1
|
Zhao J, Yang Q, Liu Z, Xu P, Tian L, Yan J, Li K, Lin B, Bian L, Xi Z, Liu X. The impact of subchronic ozone exposure on serum metabolome and the mechanisms of abnormal bile acid and arachidonic acid metabolisms in the liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114573. [PMID: 36701875 DOI: 10.1016/j.ecoenv.2023.114573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 06/17/2023]
Abstract
Ambient ozone (O3) pollution can induce respiratory and cardiovascular toxicity. However, its impact on the metabolome and the underlying mechanisms remain unclear. This study first investigated the serum metabolite changes in rats exposed to 0.5 ppm O3 for 3 months using untargeted metabolomic approach. Results showed chronic ozone exposure significantly altered the serum levels of 34 metabolites with potential increased risk of digestive, respiratory and cardiovascular disease. Moreover, bile acid synthesis and secretion, and arachidonic acid (AA) metabolism became the most prominent affected metabolic pathways after O3 exposure. Further studies on the mechanisms found that the elevated serum toxic bile acid was not due to the increased biosynthesis in the liver, but the reduced reuptake from the portal vein to hepatocytes owing to repressed Ntcp and Oatp1a1, and the decreased bile acid efflux in hepatocytes as a results of inhibited Bsep, Ostalpha and Ostbeta. Meanwhile, decreased expressions of detoxification enzyme of SULT2A1 and the important regulators of FXR, PXR and HNF4α also contributed to the abnormal bile acids. In addition, O3 promoted the conversion of AA into thromboxane A2 (TXA2) and 20-hydroxyarachidonic acid (20-HETE) in the liver by up-regulation of Fads2, Cyp4a and Tbxas1 which resulting in decreased AA and linoleic acid (LA), and increased thromboxane B2 (TXB2) and 20-HETE in the serum. Furthermore, apparent hepatic chronic inflammation, fibrosis and abnormal function were found in ozone-exposed rats. These results indicated chronic ozone exposure could alter serum metabolites by interfering their metabolism in the liver, and inducing liver injury to aggravate metabolic disorders.
Collapse
Affiliation(s)
- Jiao Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Qingcheng Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Zhiyuan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Pengfei Xu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| |
Collapse
|
2
|
Hu T, Wang H. Hepatic Bile Acid Transporters in Drug‐Induced Cholestasis. TRANSPORTERS AND DRUG‐METABOLIZING ENZYMES IN DRUG TOXICITY 2021:307-337. [DOI: 10.1002/9781119171003.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Yang Y, Liu L, Zhang X, Jiang X, Wang L. Tanshinone IIA prevents rifampicin-induced liver injury by regulating BSEP/NTCP expression via epigenetic activation of NRF2. Liver Int 2020; 40:141-154. [PMID: 31571363 DOI: 10.1111/liv.14262] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/17/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Rifampicin (RFP)-induced cholestatic liver injury is characterized by impaired hepatic bile acid (BA) transport. Bile salt efflux pump (BSEP) and Na+/taurocholate cotransporter (NTCP) are the major BA transporters. However, little is known about the mechanisms underlying these transporters. METHODS The role of tanshinone IIA (TAN IIA) in preventing RFP-induced liver injury was evaluated in vitro and in vivo, based on the regulatory mechanism of nuclear factor erythroid 2-related factor 2 (NRF2)-BSEP/NTCP signalling. The epigenetic induction of NRF2 by TAN IIA was investigated as well as the influence on BSEP and NTCP transcriptional activation and NRF2 DNA-binding ability. RESULTS TAN IIA strongly induced BSEP and NTCP expression in hepatocytes. NRF2 knockdown abrogated the induction. We found two NRF2 binding sites on the human BSEP promoter, called musculoaponeurotic fibrosarcoma recognition elements (MAREs), and one MARE on the NTCP promoter. Human BSEP and NTCP promoter luciferase reporter gene plasmids were stimulated by NRF2. Mutations of the predicted MAREs abolished NRF2 transcriptional activation. TAN IIA induced the expression of ten-eleven translocation 2 (TET2) to mediate the demethylation of NRF2, which promoted NRF2 DNA-binding on the BSEP and NTCP promoters and their transcriptional activation. Finally, in vivo, Nrf2 played an important role in RFP-induced liver injury (more serious liver injury in Nrf2-/- mice), and TAN IIA prevented it. CONCLUSIONS These results indicate that NRF2 regulates the target transporters BSEP and NTCP, depending on the DNA demethylation by TET2. Pharmacological activation of NRF2 by TAN IIA may be beneficial for RFP-induced liver injury.
Collapse
Affiliation(s)
- Yujie Yang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China.,Department of Pharmacy, The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Lei Liu
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xiqian Zhang
- Department of Pharmacy, The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xuehua Jiang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ling Wang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Soroka CJ, Boyer JL. Biosynthesis and trafficking of the bile salt export pump, BSEP: therapeutic implications of BSEP mutations. Mol Aspects Med 2014; 37:3-14. [PMID: 23685087 PMCID: PMC3784619 DOI: 10.1016/j.mam.2013.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 12/17/2022]
Abstract
The bile salt export pump (BSEP, ABCB11) is the primary transporter of bile acids from the hepatocyte to the biliary system. This rate-limiting step in bile formation is essential to the formation of bile salt dependent bile flow, the enterohepatic circulation of bile acids, and the digestion of dietary fats. Mutations in BSEP are associated with cholestatic diseases such as progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2), drug-induced cholestasis, and intrahepatic cholestasis of pregnancy. Development of clinical therapies for these conditions necessitates a clear understanding of the cell biology of biosynthesis, trafficking, and transcriptional and translational regulation of BSEP. This chapter will focus on the molecular and cell biological aspects of this critical hepatic membrane transporter.
