1
|
Choi U, Park SH, Lee HB, Son JE, Lee CR. Coordinated and Distinct Roles of Peptidoglycan Carboxypeptidases DacC and DacA in Cell Growth and Shape Maintenance under Stress Conditions. Microbiol Spectr 2023; 11:e0001423. [PMID: 37098975 PMCID: PMC10269652 DOI: 10.1128/spectrum.00014-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/09/2023] [Indexed: 04/27/2023] Open
Abstract
Peptidoglycan (PG) is an essential bacterial architecture pivotal for shape maintenance and adaptation to osmotic stress. Although PG synthesis and modification are tightly regulated under harsh environmental stresses, few related mechanisms have been investigated. In this study, we aimed to investigate the coordinated and distinct roles of the PG dd-carboxypeptidases (DD-CPases) DacC and DacA in cell growth under alkaline and salt stresses and shape maintenance in Escherichia coli. We found that DacC is an alkaline DD-CPase, the enzyme activity and protein stability of which are significantly enhanced under alkaline stress. Both DacC and DacA were required for bacterial growth under alkaline stress, whereas only DacA was required for growth under salt stress. Under normal growth conditions, only DacA was necessary for cell shape maintenance, while under alkaline stress conditions, both DacA and DacC were necessary for cell shape maintenance, but their roles were distinct. Notably, all of these roles of DacC and DacA were independent of ld-transpeptidases, which are necessary for the formation of PG 3-3 cross-links and covalent bonds between PG and the outer membrane lipoprotein Lpp. Instead, DacC and DacA interacted with penicillin-binding proteins (PBPs)-dd-transpeptidases-mostly in a C-terminal domain-dependent manner, and these interactions were necessary for most of their roles. Collectively, our results demonstrate the coordinated and distinct novel roles of DD-CPases in bacterial growth and shape maintenance under stress conditions and provide novel insights into the cellular functions of DD-CPases associated with PBPs. IMPORTANCE Most bacteria have a peptidoglycan architecture for cell shape maintenance and protection against osmotic challenges. Peptidoglycan dd-carboxypeptidases control the amount of pentapeptide substrates, which are used in the formation of 4-3 cross-links by the peptidoglycan synthetic dd-transpeptidases, penicillin-binding proteins (PBPs). Seven dd-carboxypeptidases exist in Escherichia coli, but the physiological significance of their redundancy and their roles in peptidoglycan synthesis are poorly understood. Here, we showed that DacC is an alkaline dd-carboxypeptidase for which both protein stability and enzyme activity are significantly enhanced at high pH. Strikingly, dd-carboxypeptidases DacC and DacA physically interacted with PBPs, and these interactions were necessary for cell shape maintenance as well as growth under alkaline and salt stresses. Thus, cooperation between dd-carboxypeptidases and PBPs may allow E. coli to overcome various stresses and to maintain cell shape.
Collapse
Affiliation(s)
- Umji Choi
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| | - Si Hyoung Park
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| | - Han Byeol Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| | - Ji Eun Son
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
- The Natural Science Research Institute, Myongji University, Yongin, Gyeonggido, Republic of Korea
| |
Collapse
|
2
|
Verheul J, Lodge A, Yau HCL, Liu X, Boelter G, Liu X, Solovyova AS, Typas A, Banzhaf M, Vollmer W, den Blaauwen T. Early midcell localization of Escherichia coli PBP4 supports the function of peptidoglycan amidases. PLoS Genet 2022; 18:e1010222. [PMID: 35604931 PMCID: PMC9166362 DOI: 10.1371/journal.pgen.1010222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/03/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
