1
|
Adashev VE, Kotov AA, Bazylev SS, Shatskikh AS, Aravin AA, Olenina LV. Stellate Genes and the piRNA Pathway in Speciation and Reproductive Isolation of Drosophila melanogaster. Front Genet 2021; 11:610665. [PMID: 33584811 PMCID: PMC7874207 DOI: 10.3389/fgene.2020.610665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
One of the main conditions of the species splitting from a common precursor lineage is the prevention of a gene flow between diverging populations. The study of Drosophila interspecific hybrids allows to reconstruct the speciation mechanisms and to identify hybrid incompatibility factors that maintain post-zygotic reproductive isolation between closely related species. The regulation, evolution, and maintenance of the testis-specific Ste-Su(Ste) genetic system in Drosophila melanogaster is the subject of investigation worldwide. X-linked tandem testis-specific Stellate genes encode proteins homologous to the regulatory β-subunit of protein kinase CK2, but they are permanently repressed in wild-type flies by the piRNA pathway via piRNAs originating from the homologous Y-linked Su(Ste) locus. Derepression of Stellate genes caused by Su(Ste) piRNA biogenesis disruption leads to the accumulation of crystalline aggregates in spermatocytes, meiotic defects and male sterility. In this review we summarize current data about the origin, organization, evolution of the Ste-Su(Ste) system, and piRNA-dependent regulation of Stellate expression. The Ste-Su(Ste) system is fixed only in the D. melanogaster genome. According to our hypothesis, the acquisition of the Ste-Su(Ste) system by a part of the ancient fly population appears to be the causative factor of hybrid sterility in crosses of female flies with males that do not carry Y-linked Su(Ste) repeats. To support this scenario, we have directly demonstrated Stellate derepression and the corresponding meiotic disorders in the testes of interspecies hybrids between D. melanogaster and D. mauritiana. This finding embraces our hypothesis about the contribution of the Ste-Su(Ste) system and the piRNA pathway to the emergence of reproductive isolation of D. melanogaster lineage from initial species.
Collapse
Affiliation(s)
- Vladimir E. Adashev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Alexei A. Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Sergei S. Bazylev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Aleksei S. Shatskikh
- Laboratory of Analysis of Clinical and Model Tumor Pathologies at the Organismal Level, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Alexei A. Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ludmila V. Olenina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| |
Collapse
|
2
|
Bandyopadhyay M, Arbet S, Bishop CP, Bidwai AP. Drosophila Protein Kinase CK2: Genetics, Regulatory Complexity and Emerging Roles during Development. Pharmaceuticals (Basel) 2016; 10:E4. [PMID: 28036067 PMCID: PMC5374408 DOI: 10.3390/ph10010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
Abstract
CK2 is a Ser/Thr protein kinase that is highly conserved amongst all eukaryotes. It is a well-known oncogenic kinase that regulates vital cell autonomous functions and animal development. Genetic studies in the fruit fly Drosophila are providing unique insights into the roles of CK2 in cell signaling, embryogenesis, organogenesis, neurogenesis, and the circadian clock, and are revealing hitherto unknown complexities in CK2 functions and regulation. Here, we review Drosophila CK2 with respect to its structure, subunit diversity, potential mechanisms of regulation, developmental abnormalities linked to mutations in the gene encoding CK2 subunits, and emerging roles in multiple aspects of eye development. We examine the Drosophila CK2 "interaction map" and the eye-specific "transcriptome" databases, which raise the prospect that this protein kinase has many additional targets in the developing eye. We discuss the possibility that CK2 functions during early retinal neurogenesis in Drosophila and mammals bear greater similarity than has been recognized, and that this conservation may extend to other developmental programs. Together, these studies underscore the immense power of the Drosophila model organism to provide new insights and avenues to further investigate developmentally relevant targets of this protein kinase.