Collapse
Affiliation(s)
- Carol J Soroka
- Yale University School of Medicine, Department of Internal Medicine, New Haven, CT 06520, United States.
| | - James L Boyer
- Yale University School of Medicine, Department of Internal Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
5
|
Baghdasaryan A, Chiba P, Trauner M. Clinical application of transcriptional activators of bile salt transporters. Mol Aspects Med 2014; 37:57-76. [PMID: 24333169 PMCID: PMC4045202 DOI: 10.1016/j.mam.2013.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/21/2013] [Accepted: 12/01/2013] [Indexed: 02/07/2023]
Abstract
Hepatobiliary bile salt (BS) transporters are critical determinants of BS homeostasis controlling intracellular concentrations of BSs and their enterohepatic circulation. Genetic or acquired dysfunction of specific transport systems causes intrahepatic and systemic retention of potentially cytotoxic BSs, which, in high concentrations, may disturb integrity of cell membranes and subcellular organelles resulting in cell death, inflammation and fibrosis. Transcriptional regulation of canalicular BS efflux through bile salt export pump (BSEP), basolateral elimination through organic solute transporters alpha and beta (OSTα/OSTβ) as well as inhibition of hepatocellular BS uptake through basolateral Na(+)-taurocholate cotransporting polypeptide (NTCP) represent critical steps in protection from hepatocellular BS overload and can be targeted therapeutically. In this article, we review the potential clinical implications of the major BS transporters BSEP, OSTα/OSTβ and NTCP in the pathogenesis of hereditary and acquired cholestatic syndromes, provide an overview on transcriptional control of these transporters by the key regulatory nuclear receptors and discuss the potential therapeutic role of novel transcriptional activators of BS transporters in cholestasis.
Collapse
Affiliation(s)
- Anna Baghdasaryan
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria; Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Peter Chiba
- Institute of Medical Chemistry, Medical University of Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria.
| |
Collapse
|
6
|
Cuperus FJC, Claudel T, Gautherot J, Halilbasic E, Trauner M. The role of canalicular ABC transporters in cholestasis. Drug Metab Dispos 2014; 42:546-60. [PMID: 24474736 DOI: 10.1124/dmd.113.056358] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cholestasis, a hallmark feature of hepatobiliary disease, is characterized by the retention of biliary constituents. Some of these constituents, such as bile acids, inflict damage to hepatocytes and bile duct cells. This damage may lead to inflammation, fibrosis, cirrhosis, and eventually carcinogenesis, sequelae that aggravate the underlying disease and deteriorate clinical outcome. Canalicular ATP-binding cassette (ABC) transporters, which mediate the excretion of individual bile constituents, play a key role in bile formation and cholestasis. The study of these transporters and their regulatory nuclear receptors has revolutionized our understanding of cholestatic disease. This knowledge has served as a template to develop novel treatment strategies, some of which are currently already undergoing phase III clinical trials. In this review we aim to provide an overview of the structure, function, and regulation of canalicular ABC transporters. In addition, we will focus on the role of these transporters in the pathogenesis and treatment of cholestatic bile duct and liver diseases.
Collapse
Affiliation(s)
- Frans J C Cuperus
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
7
|
Abstract
Cholestatic liver diseases encompass a wide spectrum of disorders with different causes, resulting in impaired bile flow and accumulation of bile acids and other potentially hepatotoxic cholephils. The understanding of the molecular mechanisms of bile formation and cholestasis has recently improved significantly through new insights into nuclear receptor (patho)biology. Nuclear receptors are ligand-activated transcription factors, which act as central players in the regulation of genes responsible for elimination and detoxification of biliary constituents accumulating in cholestasis. They also control other pathophysiologic processes such as inflammation, fibrogenesis, and carcinogenesis involved in the pathogenesis and disease progression of cholestasis liver diseases.
Collapse
Affiliation(s)
- Emina Halilbasic
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Anna Baghdasaryan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Corresponding author. Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Vienna, Austria.
| |
Collapse
|
8
|
The bile salt export pump (BSEP) in health and disease. Clin Res Hepatol Gastroenterol 2012; 36:536-53. [PMID: 22795478 DOI: 10.1016/j.clinre.2012.06.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/29/2012] [Accepted: 06/06/2012] [Indexed: 02/04/2023]
Abstract
The bile salt export pump (BSEP) is the major transporter for the secretion of bile acids from hepatocytes into bile in humans. Mutations of BSEP are associated with cholestatic liver diseases of varying severity including progressive familial intrahepatic cholestasis type 2 (PFIC-2), benign recurrent intrahepatic cholestasis type 2 (BRIC-2) and genetic polymorphisms are linked to intrahepatic cholestasis of pregnancy (ICP) and drug-induced liver injury (DILI). Detailed analysis of these diseases has considerably increased our knowledge about physiology and pathophysiology of bile secretion in humans. This review focuses on expression, localization, and function, short- and long-term regulation of BSEP as well as diseases association and treatment options for BSEP-associated diseases.