Insertion of new material into the Escherichia coli peptidoglycan (PG) sacculus between the cytoplasmic membrane and the outer membrane requires a well-organized balance between synthetic and hydrolytic activities to maintain cell shape and avoid lysis. Since most bacteria carry multiple enzymes carrying the same type of PG hydrolytic activity, we know little about the specific function of given enzymes. Here we show that the DD-carboxy/endopeptidase PBP4 localizes in a PBP1A/LpoA and FtsEX dependent fashion at midcell during septal PG synthesis. Midcell localization of PBP4 requires its non-catalytic domain 3 of unknown function, but not the activity of PBP4 or FtsE. Microscale thermophoresis with isolated proteins shows that PBP4 interacts with NlpI and the FtsEX-interacting protein EnvC, an activator of amidases AmiA and AmiB, which are needed to generate denuded glycan strands to recruit the initiator of septal PG synthesis, FtsN. The domain 3 of PBP4 is needed for the interaction with NlpI and EnvC, but not PBP1A or LpoA. In vivo crosslinking experiments confirm the interaction of PBP4 with PBP1A and LpoA. We propose that the interaction of PBP4 with EnvC, whilst not absolutely necessary for mid-cell recruitment of either protein, coordinates the activities of PBP4 and the amidases, which affects the formation of denuded glycan strands that attract FtsN. Consistent with this model, we found that the divisome assembly at midcell was premature in cells lacking PBP4, illustrating how the complexity of interactions affect the timing of cell division initiation. Peptidoglycan biosynthesis is a major target for antibacterials. The covalently closed peptidoglycan mesh, called sacculus, protects the bacterium from lysis due to its turgor. Sacculus growth is facilitated by the balanced activities of synthases and hydrolases, and disturbing this balance leads to cell lysis and bacterial death. Because of the large number and possible redundant functions of peptidoglycan hydrolases, it has been difficult to decipher their individual functions. In this paper we show that the DD-endopeptidase PBP4 localizes at midcell during septal peptidoglycan synthesis in Escherichia coli and is involved in the timing of the assembly and activation of the division machinery. This shows that inhibition of certain hydrolases could weaken the cells and might enhance antibiotic action.
Collapse
Affiliation(s)
- Jolanda Verheul
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Adam Lodge
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hamish C. L. Yau
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Xiaolong Liu
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Gabriela Boelter
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Xinwei Liu
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Structural & Computational Unit, Heidelberg, Germany
| | - Manuel Banzhaf
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail: (MB); (WV); (TdB)
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail: (MB); (WV); (TdB)
| | - Tanneke den Blaauwen
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: (MB); (WV); (TdB)
| |
Collapse
|
3
|
Wang J, Alvarez L, Bulgheresi S, Cava F, den Blaauwen T. PBP4 Is Likely Involved in Cell Division of the Longitudinally Dividing Bacterium Candidatus Thiosymbion Oneisti. Antibiotics (Basel) 2021; 10:antibiotics10030274. [PMID: 33803189 PMCID: PMC7999549 DOI: 10.3390/antibiotics10030274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/24/2021] [Accepted: 03/06/2021] [Indexed: 11/16/2022] Open
Abstract
Peptidoglycan (PG) is essential for bacterial survival and maintaining cell shape. The rod-shaped model bacterium Escherichia coli has a set of seven endopeptidases that remodel the PG during cell growth. The gamma proteobacterium Candidatus Thiosymbion oneisti is also rod-shaped and attaches to the cuticle of its nematode host by one pole. It widens and divides by longitudinal fission using the canonical proteins MreB and FtsZ. The PG layer of Ca. T. oneisti has an unusually high peptide cross-linkage of 67% but relatively short glycan chains with an average length of 12 disaccharides. Curiously, it has only two predicted endopeptidases, MepA and PBP4. Cellular localization of symbiont PBP4 by fluorescently labeled antibodies reveals its polar localization and its accumulation at the constriction sites, suggesting that PBP4 is involved in PG biosynthesis during septum formation. Isolated symbiont PBP4 protein shows a different selectivity for β-lactams compared to its homologue from E. coli. Bocillin-FL binding by PBP4 is activated by some β-lactams, suggesting the presence of an allosteric binding site. Overall, our data point to a role of PBP4 in PG cleavage during the longitudinal cell division and to a PG that might have been adapted to the symbiotic lifestyle.