Collapse
Affiliation(s)
| | - Scott Arbet
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
| | - Clifton P Bishop
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
| | - Ashok P Bidwai
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
3
|
Expansion and evolution of the X-linked testis specific multigene families in the melanogaster species subgroup. PLoS One 2012; 7:e37738. [PMID: 22649555 PMCID: PMC3359341 DOI: 10.1371/journal.pone.0037738] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/23/2012] [Indexed: 11/19/2022] Open
Abstract
The testis specific X-linked genes whose evolution is traced here in the melanogaster species subgroup are thought to undergo fast rate of diversification. The CK2ßtes and NACβtes gene families encode the diverged regulatory β-subunits of protein kinase CK2 and the homologs of β-subunit of nascent peptide associated complex, respectively. We annotated the CK2βtes-like genes related to CK2ßtes family in the D. simulans and D. sechellia genomes. The ancestor CK2βtes-like genes preserved in D. simulans and D. sechellia are considered to be intermediates in the emergence of the D. melanogaster specific Stellate genes related to the CK2ßtes family. The CK2ßtes-like genes are more similar to the unique autosomal CK2ßtes gene than to Stellates, taking into account their peculiarities of polymorphism. The formation of a variant the CK2ßtes gene Stellate in D. melanogaster as a result of illegitimate recombination between a NACßtes promoter and a distinct polymorphic variant of CK2ßtes-like ancestor copy was traced. We found a close nonrandom proximity between the dispersed defective copies of DINE-1 transposons, the members of Helitron family, and the CK2βtes and NACβtes genes, suggesting an involvement of DINE-1 elements in duplication and amplification of these genes.
Collapse
|
4
|
Kouyanou-Koutsoukou S, Baier A, Kolaitis RM, Maniatopoulou E, Thanopoulou K, Szyszka R. Cloning and purification of protein kinase CK2 recombinant alpha and beta subunits from the Mediterranean fly Ceratitis capitata. Mol Cell Biochem 2011; 356:261-7. [PMID: 21735092 DOI: 10.1007/s11010-011-0968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/24/2011] [Indexed: 11/26/2022]
Abstract
The Mediterranean fruit fly Ceratitis capitata is an insect capable of wreaking extensive damage to a wide range of fruit crops. Protein kinase CK2 is a ubiquitous Ser/Thr kinase that is highly conserved among eukaryotes; it is a heterotetramer composed of two catalytic (α) and a dimer of regulatory (β) subunits. We present here the construction of the cDNA molecules of the CK2α and CK2β subunits from the medfly C. capitata by the 5'/3' RACE and RT-PCR methods, respectively. CcCK2α catalytic subunit presents the characteristic and conserved features of a typical protein kinase, similar to the regulatory CcCK2β subunit, that also possess the conserved features of regulatory CK2β subunits, as revealed by comparison of their predicted amino acid sequences with other eukaryotic species. The recombinant CcCK2α and CcCK2β proteins were purified by affinity chromatography to homogeneity, after overexpression in Escherichia coli. CcCK2α is capable to utilize GTP and its activity and is inhibited by polyanions and stimulated by polycations in phosphorylation assays, using purified acidic ribosomal protein P1 as a substrate.
Collapse
Affiliation(s)
- Sophia Kouyanou-Koutsoukou
- Department of Genetics and Biotechnology, University of Athens, Panepistimiopolis, Athens 15701, Greece.