Collapse
|
9
|
Aleksunes LM, Yeager RL, Wen X, Cui JY, Klaassen CD. Repression of hepatobiliary transporters and differential regulation of classic and alternative bile acid pathways in mice during pregnancy. Toxicol Sci 2012; 130:257-68. [PMID: 22903823 DOI: 10.1093/toxsci/kfs248] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
During pregnancy, proper hepatobiliary transport and bile acid synthesis protect the liver from cholestatic injury and regulate the maternal and fetal exposure to bile acids, drugs, and environmental chemicals. The objective of this study was to determine the temporal messenger RNA (mRNA) and protein profiles of uptake and efflux transporters as well as bile acid synthetic and conjugating enzymes in livers from virgin and pregnant mice on gestational days (GD) 7, 11, 14, and 17 and postnatal days (PND) 1, 15, and 30. Compared with virgins, the mRNAs of most transporters were reduced approximately 50% in pregnant dams between GD11 and 17. Western blot and immunofluorescence staining confirmed the downregulation of Mrp3, 6, Bsep, and Ntcp proteins. One day after parturition, the mRNAs of many uptake and efflux hepatobiliary transporters remained low in pregnant mice. By PND30, the mRNAs of all transporters returned to virgin levels. mRNAs of the bile acid synthetic enzymes in the classic pathway, Cyp7a1 and 8b1, increased in pregnant mice, whereas mRNA and protein expression of enzymes in the alternative pathway of bile acid synthesis (Cyp27a1 and 39a1) and conjugating enzymes (Bal and Baat) decreased. Profiles of transporter and bile acid metabolism genes likely result from coordinated downregulation of transcription factor mRNA (CAR, LXR, PXR, PPARα, FXR) in pregnant mice on GD14 and 17. In conclusion, pregnancy caused a global downregulation of most hepatic transporters, which began as early as GD7 for some genes and was maximal by GD14 and 17, and was inversely related to increasing concentrations of circulating 17β-estradiol and progesterone as pregnancy progressed.
Collapse
Affiliation(s)
- Lauren M Aleksunes
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
10
|
Jonker JW, Liddle C, Downes M. FXR and PXR: potential therapeutic targets in cholestasis. J Steroid Biochem Mol Biol 2012; 130:147-58. [PMID: 21801835 PMCID: PMC4750880 DOI: 10.1016/j.jsbmb.2011.06.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 05/17/2011] [Accepted: 06/17/2011] [Indexed: 12/17/2022]
Abstract
Cholestatic liver disorders encompass hepatobiliary diseases of diverse etiologies characterized by the accumulation of bile acids, bilirubin and cholesterol as the result of impaired secretion of bile. Members of the nuclear receptor (NR) family of ligand-modulated transcription factors are implicated in the adaptive response to cholestasis. NRs coordinately regulate bile acid and phospholipid transporter genes required for hepatobiliary transport, as well as the phases I and II metabolizing enzymes involved in processing of their substrates. In this review we will focus on FXR and PXR, two members of the NR family whose activities are regulated by bile acids. In addition, we also discuss the potential of pharmacological modulators of these receptors as novel therapies for cholestatic disorders.
Collapse
Affiliation(s)
- Johan W. Jonker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Corresponding author. Tel.: +31 050 361 1261; fax: +31 050 361 1746
| | - Christopher Liddle
- Storr Liver Unit, Westmead Millennium Institute and University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Michael Downes
- Gene Expression Laboratory, The Salk Institute for Biological Studies, Howard Hughes Medical Institute, 10010 Torrey Pines Road, La Jolla, CA 92037, USA
- Corresponding author. Tel.: +1 858 453 4100; fax: +1 858 455 1349
| |
Collapse
|
11
|
Papacleovoulou G, Abu-Hayyeh S, Williamson C. Nuclear receptor-driven alterations in bile acid and lipid metabolic pathways during gestation. Biochim Biophys Acta Mol Basis Dis 2010; 1812:879-87. [PMID: 21073948 DOI: 10.1016/j.bbadis.2010.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 12/27/2022]
Abstract
Nuclear receptor signalling is essential for physiological processes such as metabolism, development, and reproduction. Alterations in the endocrine state that naturally occur during pregnancy result in maternal adaptations to support the feto-placental unit. A series of studies have shown that nuclear receptor signalling is involved in maternal adaptations of bile acid, cholesterol, and lipid homeostasis pathways to ensure maintenance of the nutritional demands of the fetus. We discuss regulation of hepatic nuclear receptors and their target genes in pregnancy and their impact on the development of disorders such as intrahepatic cholestasis of pregnancy and oestrogen-induced hepatotoxicity. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Georgia Papacleovoulou
- Imperial College London, Maternal and Fetal Disease Group, Institute of Reproductive and Developmental Biology, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|
12
|
Abstract
Hepatobiliary transport systems are essential for the uptake and excretion of a variety of compounds including bile acids. Disruption and dysregulation of this excretory pathway result in cholestasis, leading to the intrahepatic accumulation of bile acids and other toxic compounds with progression of liver pathology. Cholestasis induced by inflammation is a common complication in patients with extrahepatic infections or inflammatory processes, generally referred to as sepsis-associated cholestasis. Microbial products, including endotoxin, induce signaling pathways within hepatocytes either directly, or through activation of proinflammatory cytokines, leading to rapid and profound reductions in bile flow. The expression and function of key hepatobiliary transporters are suppressed in response to inflammatory signaling. These proinflammatory signaling cascades lead to repressed expression and activity of a large number of nuclear transcriptional regulators, many of which are essential for maintenance of hepatobiliary transporter gene expression. Interestingly, recently discovered molecular crosstalk between bile acid activated nuclear receptors and proinflammatory nuclear mediators may provide new means of understanding adaptive processes within liver. Inflammation-induced cholestasis and the effects of retained molecules in cholestasis on inflammatory signals are interwoven in the liver, providing potential opportunities for research and therapeutics.