Collapse
Affiliation(s)
- Jinglan Wang
- Bacterial Cell Biology & Physiology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
| | - Laura Alvarez
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden; (L.A.); (F.C.)
| | - Silvia Bulgheresi
- Environmental Cell Biology, University of Vienna, Althanstrasse 14 (UZA I), 1090 Vienna, Austria;
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden; (L.A.); (F.C.)
| | - Tanneke den Blaauwen
- Bacterial Cell Biology & Physiology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
4
|
Wang D, Hu E, Chen J, Tao X, Gutierrez K, Qi Y. Characterization of novel ybjG and dacC variants in Escherichia coli. J Med Microbiol 2013; 62:1728-1734. [PMID: 23912810 DOI: 10.1099/jmm.0.062893-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A total of 69 strains of Escherichia coli from patients in the Taizhou Municipal Hospital, China, were isolated, and 11 strains were identified that were resistant to bacitracin, chloramphenicol, tetracycline and erythromycin. These strains were PCR positive for at least two out of three genes, ybjG, dacC and mdfA, by gene mapping with conventional PCR detection. Conjugation experiments demonstrated that these genes existed in plasmids that conferred resistance. Novel ybjG and dacC variants were isolated from E. coli strains EC2163 and EC2347, which were obtained from the sputum of intensive care unit patients. Genetic mapping showed that the genes were located on 8200 kb plasmid regions flanked by EcoRI restriction sites. Three distinct genetic structures were identified among the 11 PCR-positive strains of E. coli, and two contained the novel ybjG and dacC variants. The putative amino acid differences in the ybjG and dacC gene variants were characterized. These results provide evidence for novel variants of ybjG and dacC, and suggest that multiple drug resistance in hospital strains of E. coli depends on the synergistic function of ybjG, dacC and mdfA within three distinct genetic structures in conjugative plasmids.
Collapse
Affiliation(s)
- Dongguo Wang
- Department of Clinical Lab Medicine, Taizhou University affiliated Taizhou Municipal Hospital, Taizhou, PR China
| | - Enping Hu
- Department of Urology Surgery, Taizhou University affiliated Taizhou Municipal Hospital, Taizhou, PR China
| | - Jiayu Chen
- Department of Lab Medicine, Medical College of Taizhou University, Taizhou, PR China
| | - Xiulin Tao
- Department of Urology Surgery, Taizhou University affiliated Taizhou Municipal Hospital, Taizhou, PR China
| | | | - Yongxiao Qi
- Department of Lab Medicine, Medical College of Taizhou University, Taizhou, PR China
| |
Collapse
|
5
|
Keller RCA. New user-friendly approach to obtain an Eisenberg plot and its use as a practical tool in protein sequence analysis. Int J Mol Sci 2011; 12:5577-91. [PMID: 22016610 PMCID: PMC3189734 DOI: 10.3390/ijms12095577] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/22/2011] [Accepted: 08/22/2011] [Indexed: 12/26/2022] Open
Abstract
The Eisenberg plot or hydrophobic moment plot methodology is one of the most frequently used methods of bioinformatics. Bioinformatics is more and more recognized as a helpful tool in Life Sciences in general, and recent developments in approaches recognizing lipid binding regions in proteins are promising in this respect. In this study a bioinformatics approach specialized in identifying lipid binding helical regions in proteins was used to obtain an Eisenberg plot. The validity of the Heliquest generated hydrophobic moment plot was checked and exemplified. This study indicates that the Eisenberg plot methodology can be transferred to another hydrophobicity scale and renders a user-friendly approach which can be utilized in routine checks in protein–lipid interaction and in protein and peptide lipid binding characterization studies. A combined approach seems to be advantageous and results in a powerful tool in the search of helical lipid-binding regions in proteins and peptides. The strength and limitations of the Eisenberg plot approach itself are discussed as well. The presented approach not only leads to a better understanding of the nature of the protein–lipid interactions but also provides a user-friendly tool for the search of lipid-binding regions in proteins and peptides.