| | | | | | | | | | | |
Collapse
|
5
|
Egorova KS, Olenkina OM, Kibanov MV, Kalmykova AI, Gvozdev VA, Olenina LV. Genetically Derepressed Nucleoplasmic Stellate Protein in Spermatocytes of D. melanogaster interacts with the catalytic subunit of protein kinase 2 and carries histone-like lysine-methylated mark. J Mol Biol 2009; 389:895-906. [PMID: 19422836 DOI: 10.1016/j.jmb.2009.04.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/20/2009] [Accepted: 04/27/2009] [Indexed: 11/30/2022]
Abstract
SUMMARY The X-chromosome-linked clusters of the tandemly repeated testis-specific Stellate genes of Drosophila melanogaster, encoding proteins homologous to the regulatory beta-subunit of the protein kinase casein kinase 2 (CK2), are repressed in wild-type males. Derepression of Stellate genes in the absence of the Y chromosome or Y-linked crystal locus (crystal line) causes accumulation of abundant protein crystals in testes and different meiotic abnormalities, which lead to partial or complete male sterility. To understand the cause of abnormalities in chromosome behavior owing to Stellate overexpression, we studied subcellular localization of Stellate proteins by biochemical fractionation and immunostaining of whole testes. We showed that, apart from the known accumulation of Stellate in crystalline form, soluble Stellate was located exclusively in the nucleoplasm, whereas Stellate crystals were located mainly in the cytoplasm. Coimmunoprecipitation experiments revealed that the alpha-subunit of the protein kinase CK2 (CK2alpha) was associated with soluble Stellate. Interaction between soluble Stellate and CK2alpha in the nucleus could lead to modulations in the phosphorylation of nuclear targets of CK2 and abnormalities in the meiotic segregation of chromosomes. We also observed that Stellate underwent lysine methylation and mimicked trimethyl-H3K9 epigenetic modification of histone H3 tail.
Collapse
Affiliation(s)
- Ksenia S Egorova
- Institute of Molecular Genetics, Russian Academy of Science, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
6
|
Duplicated proteasome subunit genes in Drosophila and their roles in spermatogenesis. Heredity (Edinb) 2009; 103:23-31. [PMID: 19277057 DOI: 10.1038/hdy.2009.23] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The proteasome is a large, multisubunit complex that acts as the cell's 'protein-degrading machine' in the ubiquitin-mediated proteolytic pathway for regulated protein turnover. Although proteasomes are usually thought of as being homogeneous structures, recent studies have revealed their more dynamic and heterogeneous nature. For example, in a number of plant and animal species, multiple isoforms of several proteasome subunits, encoded by paralogous genes, have been discovered, and in some cases, these alternative isoforms have been shown to be functionally distinct from their conventional counterparts. A particularly striking example of this phenomenon is seen in Drosophila melanogaster, where 12 of the 33 subunits that make up the 26S proteasome holoenzyme are represented in the genome by multiple paralogous genes. Remarkably, in every case, the 'extra' genes are expressed in a testis-specific manner. Here, we describe the extent and nature of these testis-specific gene duplications and discuss their functional significance, and speculate on why this situation might have evolved.
Collapse
|
7
|
Mentzel B, Jauch E, Raabe T. CK2beta interacts with and regulates p21-activated kinases in Drosophila. Biochem Biophys Res Commun 2009; 379:637-42. [PMID: 19121626 DOI: 10.1016/j.bbrc.2008.12.136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/20/2008] [Indexed: 10/21/2022]
Abstract
The role of CK2beta has been defined as the regulatory subunit of protein kinase CK2, which is a heterotetrameric complex composed of two CK2beta and two catalytic active CK2alpha subunits. The identification of other serine/threonine kinases such as A-Raf, Chk1, and c-Mos that interact with and are regulated by CK2beta has challenged this view and provided evidence for functions of CK2beta outside the CK2 holoenzyme. In this report we describe the first interaction of Drosophila CK2beta outside the CK2 holoenzyme with p21-activated kinase (PAK) proteins. This interaction is seen for distinct PAK and CK2beta isoforms. In contrast to the CK2alpha-CK2beta interaction, dimer formation of the CK2beta subunits is not a prerequisite for binding of PAK proteins. Our results support the idea that CK2beta can bind to PAK proteins in a CK2alpha independent manner and negatively regulates PAK kinase activity.