Collapse
|
13
|
Lam P, Soroka CJ, Boyer JL. The bile salt export pump: clinical and experimental aspects of genetic and acquired cholestatic liver disease. Semin Liver Dis 2010; 30:125-33. [PMID: 20422495 PMCID: PMC3008346 DOI: 10.1055/s-0030-1253222] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The primary transporter responsible for bile salt secretion is the bile salt export pump (BSEP, ABCB11), a member of the ATP-binding cassette (ABC) superfamily, which is located at the bile canalicular apical domain of hepatocytes. In humans, BSEP deficiency results in several different genetic forms of cholestasis, which include progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2), as well as other acquired forms of cholestasis such as drug-induced cholestasis (DIC) and intrahepatic cholestasis of pregnancy (ICP). Because bile salts play a pivotal role in a wide range of physiologic and pathophysiologic processes, regulation of BSEP expression has been a subject of intense research. The authors briefly describe the molecular characteristics of BSEP and then summarize what is known about its role in the pathogenesis of genetic and acquired cholestatic disorders, emphasizing experimental observations from animal models and cell culture in vitro systems.
Collapse
Affiliation(s)
- Ping Lam
- Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - Carol J. Soroka
- Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - James L. Boyer
- Liver Center, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Abstract
Recent progress in basic research has enhanced our understanding of the molecular mechanisms of normal bile secretion and their alterations in cholestasis. Genetic transporter variants contribute to an entire spectrum of cholestatic liver diseases and can cause hereditary cholestatic syndromes or determine susceptibility and disease progression in acquired cholestatic disorders. Cholestasis is associated with complex transcriptional and post-transcriptional alterations of hepatobiliary transporters and enzymes participating in bile formation. Ligand-activated nuclear receptors for bile acids and other biliary compounds play a key role in the regulation of genes required for bile formation. Pharmacological interventions in cholestasis may aim at modulating such novel regulatory pathways. This review will summarize the principles of molecular alterations in cholestasis and will give an overview of potential clinical implications.
Collapse
Affiliation(s)
- Martin Wagner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Laboratory of Experimental and Molecular Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | | | | |
Collapse
|
15
|
Zollner G, Trauner M. Nuclear receptors as therapeutic targets in cholestatic liver diseases. Br J Pharmacol 2009; 156:7-27. [PMID: 19133988 DOI: 10.1111/j.1476-5381.2008.00030.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cholestasis results in intrahepatic accumulation of cytotoxic bile acids, which cause liver damage ultimately leading to biliary fibrosis and cirrhosis. Cholestatic liver injury is counteracted by a variety of adaptive hepatoprotective mechanisms including alterations in bile acid transport, synthesis and detoxification. The underlying molecular mechanisms are mediated mainly at a transcriptional level via a complex network involving nuclear receptors including the farnesoid X receptor, pregnane X receptor, vitamin D receptor and constitutive androstane receptor, which target overlapping, although not identical, sets of genes. Because the intrinsic adaptive response to bile acids cannot fully prevent liver injury in cholestasis, therapeutic targeting of these receptors via specific and potent agonists may further enhance the hepatic defence against toxic bile acids. Activation of these receptors results in repression of bile acid synthesis, induction of phases I and II bile acid hydroxylation and conjugation and stimulation of alternative bile acid export while limiting hepatocellular bile acid import. Furthermore, the use of nuclear receptor ligands may not only influence bile acid transport and metabolism but may also directly target hepatic fibrogenesis and inflammation. Many drugs already used to treat cholestasis and its complications such as pruritus (e.g. ursodeoxycholic acid, rifampicin, fibrates) may act via activation of nuclear receptors. More specific and potent nuclear receptor ligands are currently being developed. This article will review the current knowledge on nuclear receptors and their potential role in the treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Gernot Zollner
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
16
|
Tanaka Y, Aleksunes LM, Cui YJ, Klaassen CD. ANIT-induced intrahepatic cholestasis alters hepatobiliary transporter expression via Nrf2-dependent and independent signaling. Toxicol Sci 2009; 108:247-57. [PMID: 19181614 DOI: 10.1093/toxsci/kfp020] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Alpha-naphthylisothiocyanate (ANIT) causes intrahepatic cholestasis by injuring biliary epithelial cells. Adaptive regulation of hepatobiliary transporter expression has been proposed to reduce liver injury during cholestasis. Recently, the oxidative stress transcription factor Nrf2 (nf-e2-related factor 2) was shown to regulate expression of hepatobiliary transporters. The purpose of this study was to determine whether ANIT-induced hepatotoxicity and regulation of hepatobiliary transporters are altered in the absence of Nrf2. For this purpose, wild-type and Nrf2-null mice were administered ANIT (75 mg/kg po). Surprisingly, ANIT-induced hepatotoxicity was similar in both genotypes at 48 h. Accumulation of bile acids in serum and liver was lower in Nrf2-null mice compared with wild-types treated with ANIT. Transporter mRNA profiles differed between wild-type and Nrf2-null mice after ANIT. Bsep (bile salt export pump), Mdr2 (multidrug resistance gene), and Mrp3 (multidrug resistance-associated protein) efflux transporters were increased by ANIT in wild-type, but not in Nrf2-null mice. In contrast, mRNA expression of two hepatic uptake transporters, Ntcp (sodium-taurocholate cotransporting polypeptide) and Oatp1b2 (organic anion transporting peptide), were decreased in both genotypes after ANIT, with larger declines in Nrf2-null mice. mRNA expression of the transcriptional repressor of Ntcp, small heterodimeric partner (SHP), was increased in Nrf2-null mice after ANIT. Furthermore, hepatocyte nuclear factor 1alpha (HNF1alpha), which regulates Oatp1b2, was downregulated in ANIT-treated Nrf2-null mice. Preferential upregulation of SHP and downregulation of HNF1alpha and uptake transporters likely explains why Nrf2-null mice exhibited similar injury to wild-types after ANIT. A subsequent study revealed that treatment of mice with the Nrf2 activator oltipraz protects against ANIT-induced histological injury. Despite compensatory changes in Nrf2-null mice to limit ANIT toxicity, pharmacological activation of Nrf2 may represent a therapeutic option for intrahepatic cholestasis.