Collapse
Affiliation(s)
- Rob C A Keller
- Section Chemistry, Charlemagne College, Wilhelminastraat 13-15, 6524 AJ Nijmegen, The Netherlands; E-Mail: ; Tel.: +0031-243820460
| |
Collapse
|
6
|
Potluri L, Karczmarek A, Verheul J, Piette A, Wilkin JM, Werth N, Banzhaf M, Vollmer W, Young KD, Nguyen-Distèche M, den Blaauwen T. Septal and lateral wall localization of PBP5, the major D,D-carboxypeptidase of Escherichia coli, requires substrate recognition and membrane attachment. Mol Microbiol 2010; 77:300-23. [PMID: 20545860 PMCID: PMC2909392 DOI: 10.1111/j.1365-2958.2010.07205.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The distribution of PBP5, the major D,D-carboxypeptidase in Escherichia coli, was mapped by immunolabelling and by visualization of GFP fusion proteins in wild-type cells and in mutants lacking one or more D,D-carboxypeptidases. In addition to being scattered around the lateral envelope, PBP5 was also concentrated at nascent division sites prior to visible constriction. Inhibiting PBP2 activity (which eliminates wall elongation) shifted PBP5 to midcell, whereas inhibiting PBP3 (which aborts divisome invagination) led to the creation of PBP5 rings at positions of preseptal wall formation, implying that PBP5 localizes to areas of ongoing peptidoglycan synthesis. A PBP5(S44G) active site mutant was more evenly dispersed, indicating that localization required enzyme activity and the availability of pentapeptide substrates. Both the membrane bound and soluble forms of PBP5 converted pentapeptides to tetrapeptides in vitro and in vivo, and the enzymes accepted the same range of substrates, including sacculi, Lipid II, muropeptides and artificial substrates. However, only the membrane-bound form localized to the developing septum and restored wild-type rod morphology to shape defective mutants, suggesting that the two events are related. The results indicate that PBP5 localization to sites of ongoing peptidoglycan synthesis is substrate dependent and requires membrane attachment.
Collapse
Affiliation(s)
- Lakshmiprasad Potluri
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Horler RSP, Butcher A, Papangelopoulos N, Ashton PD, Thomas GH. EchoLOCATION: an in silico analysis of the subcellular locations of Escherichia coli proteins and comparison with experimentally derived locations. ACTA ACUST UNITED AC 2008; 25:163-6. [PMID: 19015139 DOI: 10.1093/bioinformatics/btn596] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SUMMARY EchoLOCATION is a database that provides a comprehensive analysis of the subcellular locations of Escherichia coli K-12 proteins. Locations are predicted by integrating data from a range of publicly available algorithms combined with extensive curation of experimental literature. The data can be searched in a variety of ways and can generate lists of subcellular proteomes for analysis. Experimental evidence supports the locations of over 500 envelope proteins (periplasm, inner and outer membrane). From analysis of disagreements between in silico predictions and experimental data, we provide an analysis of protein types where subcellular prediction algorithms are currently not accurate.
Collapse
|
8
|
Urbach C, Fastrez J, Soumillion P. A new family of cyanobacterial penicillin-binding proteins. A missing link in the evolution of class A beta-lactamases. J Biol Chem 2008; 283:32516-26. [PMID: 18801739 DOI: 10.1074/jbc.m805375200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
It is largely accepted that serine beta-lactamases evolved from some ancestral DD-peptidases involved in the biosynthesis and maintenance of the bacterial peptidoglycan. DD-peptidases are also called penicillin-binding proteins (PBPs), since they form stable acyl-enzymes with beta-lactam antibiotics, such as penicillins. On the other hand, beta-lactamases react similarly with these antibiotics, but the acyl-enzymes are unstable and rapidly hydrolyzed. Besides, all known PBPs and beta-lactamases share very low sequence similarities, thus rendering it difficult to understand how a PBP could evolve into a beta-lactamase. In this study, we identified a new family of cyanobacterial PBPs featuring the highest sequence similarity with the most widespread class A beta-lactamases. Interestingly, the Omega-loop, which, in the beta-lactamases, carries an essential glutamate involved in the deacylation process, is six amino acids shorter and does not contain any glutamate residue. From this new family of proteins, we characterized PBP-A from Thermosynechococcus elongatus and discovered hydrolytic activity with synthetic thiolesters that are usually good substrates of DD-peptidases. Penicillin degradation pathways as well as acylation and deacylation rates are characteristic of PBPs. In a first attempt to generate beta-lactamase activity, a 90-fold increase in deacylation rate was obtained by introducing a glutamate in the shorter Omega-loop.
