transfection of PPII and increasing amounts of PPII* expression vectors resulted in a dose-dependent reduction in PPII activity and the formation of covalent PPII-PPII* heterodimers. PPII* is therefore a powerful dominant-negative isoform of PPII, and heterodimerization may be its mechanism of action. Natural expression of shortened versions of M1 aminopeptidases may constitute a new mode of regulation of their activity.
Collapse
Affiliation(s)
- Lucia Chávez-Gutiérrez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Alexander SL, Irvine CHG, Evans MJ. Inter-relationships between the secretory dynamics of thyrotrophin-releasing hormone, thyrotrophin and prolactin in periovulatory mares: effect of hypothyroidism. J Neuroendocrinol 2004; 16:906-15. [PMID: 15584931 DOI: 10.1111/j.1365-2826.2004.01249.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We used our nonsurgical technique for collecting pituitary venous blood to relate the dynamics of thyrotrophin-releasing hormone (TRH) secretion to the secretion patterns of both prolactin and thyrotrophin in periovulatory mares, either euthyroid (n = 5) or made hypothyroid by treatment with propyl-thiouracil (n = 5). Pituitary venous blood was collected continuously and divided into 1-min aliquots for 4 h. To test the effect of dopamine on the relationship between secretion patterns, sulpiride, a selective D2 receptor antagonist, was given i.m. after 2 h of sampling. Thorough testing of the model and blood collection procedure revealed no sites of TRH loss. Hypothyroidism increased the mean secretion rates of TRH (P = 0.04) and thyrotrophin (P < 0.0001) but not prolactin. Sulpiride increased prolactin secretion rates in hypothyroid (P < 0.0001) and control (P = 0.007) mares, but did not alter TRH or thyrotrophin secretion rates. In both groups of mares, all three hormones were secreted episodically but not rhythmically. In both groups, the secretion pattern of TRH was almost always significantly related to that of thyrotrophin, as assessed by cross correlation and cross approximate entropy (ApEn) analysis. However, the degree of linear correlation was weak, with only 14% (hypothyroid) or 8% (controls) of the variation in thyrotrophin secretion rates attributable to TRH. Prolactin and TRH secretion patterns before sulpiride were coupled on cross ApEn analysis in both groups, and the minute-to-minute secretion rates of the two hormones were correlated in four hypothyroid and three euthyroid mares. Overall, the small, but significant, degree of association between TRH and prolactin was similar to that between TRH and thyrotrophin. In hypothyroid mares, sulpiride increased (P = 0.02) the synchrony between TRH and prolactin patterns. We conclude that in horses: (i) little TRH degradation occurs during passage through the pituitary or in blood after 1 h at 37 degrees C; (ii) TRH is not the major factor controlling minute-to-minute fluctuations in either thyrotrophin or prolactin; and (iii) reducing two strongly inhibitory inputs (i.e. dopamine and thyroid hormones) may magnify the stimulatory effect of TRH on prolactin secretion.
Collapse
Affiliation(s)
- S L Alexander
- Department of Endocrinology, Christchurch Public Hospital, Christchurch, New Zealand.
| | | | | |
Collapse
|
17
|
Pascual I, Gil-Parrado S, Cisneros M, Joseph-Bravo P, Díaz J, Possani LD, Charli JL, Chávez M. Purification of a specific inhibitor of pyroglutamyl aminopeptidase II from the marine annelide Hermodice carunculata. in vivo effects in rodent brain. Int J Biochem Cell Biol 2004; 36:138-52. [PMID: 14592539 DOI: 10.1016/s1357-2725(03)00175-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An inhibitor of the metallo-ectoenzyme, pyroglutamyl aminopeptidase II (PPII), a thyrotropin releasing hormone-specific peptidase, was identified by screening extracts from marine species of the Cuban coast-line belonging to the phylla Chordata, Echinodermata, Annelida, Mollusca, Cnidaria, Porifera, Chlorophyta and Magnoliophyta. Isolation of the inhibitor (HcPI), from the marine annelide Hermodice carunculata, was achieved by trichloroacetic acid treatment of the aqueous extract, followed by ion-exchange chromatography on DEAE Sephacel, gel filtration on Sephadex G-25 and reverse phase-HPLC. HcPI had a small apparent molecular weight (below 1000 Da) and was not a peptide. It inhibited rat PPII (a membrane preparation with 8.5mg protein/ml) with an apparent K(i) of 51 nM. HcPI did not inhibit serine (trypsin, chymotrypsin, elastase and dipeptidyl aminopeptidase IV), cysteine (papain, bromelain and pyroglutamyl aminopeptidase I), aspartic (pepsin and recombinant human immunodeficiency virus 1 protease (HIV1-PR)) nor other metallo proteinases (collagenase, gelatinase, angiotensin converting enzyme, aminopeptidase N and carboxypeptidase A). HcPI was non-toxic and active in vivo. Intraperitoneal injection of HcPI reduced mouse pituitary and brain PPII activity. Potency of the effect was higher in hypophysis and hypothalamus than in other brain regions. Intrathecal administration to male rats reduced PPII activity in the spinal cord. In conclusion we have identified a specific inhibitor of PPII that is the first M1 family zinc metallo-peptidase inhibitor isolated from marine invertebrates. It may be useful for elucidating the in vivo role of PPII in the pituitary and central nervous system.