Collapse
Affiliation(s)
- Yuji Tanaka
- Department of Pharmacology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
17
|
Abstract
In recent years the discovery of a number of major transporter proteins expressed in the liver and intestine specifically involved in bile acid transport has led to improved understanding of bile acid homeostasis and the enterohepatic circulation. Sodium (Na(+))-dependent bile acid uptake from portal blood into the liver is mediated primarily by the Na(+) taurocholate co-transporting polypeptide (NTCP), while secretion across the canalicular membrane into the bile is carried out by the bile salt export pump (BSEP). In the ileum, absorption of bile acids from the lumen into epithelial cells is mediated by the apical Na(+) bile salt transporter (ASBT), whereas exit into portal blood across the basolateral membrane is mediated by the organic solute transporter alpha/beta (OSTalpha/beta) heterodimer. Regulation of transporter gene expression and function occurs at several different levels: in the nucleus, members of the nuclear receptor superfamily, regulated by bile acids and other ligands are primarily involved in controlling gene expression, while cell signalling events directly affect transporter function, and subcellular localization. Polymorphisms, dysfunction, and impaired adaptive responses of several of the bile acid transporters, e.g. BSEP and ASBT, results in liver and intestinal disease. Bile acid transporters are now understood to play central roles in driving bile flow, as well as adaptation to various pathological conditions, with complex regulation of activity and function in the nucleus, cytoplasm, and membrane.
Collapse
Affiliation(s)
- A Kosters
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
18
|
Stahl S, Davies MR, Cook DI, Graham MJ. Nuclear hormone receptor-dependent regulation of hepatic transporters and their role in the adaptive response in cholestasis. Xenobiotica 2008; 38:725-77. [DOI: 10.1080/00498250802105593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Fouassier L, Beaussier M, Schiffer E, Rey C, Barbu V, Mergey M, Wendum D, Callard P, Scoazec JY, Lasnier E, Stieger B, Lienhart A, Housset C. Hypoxia-induced changes in the expression of rat hepatobiliary transporter genes. Am J Physiol Gastrointest Liver Physiol 2007; 293:G25-35. [PMID: 17615179 DOI: 10.1152/ajpgi.00175.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cholestatic disorders may arise from liver ischemia (e.g., in liver transplantation) through various mechanisms. We have examined the potential of hypoxia to induce changes in the expression of hepatobiliary transporter genes. In a model of arterial liver ischemia subsequent to complete arterial deprivation of the rat liver, the mRNA levels of VEGF, a hypoxia-inducible gene, were increased fivefold after 24 h. The pattern of VEGF-induced expression and ultrastructural changes, including swelling of the endoplasmic reticulum, indicated that hypoxia affected primarily cholangiocytes, but also hepatocytes, predominantly in the periportal area. Serum and bile analyses demonstrated liver dysfunction of cholestatic type with reduced bile acid biliary excretion. Fluorescence-labeled ursodeoxycholic acid used as a tracer displayed no regurgitation, eliminating bile leakage as a significant mechanism of cholestasis in this model. In liver tissue, a marked reduction in the mRNA levels of Na(+)-taurocholate-cotransporting polypeptide (Ntcp), bile salt export protein (Bsep), and multidrug resistance-associated protein 2 (Mrp2) and an increase in those of Cftr were detected before bile duct proliferation occurred. In cultured hepatocytes, a nontoxic hypoxic treatment caused a decrease in the mRNA and protein expression of Ntcp, Bsep, and Mrp2 and in the mRNA levels of nuclear factors involved in the transactivation of these genes, i.e., HNF4alpha, RXRalpha, and FXR. In bile duct preparations, hypoxic treatment elicited an increase in Cftr transcripts, along with a rise in cAMP, a major regulator of Cftr expression and function. In conclusion, hypoxia triggers a downregulation of hepatocellular transporters, which may contribute to cholestasis, whereas Cftr, which drives secretion in cholangiocytes, is upregulated.