Collapse
Affiliation(s)
- Carole Urbach
- Laboratoire d'Ingénierie des Protéines et des Peptides, Institut des Sciences de la Vie, Université Catholique de Louvain, Place Croix du Sud 4-5, bte3, 1348 Louvain la-Neuve, Belgium
| | | | | |
Collapse
|
9
|
Sauvage E, Powell AJ, Heilemann J, Josephine HR, Charlier P, Davies C, Pratt RF. Crystal structures of complexes of bacterial DD-peptidases with peptidoglycan-mimetic ligands: the substrate specificity puzzle. J Mol Biol 2008; 381:383-93. [PMID: 18602645 DOI: 10.1016/j.jmb.2008.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/28/2008] [Accepted: 06/01/2008] [Indexed: 10/22/2022]
Abstract
The X-ray crystal structures of covalent complexes of the Actinomadura R39 dd-peptidase and Escherichia coli penicillin-binding protein (PBP) 5 with beta-lactams bearing peptidoglycan-mimetic side chains have been determined. The structure of the hydrolysis product of an analogous peptide bound noncovalently to the former enzyme has also been obtained. The R39 DD-peptidase structures reveal the presence of a specific binding site for the D-alpha-aminopimelyl side chain, characteristic of the stem peptide of Actinomadura R39. This binding site features a hydrophobic cleft for the pimelyl methylene groups and strong hydrogen bonding to the polar terminus. Both of these active site elements are provided by amino acid side chains from two separate domains of the protein. In contrast, no clear electron density corresponding to the terminus of the peptidoglycan-mimetic side chains is present when these beta-lactams are covalently bound to PBP5. There is, therefore, no indication of a specific side-chain binding site in this enzyme. These results are in agreement with those from kinetics studies published earlier and support the general prediction made at the time of a direct correlation between kinetics and structural evidence. The essential high-molecular-mass PBPs have demonstrated, to date, no specific reactivity with peptidoglycan-mimetic peptide substrates and beta-lactam inhibitors and, thus, probably do not possess a specific substrate-binding site of the type demonstrated here with the R39 DD-peptidase. This striking deficiency may represent a sophisticated defense mechanism against low-molecular-mass substrate-analogue inhibitors/antibiotics; its discovery should focus new inhibitor design.
Collapse
Affiliation(s)
- Eric Sauvage
- Centre d'Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
10
|
Ghosh AS, Chowdhury C, Nelson DE. Physiological functions of D-alanine carboxypeptidases in Escherichia coli. Trends Microbiol 2008; 16:309-17. [PMID: 18539032 DOI: 10.1016/j.tim.2008.04.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 04/09/2008] [Accepted: 04/30/2008] [Indexed: 11/16/2022]
Abstract
Bacterial cell shape is, in part, mediated by the peptidoglycan (murein) sacculus. Penicillin-binding proteins (PBPs) catalyze the final stages of murein biogenesis and are the targets of beta-lactam antibiotics. Several low molecular mass PBPs including PBP4, PBP5, PBP6 and DacD seem to possess DD-carboxypeptidase (DD-CPase) activity, but these proteins are dispensable for survival in laboratory culture. The physiological functions of DD-CPases in vivo are unresolved and it is unclear why bacteria retain these seemingly non-essential and enzymatically redundant enzymes. However, PBP5 clearly contributes to maintenance of cell shape in some PBP mutant backgrounds. In this review, we focus on recent findings concerning the physiological functions of the DD-CPases in vivo, identify gaps in the current knowledge of these proteins and suggest some possible courses for future study that might help reconcile current models of bacterial cell morphology.