Collapse
Affiliation(s)
- Benjamin Mentzel
- University of Würzburg, Institut für Medizinische Strahlenkunde und Zellforschung, Versbacherstr. 5, D-97078 Würzburg, Germany
| | | | | |
Collapse
|
8
|
Jauch E, Wecklein H, Stark F, Jauch M, Raabe T. The Drosophila melanogaster DmCK2beta transcription unit encodes for functionally non-redundant protein isoforms. Gene 2006; 374:142-52. [PMID: 16530986 DOI: 10.1016/j.gene.2006.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 01/23/2006] [Accepted: 01/27/2006] [Indexed: 11/26/2022]
Abstract
Genes encoding for the two evolutionary highly conserved subunits of a heterotetrameric protein kinase CK2 holoenzyme are present in all examined eukaryotic genomes. Depending on the organism, multiple transcription units encoding for a catalytically active CK2alpha subunit and/or a regulatory CK2beta subunit may exist. The phosphotransferase activity of members of the protein kinase CK2alpha family is thought to be independent of second messengers but is modulated by interaction with CK2beta-like proteins. In the genome of Drosophila melanogaster, one gene encoding for a CK2alpha subunit and three genes encoding for CK2beta-like proteins are present. The X-linked DmCK2beta transcription unit encodes for several CK2beta protein isoforms due to alternative splicing of its primary transcript. We addressed the question whether CK2beta-like proteins are redundant in function. Our in vivo experiments show that variations of the very C-terminal tail of CK2beta isoforms encoded by the X-linked DmCK2beta transcription unit influence their functional properties. In addition, we find that CK2beta-like proteins encoded by the autosomal D. melanogaster genes CK2betates and CK2beta' cannot fully substitute for a loss of CK2beta isoforms encoded by DmCK2beta.
Collapse
Affiliation(s)
- Eike Jauch
- University of Wuerzburg, Institut fuer Medizinische Strahlenkunde und Zellforschung, Versbacherstrasse 5, 97078 Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
9
|
Gvozdev VA, Kogan GL, Usakin LA. The Y chromosome as a target for acquired and amplified genetic material in evolution. Bioessays 2006; 27:1256-62. [PMID: 16299764 DOI: 10.1002/bies.20321] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The special properties of the Y chromosome stem form the fact that it is a non-recombining degenerate derivative of the X chromosome. The absence of homologous recombination between the X and the Y chromosome leads to gradual degeneration of various Y chromosome genes on an evolutionary timescale. The absence of recombination, however, also favors the accumulation of transposable elements on the Y chromosome during its evolution, as seen with both Drosophila and mammalian Y chromosomes. Alongside these processes, the acquisition and amplification of autosomal male benefit genes occur. This review will focus on recent studies that reveal the autosome-acquired genes on the Y chromosome of both Drosophila and humans. The evolution of the acquired and amplified genes on the Y chromosome is also discussed. Molecular and comparative analyses of Y-linked repeats in the Drosophila melanogaster genome demonstrate that there was a period of their degeneration followed by a period of their integration into RNAi silencing, which was beneficial for male fertility. Finally, the function of non-coding RNA produced by amplified Y chromosome genetic elements will be discussed.
Collapse
Affiliation(s)
- Vladimir A Gvozdev
- Institute of Molecular Genetic of the Russian Academy of Science, Russia.
| | | | | |
Collapse
|
10
|
Usakin LA, Kogan GL, Kalmykova AI, Gvozdev VA. An alien promoter capture as a primary step of the evolution of testes-expressed repeats in the Drosophila melanogaster genome. Mol Biol Evol 2005; 22:1555-60. [PMID: 15829619 DOI: 10.1093/molbev/msi147] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Fertility of Drosophila melanogaster males is impaired due to the disruption of the silencing of the X-linked, testis-expressed, repeated Stellate (Ste) genes. Ste silencing is mediated by symmetric transcription of the paralogous Y-linked repeats and exerted by an RNA interference (RNAi) mechanism. Here we present a scenario for the origin of the Ste genes and their suppressors. The primary intermediate of their evolution emerged as a result of the acquisition of a preformed alien, testis-specific promoter. This intermediate is identified as a chimeric gene containing coding region of an autosomal gene for testis-specific protein kinase CK2. The 5' region of the chimera has been acquired from a member of a family of testis-expressed X-linked genes of unknown function. We propose that the evolution and amplification of the novel chimeric gene have led to the overproduction of the regulatory CK2 subunit in testes. The evolution of the Y-linked descendants of the primary intermediate resulted in the RNAi-mediated suppression of excessive expression of the X-linked paralogs. The newly detected "dead family" of cognate repeats on the Y chromosome has contributed to the evolution of Ste and its suppressors via gene conversion. Our results show that RNAi silencing, considered as a defense against viruses and transposable elements, may be involved in the evolution of eukaryotic genomes.