Collapse
Affiliation(s)
- Laura Fouassier
- INSERM U680, Faculté de Médecine Pierre et Marie Curie, Site Saint-Antoine, 27 rue Chaligny, 75571 Paris Cedex 12, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Deng R, Yang D, Radke A, Yang J, Yan B. The hypolipidemic agent guggulsterone regulates the expression of human bile salt export pump: dominance of transactivation over farsenoid X receptor-mediated antagonism. J Pharmacol Exp Ther 2006; 320:1153-62. [PMID: 17135343 PMCID: PMC4114705 DOI: 10.1124/jpet.106.113837] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Conversion of cholesterol to bile acids in the liver is initiated by the rate-limiting enzyme cholesterol 7alpha-hydroxylase (CYP7A1) and excretion of bile acids from the liver is mediated by the bile salt export pump (BSEP). The expression of CYP7A1 and BSEP is coordinately regulated by a negative feedback and positive feed-forward mechanism, respectively, through bile acid-mediated activation of farsenoid X receptor (FXR). It is well established that hypolipidemic agent guggulsterone is an FXR antagonist and down-regulates FXR target genes. In this study, however, we have demonstrated that guggulsterone synergistically induced the expression of BSEP in cells treated with FXR agonist bile acids. A dissection study located in the BSEP promoter an activating protein (AP)-1 site supporting the action of guggulsterone. Deletion or mutation of the AP-1 element was diminished, whereas insertion of the AP-1 element into a heterologous promoter enhanced activation of the promoter by guggulsterone. Selective c-Jun N-terminal kinase and extracellular signal-regulated kinase inhibitors markedly decreased the transactivation, suggesting an involvement of AP-1 activation pathway in the up-regulation of BSEP by guggulsterone. Consistent with its FXR antagonism, guggulsterone antagonized bile acid-mediated transactivation of BSEP promoter when the AP-1 element was disrupted. In conclusion, guggulsterone regulates BSEP expression through composite mechanisms, and the transactivation through the AP-1 element is dominant over the FXR-mediated antagonism. The up-regulation of BSEP expression by guggulsterone without activating FXR pathway as an FXR agonist to suppress CYP7A1 expression represents a possible mechanism for guggulsterone-mediated hypolipidemic effect.
Collapse
Affiliation(s)
- Ruitang Deng
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Fogarty Hall, 41 Lower College Road, Kingston, RI 02881, USA.
| | | | | | | | | |
Collapse
|
21
|
Stieger B, Meier Y, Meier PJ. The bile salt export pump. Pflugers Arch 2006; 453:611-20. [PMID: 17051391 DOI: 10.1007/s00424-006-0152-8] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 08/08/2006] [Indexed: 12/20/2022]
Abstract
Canalicular secretion of bile salts mediated by the bile salt export pump Bsep constitutes the major driving force for the generation of bile flow. Bsep is a member of the B-family of the super family of ATP-binding cassette transporters and is classified as ABCB11. Bsep has a narrow substrate specificity, which is largely restricted to bile salts. Bsep is extensively regulated at the transcriptional and posttranscriptional level, which directly modulates canalicular bile formation. Pathophysiological alterations of Bsep by either inherited mutations or acquired processes such as inhibition by drugs or disease-related down regulation may lead to a wide spectrum of mild to severe forms of liver disease. Furthermore, many genetic variants of Bsep are known, some of which potentially render individuals susceptible to acquired forms of liver disease.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Medicine, Institute of Clinical Pharmacology and Toxicology, University Hospital, Zürich, Switzerland.
| | | | | |
Collapse
|
22
|
Zollner G, Marschall HU, Wagner M, Trauner M. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol Pharm 2006; 3:231-51. [PMID: 16749856 DOI: 10.1021/mp060010s] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cholestasis results in intrahepatic accumulation of cytotoxic bile acids which cause liver injury ultimately leading to biliary fibrosis and cirrhosis. Cholestatic liver damage is counteracted by a variety of intrinsic hepatoprotective mechanisms. Such defense mechanisms include repression of hepatic bile acid uptake and de novo bile acid synthesis. Furthermore, phase I and II bile acid detoxification is induced rendering bile acids more hydrophilic. In addition to "orthograde" export via canalicular export systems, these compounds are also excreted via basolateral "alternative" export systems into the systemic circulation followed by renal elimination. Passive glomerular filtration of hydrophilic bile acids, active renal tubular secretion, and repression of tubular bile acid reabsorption facilitate renal bile acid elimination during cholestasis. The underlying molecular mechanisms are mediated mainly at a transcriptional level via a complex network involving nuclear receptors and other transcription factors. So far, the farnesoid X receptor FXR, pregnane X receptor PXR, and vitamin D receptor VDR have been identified as nuclear receptors for bile acids. However, the intrinsic adaptive response to bile acids cannot fully prevent liver injury in cholestasis. Therefore, additional therapeutic strategies such as targeted activation of nuclear receptors are needed to enhance the hepatic defense against toxic bile acids.
Collapse
Affiliation(s)
- Gernot Zollner
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University Graz, Austria, and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | |
Collapse
|
23
|
Geier A, Wagner M, Dietrich CG, Trauner M. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:283-308. [PMID: 17291602 DOI: 10.1016/j.bbamcr.2006.04.014] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 04/21/2006] [Accepted: 04/24/2006] [Indexed: 12/16/2022]
Abstract
Hepatic uptake and biliary excretion of organic anions (e.g., bile acids and bilirubin) is mediated by hepatobiliary transport systems. Defects in transporter expression and function can cause or maintain cholestasis and jaundice. Recruitment of alternative export transporters in coordination with phase I and II detoxifying pathways provides alternative pathways to counteract accumulation of potentially toxic biliary constituents in cholestasis. The genes encoding for organic anion uptake (NTCP, OATPs), canalicular export (BSEP, MRP2) and alternative basolateral export (MRP3, MRP4) in liver are regulated by a complex interacting network of hepatocyte nuclear factors (HNF1, 3, 4) and nuclear (orphan) receptors (e.g., FXR, PXR, CAR, RAR, LRH-1, SHP, GR). Bile acids, proinflammatory cytokines, hormones and drugs mediate causative and adaptive transporter changes at a transcriptional level by interacting with these nuclear factors and receptors. Unraveling the underlying regulatory mechanisms may therefore not only allow a better understanding of the molecular pathophysiology of cholestatic liver diseases but should also identify potential pharmacological strategies targeting these regulatory networks. This review is focused on general principles of transcriptional basolateral and canalicular transporter regulation in inflammation-induced cholestasis, ethinylestradiol- and pregnancy-associated cholestasis, obstructive cholestasis and liver regeneration. Moreover, the potential therapeutic role of nuclear receptor agonists for the management of liver diseases is highlighted.