Collapse
Affiliation(s)
- Anindya S Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, District-West Midnapore, West Bengal, PIN-721302, India.
| | | | | |
Collapse
|
11
|
Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 2008; 32:234-58. [PMID: 18266856 DOI: 10.1111/j.1574-6976.2008.00105.x] [Citation(s) in RCA: 901] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Eric Sauvage
- Centre d'Ingénierie des Protéines, Institut de Physique B5a et Institut de Chimie B6a, University of Liège, Sart Tilman, Belgium.
| | | | | | | | | |
Collapse
|
12
|
Vollmer W, Joris B, Charlier P, Foster S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 2008; 32:259-86. [PMID: 18266855 DOI: 10.1111/j.1574-6976.2007.00099.x] [Citation(s) in RCA: 629] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Most bacteria have multiple peptidoglycan hydrolases capable of cleaving covalent bonds in peptidoglycan sacculi or its fragments. An overview of the different classes of peptidoglycan hydrolases and their cleavage sites is provided. The physiological functions of these enzymes include the regulation of cell wall growth, the turnover of peptidoglycan during growth, the separation of daughter cells during cell division and autolysis. Specialized hydrolases enlarge the pores in the peptidoglycan for the assembly of large trans-envelope complexes (pili, flagella, secretion systems), or they specifically cleave peptidoglycan during sporulation or spore germination. Moreover, peptidoglycan hydrolases are involved in lysis phenomena such as fratricide or developmental lysis occurring in bacterial populations. We will also review the current view on the regulation of autolysins and on the role of cytoplasm hydrolases in peptidoglycan recycling and induction of beta-lactamase.
Collapse
Affiliation(s)
- Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
| | | | | | | |
Collapse
|
13
|
Dennison SR, Baker RD, Nicholl ID, Phoenix DA. Interactions of cell penetrating peptide Tat with model membranes: A biophysical study. Biochem Biophys Res Commun 2007; 363:178-82. [PMID: 17854767 DOI: 10.1016/j.bbrc.2007.08.162] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 08/23/2007] [Indexed: 11/19/2022]
Abstract
The protein transduction domain of the HIV-1 transactivator of transcription, Tat (Tat((48-60))), has been shown to transport P10, a cytotoxic peptide mimic of the cyclin dependent kinase inhibitor p21WAF1/CIP1, into the nucleus of cancerous cells and induce apoptosis. Here, monolayer studies were used to investigate the membrane interactions of Tat((48-60)), P10 and the construct Tat((48-60))P10. It was found that Tat((48-60)) showed no significant surface activity but that both P10 and Tat((48-60))P10, were highly surface active, inducing surface pressure changes of 9.7 and 8.9mNm(-1), respectively, with DMPS monolayers. The comparison of Tat((48-60))P10 and P10 surface interactions would be consistent with a hypothesis that the cargo attachment influences the capacity of the Tat-protein transduction domain to mediate transport across membranes either directly or via localisation of the construct at the membrane interface.
Collapse
Affiliation(s)
- Sarah R Dennison
- Faculty of Science and Technology, University of Central Lancashire, Preston PR1 2HE, UK
| | | | | | | |
Collapse
|
14
|
Sauvage E, Duez C, Herman R, Kerff F, Petrella S, Anderson JW, Adediran SA, Pratt RF, Frère JM, Charlier P. Crystal structure of the Bacillus subtilis penicillin-binding protein 4a, and its complex with a peptidoglycan mimetic peptide. J Mol Biol 2007; 371:528-39. [PMID: 17582436 DOI: 10.1016/j.jmb.2007.05.071] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 05/22/2007] [Accepted: 05/24/2007] [Indexed: 11/18/2022]
Abstract
The genome of Bacillus subtilis encodes 16 penicillin-binding proteins (PBPs) involved in the synthesis and/or remodelling of the peptidoglycan during the complex life cycle of this sporulating Gram-positive rod-shaped bacterium. PBP4a (encoded by the dacC gene) is a low-molecular mass PBP clearly exhibiting in vitro DD-carboxypeptidase activity. We have solved the crystal structure of this protein alone and in complex with a peptide (D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine) that mimics the C-terminal end of the Bacillus peptidoglycan stem peptide. PBP4a is composed of three domains: the penicillin-binding domain with a fold similar to the class A beta-lactamase structure and two domains inserted between the conserved motifs 1 and 2 characteristic of the penicillin-recognizing enzymes. The soaking of PBP4a in a solution of D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine resulted in an adduct between PBP4a and a D-alpha-aminopimelyl-epsilon-D-alanine dipeptide and an unbound D-alanine, i.e. the products of acylation of PBP4a by D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine with the release of a D-alanine. The adduct also reveals a binding pocket specific to the diaminopimelic acid, the third residue of the peptidoglycan stem pentapeptide of B. subtilis. This pocket is specific for this class of PBPs.