Collapse
Affiliation(s)
- Lev A Usakin
- Department of Animal Molecular Genetics, Institute of Molecular Genetics, Moscow, Russia
| | | | | | | |
Collapse
|
11
|
Karandikar U, Anderson S, Mason N, Trott RL, Bishop CP, Bidwai AP. The Drosophila SSL gene is expressed in larvae, pupae, and adults, exhibits sexual dimorphism, and mimics properties of the beta subunit of casein kinase II. Biochem Biophys Res Commun 2003; 301:941-7. [PMID: 12589803 DOI: 10.1016/s0006-291x(03)00073-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila melanogaster casein kinase II (CKII) is composed of catalytic alpha and regulatory beta subunits that generate the alpha2beta2 holoenzyme. A two-hybrid screen of a Drosophila embryo library using CKIIalpha as bait has resulted in the isolation of multiple cDNAs encoding SSL, a CKIIbeta-like polypeptide. We demonstrate that CKIIbeta, beta', and SSL exhibit robust and comparable interaction with CKIIalpha. Residues in SSL that mediate interaction with CKIIalpha appear similar to those in CKIIbeta, and SSL forms homodimers and heterodimers with CKIIbeta or beta' as well. We have tested all known Drosophila CKIIbeta-like proteins for rescue of the ion-homeostasis defect of yeast lacking beta subunits and find that CKIIbeta and SSL complement, beta' has marginal function, and Stellate appears non-functional. We have used real-time RT-PCR to assess developmental expression, and find that CKIIbeta is robust and ubiquitous, whereas SSL is restricted to males (third-instar-larvae, pupae, and adults), but is nondetectable in females of the corresponding stages. These results indicate that SSL expression encompasses a greater developmental window than that previously suggested and may confer distinct functions to CKII in a sex-specific manner.
Collapse
Affiliation(s)
- Umesh Karandikar
- Department of Biology, Life Sciences Building, West Virginia University, P.O. Box 6057, Morgantown, WV 26506-6057, USA
| | | | | | | | | | | |
Collapse
|
12
|
Jauch E, Melzig J, Brkulj M, Raabe T. In vivo functional analysis of Drosophila protein kinase casein kinase 2 (CK2) beta-subunit. Gene 2002; 298:29-39. [PMID: 12406573 DOI: 10.1016/s0378-1119(02)00921-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Protein casein kinase 2 (CK2) is a heterotetramer composed of two catalytic (alpha) and two regulatory (beta) subunits. In Drosophila melanogaster, four genes encoding for one CK2alpha (DmCK2alpha) and three CK2beta (DmCK2beta, DmCK2beta' and DmCK2betates) subunits have been identified. Here, we have focused on the role of DmCK2beta. Evaluation of DNA complementary to RNA sequences and Western blot analysis revealed a complex pattern of DmCK2beta transcription and the existence of at least three distinct DmCK2beta isoforms in adult flies. The phenotype of the viable DmCK2beta mutation mushroom bodies undersized(P1) (DmCK2beta(mbuP1)) described in this study implicates a role for DmCK2beta in cell proliferation or cell survival during brain development. The isolation of a complete loss of function allele of DmCK2beta allowed us to assay the importance of various structural domains for the in vivo function of DmCK2beta. Expression of in vitro mutagenised DmCK2beta transgenes in a DmCK2beta null mutant background demonstrated an absolute requirement of the beta/beta dimerisation motif for CK2beta function, whereas removal of all N-terminal phosphorylation sites of DmCK2beta resulted in reduced viability. In contrast, a mutation in the predicted destruction box motif did not interfere with DmCK2beta function.
Collapse
Affiliation(s)
- Eike Jauch
- Institut für Medizinische Strahlenkunde und Zellforschung, University of Würzburg, Versbacherstrasse 5, 97078 Würzburg, Germany
| | | | | | | |
Collapse
|