Collapse
Affiliation(s)
- Andreas Geier
- Department of Internal Medicine III, Aachen University (RWTH), Aachen, Germany.
| | | | | | | |
Collapse
|
24
|
Geier A, Dietrich CG, Voigt S, Ananthanarayanan M, Lammert F, Schmitz A, Trauner M, Wasmuth HE, Boraschi D, Balasubramaniyan N, Suchy FJ, Matern S, Gartung C. Cytokine-dependent regulation of hepatic organic anion transporter gene transactivators in mouse liver. Am J Physiol Gastrointest Liver Physiol 2005; 289:G831-41. [PMID: 15860642 DOI: 10.1152/ajpgi.00307.2004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proinflammatory cytokines such as TNF-alpha and IL-1beta lead to downregulation of hepatic organic anion transporters in cholestasis. This adapted response is transcriptionally mediated by nuclear hormone receptors and liver-specific transcription factors. Because little is known in vivo about cytokine-dependent regulatory events, mice were treated with either TNF-alpha or IL-1beta for up to 16 h. Transporter mRNA expression was determined by Northern blot analysis, nuclear activity, and protein-expression of transactivators by EMSA and Western blotting. TNF-alpha induces a sustained decrease in Ntcp, Oatp1/Oatp1a1, and Bsep mRNA expression but exerts only transient [multidrug resistance-associated protein 2 (Mrp2)] or no effects (Mrp3) on Mrps. In addition to Ntcp and Oatp1/Oatp1a1, IL-1beta also downregulates Bsep, Mrp2, and Mrp3 mRNAs to some extent. To study transcriptional regulation, Ntcp and Bsep promoters were first cloned from mice revealing a new distal Ntcp hepatocyte nuclear factor 1 (HNF-1) element but otherwise show a conserved localization to known rat regulatory elements. Changes in transporter-expression are preceeded by a reduction in binding activities at IR-1, ER-8, DR-5, and HNF-1alpha sites after 4 h by either cytokine, which remained more sustained by TNF-alpha in the case of nuclear receptors. Nuclear protein levels of retinoid X receptor (RXR)-alpha are significantly decreased by TNF-alpha but only transiently affected by IL-1beta. Minor reductions of retinoic acid receptor, farnesoid X receptor, pregnane X receptor, and constitutive androstane receptor nuclear proteins are restricted to 4 h after cytokine application and paralleled by a decrease in mRNA levels. Basolateral and canalicular transporter systems are downregulated by both cytokines, TNF-alpha and IL-1beta. Activity of HNF-1alpha as regulator of mNtcp is suppressed by both cytokines. Decreased binding activities of nuclear receptor heterodimers may be explained by a reduction of the ubiquitous heterodimerization partner RXR-alpha.
Collapse
Affiliation(s)
- Andreas Geier
- Dept. of Internal Medicine III, Division of Gastroenterology and Hepatology, Aachen Univ., Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Crestani M, Mitro N, De Fabiani E. Lipid-activated nuclear receptors: from gene transcription to the control of cellular metabolism. EUR J LIPID SCI TECH 2004. [DOI: 10.1002/ejlt.200300936] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Liu Y, Binz J, Numerick MJ, Dennis S, Luo G, Desai B, MacKenzie KI, Mansfield TA, Kliewer SA, Goodwin B, Jones SA. Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest 2003. [PMID: 14623915 DOI: 10.1172/jci200318945] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Farnesoid X receptor (FXR) is a bile acid-activated transcription factor that is a member of the nuclear hormone receptor superfamily. Fxr-null mice exhibit a phenotype similar to Byler disease, an inherited cholestatic liver disorder. In the liver, activation of FXR induces transcription of transporter genes involved in promoting bile acid clearance and represses genes involved in bile acid biosynthesis. We investigated whether the synthetic FXR agonist GW4064 could protect against cholestatic liver damage in rat models of extrahepatic and intrahepatic cholestasis. In the bile duct-ligation and alpha-naphthylisothiocyanate models of cholestasis, GW4064 treatment resulted in significant reductions in serum alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase, as well as other markers of liver damage. Rats that received GW4064 treatment also had decreased incidence and extent of necrosis, decreased inflammatory cell infiltration, and decreased bile duct proliferation. Analysis of gene expression in livers from GW4064-treated cholestatic rats revealed decreased expression of bile acid biosynthetic genes and increased expression of genes involved in bile acid transport, including the phospholipid flippase MDR2. The hepatoprotection seen in these animal models by the synthetic FXR agonist suggests FXR agonists may be useful in the treatment of cholestatic liver disease.