Collapse
Affiliation(s)
- Eric Sauvage
- Centre d'Ingénierie des Protéines, Université de Liège, Institut de Physique B5 et Institut de Chimie B6a, Sart Tilman, B-4000 Liège, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dennison SR, Harris F, Phoenix DA. The interactions of aurein 1.2 with cancer cell membranes. Biophys Chem 2007; 127:78-83. [PMID: 17222498 DOI: 10.1016/j.bpc.2006.12.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/15/2006] [Accepted: 12/19/2006] [Indexed: 01/01/2023]
Abstract
Here, the interactions of aurein 1.2, a defence peptide, with T98G glioblastoma cell membranes are studied. The peptide induced maximal surface pressure changes of circa 9 mN m(-1) in monolayers of endogenous T98G membrane lipid. Reducing monolayer anionic lipid showed a positive correlation (R(2)>0.91) with decreases in maximal surface pressure changes induced by aurein 1.2 (circa 3 mN m(-1) in the absence of this lipid). Cancer cell membrane invasion by the peptide therefore appears not to be mediated by lipid receptors or specific lipid requirements but rather a general requirement for anionic lipid and/or other negatively charged membrane components.
Collapse
Affiliation(s)
- Sarah R Dennison
- Faculty of Science and Technology, University of Central Lancashire, Preston PR1 2HE, UK
| | | | | |
Collapse
|
16
|
Aldridge P, Karlinsey JE, Becker E, Chevance FF, Hughes KT. Flk prevents premature secretion of the anti-sigma factor FlgM into the periplasm. Mol Microbiol 2006; 60:630-43. [PMID: 16629666 PMCID: PMC3471667 DOI: 10.1111/j.1365-2958.2006.05135.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The flk locus of Salmonella typhimurium was identified as a regulator of flagellar gene expression in strains defective in P- and l-ring formation. Flk acts as a regulator of flagellar gene expression by modulating the protein levels of the anti-sigma28 factor FlgM. Evidence is presented which suggests that Flk is a cytoplasmic-facing protein anchored to the inner membrane by a single, C-terminal transmembrane-spanning domain (TMS). The specific amino acid sequence of the TMS is not essential for Flk activity, but membrane anchoring is essential. Membrane fractionation and visualization of protein fusions of green fluorescent protein derivatives to Flk suggested that the Flk protein is present in the membrane as punctate spots in number that are much greater than the number of flagellar basal structures. The turnover of the anti-sigma28 factor FlgM was increased in flk mutant strains. Using FlgM-beta-lactamase fusions we show the increased turnover of FlgM in flk null mutations is due to FlgM secretion into the periplasm where it is degraded. Our data suggest that Flk inhibits FlgM secretion by acting as a braking system for the flagellar-associated type III secretion system. A model is presented to explain a role for Flk in flagellar assembly and gene regulatory processes.
Collapse
Affiliation(s)
- Phillip Aldridge
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Joyce E. Karlinsey
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Eric Becker
- Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093-034, USA
| | | | - Kelly T. Hughes
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
- For correspondence. ; Tel. (+1) 801 587 3367; Fax (+1) 801 581 4668
| |
Collapse
|
17
|
Sauvage E, Herman R, Petrella S, Duez C, Bouillenne F, Frère JM, Charlier P. Crystal structure of the Actinomadura R39 DD-peptidase reveals new domains in penicillin-binding proteins. J Biol Chem 2005; 280:31249-56. [PMID: 15987687 DOI: 10.1074/jbc.m503271200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actinomadura sp. R39 produces an exocellular DD-peptidase/penicillin-binding protein (PBP) whose primary structure is similar to that of Escherichia coli PBP4. It is characterized by a high beta-lactam-binding activity (second order rate constant for the acylation of the active site serine by benzylpenicillin: k2/K = 300 mm(-1) s(-1)). The crystal structure of the DD-peptidase from Actinomadura R39 was solved at a resolution of 1.8 angstroms by single anomalous dispersion at the cobalt resonance wavelength. The structure is composed of three domains: a penicillin-binding domain similar to the penicillin-binding domain of E. coli PBP5 and two domains of unknown function. In most multimodular PBPs, additional domains are generally located at the C or N termini of the penicillin-binding domain. In R39, the other two domains are inserted in the penicillin-binding domain, between the SXXK and SXN motifs, in a manner similar to "Matryoshka dolls." One of these domains is composed of a five-stranded beta-sheet with two helices on one side, and the other domain is a double three-stranded beta-sheet inserted in the previous domain. Additionally, the 2.4-angstroms structure of the acyl-enzyme complex of R39 with nitrocefin reveals the absence of active site conformational change upon binding the beta-lactams.