Collapse
Affiliation(s)
- Isel Pascual
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de la Habana, Calle 25, Plaza de la Revolución, La Habana 10400, Cuba
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pekary AE, Sattin A, Meyerhoff JL, Chilingar M. Valproate modulates TRH receptor, TRH and TRH-like peptide levels in rat brain. Peptides 2004; 25:647-58. [PMID: 15165721 DOI: 10.1016/j.peptides.2004.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 01/27/2004] [Indexed: 01/01/2023]
Abstract
We have tested our hypothesis that alterations in the levels of TRH receptors, and the synthesis and release of tripeptide TRH, and other neurotropic TRH-like peptides mediate some of the mood stabilizing effects of valproate (Valp). We have directly compared the effect of 1 week of feeding two major mood stabilizers, Valp and lithium chloride (LiCl) on TRH binding in limbic and extra-limbic regions of male WKY rats. Valp increased TRH receptor levels in nucleus accumbens and frontal cortex. Li increased TRH receptor binding in amygdala, posterior cortex and cerebellum. The acute, chronic and withdrawal effects of Valp on brain levels of TRH (pGlu-His-Pro-NH2, His-TRH) and five other TRH-like peptides, Glu-TRH, Val-TRH, Tyr-TRH, Leu-TRH and Phe-TRH were measured by combined HPLC and RIA. Acute treatment increased TRH and TRH-like peptide levels within most brain regions, most strikingly in pyriform cortex. The fold increases (in parentheses) were: Val-TRH (58), Phe-TRH (54), Tyr-TRH (25), TRH (9), Glu-TRH (4) and Leu-TRH (3). We conclude that the mood stabilizing effects of Valp may be due, at least in part, to its ability to alter TRH and TRH-like peptide, and TRH receptor levels in the limbic system and other brain regions implicated in mood regulation and behavior.
Collapse
Affiliation(s)
- A Eugene Pekary
- Research Services, West Los Angeles Va Medical Center, CA 90073, USA.
| | | | | | | |
Collapse
|
19
|
Abstract
The cell surface has various functions: communicating with other cells, integrating into the tissue, and interacting with the extracellular matrix. Proteases play a key role in these processes. This review focuses on cell-surface peptidases (ectopeptidases, oligopeptidases) that are involved in the inactivation or activation of extracellular regulatory peptides, hormones, paracrine peptides, cytokines, and neuropeptides. The nomenclature of cell-surface peptidases is explained in relation to other proteases, and information is provided on membrane anchoring, catalytic sites, regulation, and, in particular, on their physiological and pharmacological importance. Furthermore, nonenzymatic (binding) functions and participation in intracellular signal transduction of cell surfaces peptidases are described. An overview on the different cell-surface peptidases is given, and their divergent functions are explained in detail. An example of actual pharmacological importance, dipeptidyl-peptidase IV (CD26), is discussed.
Collapse
Affiliation(s)
- Rolf Mentlein
- Department of Anatomy, University of Kiel, 24098 Kiel, Germany
| |
Collapse
|
20
|
Abstract
Thyrotropin-releasing hormone (TRH) is localized in the brain hypothalamus and stimulates the secretion and synthesis of pituitary thyrotropin (TSH). Although TRH deficiency caused by artificial hypothalamic destructions has been reported to result in significant decreases in TSH secretion in rodents, clinical observations from the patients with possible TRH deficiency did not entirely agree with these animal results. Because of its ubiquitous distribution throughout the brain and in the peripheral tissues, TRH has been suggested to possess a wide variety of functions in these regions. However, the neurobehavioral and peripheral actions of TRH still remains to be established. It has been, therefore, anticipated that detailed analysis of TRH-knockout mice might provide insight into the physiological significance of endogenous TRH. The present review focuses on the phenotypic findings of mice deficient in TRH.
Collapse
Affiliation(s)
- Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | |
Collapse
|