Collapse
Affiliation(s)
- Yaping Liu
- Nuclear Receptor Functional Analysis, High Thruput Biology, GlaxoSmithKline Research and Development, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu Y, Binz J, Numerick MJ, Dennis S, Luo G, Desai B, MacKenzie KI, Mansfield TA, Kliewer SA, Goodwin B, Jones SA. Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest 2003; 112:1678-87. [PMID: 14623915 PMCID: PMC281645 DOI: 10.1172/jci18945] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Farnesoid X receptor (FXR) is a bile acid-activated transcription factor that is a member of the nuclear hormone receptor superfamily. Fxr-null mice exhibit a phenotype similar to Byler disease, an inherited cholestatic liver disorder. In the liver, activation of FXR induces transcription of transporter genes involved in promoting bile acid clearance and represses genes involved in bile acid biosynthesis. We investigated whether the synthetic FXR agonist GW4064 could protect against cholestatic liver damage in rat models of extrahepatic and intrahepatic cholestasis. In the bile duct-ligation and alpha-naphthylisothiocyanate models of cholestasis, GW4064 treatment resulted in significant reductions in serum alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase, as well as other markers of liver damage. Rats that received GW4064 treatment also had decreased incidence and extent of necrosis, decreased inflammatory cell infiltration, and decreased bile duct proliferation. Analysis of gene expression in livers from GW4064-treated cholestatic rats revealed decreased expression of bile acid biosynthetic genes and increased expression of genes involved in bile acid transport, including the phospholipid flippase MDR2. The hepatoprotection seen in these animal models by the synthetic FXR agonist suggests FXR agonists may be useful in the treatment of cholestatic liver disease.
Collapse
Affiliation(s)
- Yaping Liu
- Nuclear Receptor Functional Analysis, High Thruput Biology, GlaxoSmithKline Research and Development, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Misra S, Varticovski L, Arias IM. Mechanisms by which cAMP increases bile acid secretion in rat liver and canalicular membrane vesicles. Am J Physiol Gastrointest Liver Physiol 2003; 285:G316-24. [PMID: 12702492 DOI: 10.1152/ajpgi.00048.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bile acid secretion induced by cAMP and taurocholate is associated with recruitment of several ATP binding cassette (ABC) transporters to the canalicular membrane. Taurocholate-mediated bile acid secretion and recruitment of ABC transporters are phosphatidylinositol 3-kinase (PI3K) dependent and require an intact microtubular apparatus. We examined mechanisms involved in cAMP-mediated bile acid secretion. Bile acid secretion induced by perfusion of rat liver with dibutyryl cAMP was blocked by colchicine and wortmannin, a PI3K inhibitor. Canalicular membrane vesicles isolated from cAMP-treated rats manifested increased ATP-dependent transport of taurocholate and PI3K activity that were reduced by prior in vivo administration of colchicine or wortmannin. Addition of a PI3K lipid product, phosphoinositide 3,4-bisphosphate, but not its isomer, phosphoinositide 4,5-bisphosphate, restored ATP-dependent taurocholate in these vesicles. Addition of a decapeptide that activates PI3K to canalicular membrane vesicles increased ATP-dependent transport above baseline activity. In contrast to effects induced by taurocholate, cAMP-stimulated intracellular trafficking of the canalicular ABC transporters was unaffected by wortmannin, and recruitment of multidrug resistance protein 2, but not bile salt excretory protein (bsep), was partially decreased by colchicine. These studies indicate that trafficking of bsep and other canalicular ABC transporters to the canalicular membrane in response to cAMP is independent of PI3K activity. In addition, PI3K lipid products are required for activation of bsep in the canalicular membrane. These observations prompt revision of current concepts regarding the role of cAMP and PI3K in intracellular trafficking, regulation of canalicular bsep, and bile acid secretion.
Collapse
Affiliation(s)
- Suniti Misra
- Dept. of Physiology, Tufts Univ. School of Medicine, 136 Harrison Ave., M&V7, Boston, MA 02111, USA
| | | | | |
Collapse
|
30
|
Abstract
Further insights into the cellular and molecular mechanisms underlying hepatobiliary transport function and its regulation now permit a better understanding of the pathogenesis and treatment options of cholestatic liver diseases. Identification of the molecular basis of hereditary cholestatic syndromes will result in an improved diagnosis and management of these conditions. New insights into the pathogenesis of extrahepatic manifestations of cholestasis (eg, pruritus) have facilitated new treatment strategies. Important new studies have been published about the pathogenesis, clinical features, diagnosis, and treatment of primary biliary cirrhosis, primary sclerosing cholangitis, cholestasis of pregnancy, total parenteral nutrition-induced cholestasis, drug-induced cholestasis, and viral cholestatic syndromes.
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Karl-Franzens University, School of Medicine, Graz, Austria
| | | |
Collapse
|
31
|
Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 2003; 83:633-71. [PMID: 12663868 DOI: 10.1152/physrev.00027.2002] [Citation(s) in RCA: 686] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Molecular medicine has led to rapid advances in the characterization of hepatobiliary transport systems that determine the uptake and excretion of bile salts and other biliary constituents in the liver and extrahepatic tissues. The bile salt pool undergoes an enterohepatic circulation that is regulated by distinct bile salt transport proteins, including the canalicular bile salt export pump BSEP (ABCB11), the ileal Na(+)-dependent bile salt transporter ISBT (SLC10A2), and the hepatic sinusoidal Na(+)- taurocholate cotransporting polypeptide NTCP (SLC10A1). Other bile salt transporters include the organic anion transporting polypeptides OATPs (SLC21A) and the multidrug resistance-associated proteins 2 and 3 MRP2,3 (ABCC2,3). Bile salt transporters are also present in cholangiocytes, the renal proximal tubule, and the placenta. Expression of these transport proteins is regulated by both transcriptional and posttranscriptional events, with the former involving nuclear hormone receptors where bile salts function as specific ligands. During bile secretory failure (cholestasis), bile salt transport proteins undergo adaptive responses that serve to protect the liver from bile salt retention and which facilitate extrahepatic routes of bile salt excretion. This review is a comprehensive summary of current knowledge of the molecular characterization, function, and regulation of bile salt transporters in normal physiology and in cholestatic liver disease and liver regeneration.
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Karl-Franzens University, School of Medicine, Graz, Austria
| | | |
Collapse
|