Collapse
Affiliation(s)
- Eric Sauvage
- Centre d'Ingénierie des Protéines, Université de Liège, Institut de Physique B5, B-4000 Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|
18
|
Huffman SW, Schlücker S, Levin IW. Reorganizational dynamics of multilamellar lipid bilayer assemblies using continuously scanning Fourier transform infrared spectroscopic imaging. Chem Phys Lipids 2004; 130:167-74. [PMID: 15172833 DOI: 10.1016/j.chemphyslip.2004.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 03/02/2004] [Accepted: 03/02/2004] [Indexed: 11/15/2022]
Abstract
We employ an implementation of rapid-scan Fourier transform infrared (FT-IR) microspectroscopic imaging to acquire time-resolved images for assessing the non-repetitive reorganizational dynamics of aqueous dispersions of multilamellar lipid vesicles (MLVs) derived from distearoylphosphatidylcholine (DSPC). The spatially and temporally resolved images allow direct and simultaneous determinations of various physical and chemical properties of the MLVs, including the main thermal gel to liquid crystalline phase transition, comparisons of vesicle diffusion rates in both phases and the variation in lipid bilayer packing properties between the inner and outer lamellae defining the vesicle. Specifically, in the lipid liquid crystalline phase, the inner bilayers of the MLVs are more intermolecularly ordered than the outer regions, while the intramolecular acyl chain order/disorder parameters, reflecting the overall characteristics of the fluid phase, remain uniform across the vesicle diameter. In contrast, the lipid vesicle gel phase displays no intermolecular or intramolecular dependence as a function of distance from the MLV center.
Collapse
Affiliation(s)
- Scott W Huffman
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
19
|
Wallace J, Harris F, Phoenix DA. A statistical investigation of amphiphilic properties of C-terminally anchored peptidases. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2003; 32:589-98. [PMID: 12721770 DOI: 10.1007/s00249-003-0302-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Accepted: 03/19/2003] [Indexed: 10/26/2022]
Abstract
A number of DD-peptidases have been reported to interact with the membrane via C-terminal amphiphilic alpha-helices, but experimental support for this rests with a few well-characterized cases. These show the C-terminal interactions of DD-carboxypeptidases to involve high levels of membrane penetration, DD-endopeptidases to involve membrane surface binding and class C penicillin-binding proteins to involve membrane binding with intermediate properties. Here, we have characterized C-terminal alpha-helices from each of these peptidase groups according to their amphiphilicity, as measured by mean <microH>, and the corresponding mean hydrophobicity, <H>. Regression and statistical analyses showed these properties to exhibit parallel negative linear relationships, which resulted from the spatial ordering of alpha-helix amino acid residues. Taken with the results of compositional and graphical analyses, our results suggest that the use of C-terminal alpha-helices may be a universal feature of the membrane anchoring for each of these groups of DD-peptidases. Moreover, to accommodate differences between these mechanisms, each group of C-terminal alpha-helices optimizes its structural amphiphilicity and hydrophobicity to fulfil its individual membrane-anchoring function. Our results also show that each anchor type analysed requires a similar overall balance between amphiphilicity for membrane interaction, which we propose is necessary to stabilize their initial membrane associations. In addition, we present a methodology for the prediction of C-terminal alpha-helical anchors from the classes of DD-peptidases analysed, based on a parallel linear model.
Collapse
Affiliation(s)
- James Wallace
- Department of Physics, Astronomy and Mathematics, University of Central Lancashire, Preston, PR1 2HE, UK
| | | | | |
Collapse
|