1
|
Chatterjee S, Chaubet L, van den Berg A, Mukhortava A, Almohdar D, Ratcliffe J, Gulkis M, Çağlayan M. Probing the mechanism of nick searching by LIG1 at the single-molecule level. Nucleic Acids Res 2024:gkae865. [PMID: 39404052 DOI: 10.1093/nar/gkae865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/12/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
DNA ligase 1 (LIG1) joins Okazaki fragments during the nuclear replication and completes DNA repair pathways by joining 3'-OH and 5'-PO4 ends of nick at the final step. Yet, the mechanism of how LIG1 searches for a nick at single-molecule level is unknown. Here, we combine single-molecule fluorescence microscopy approaches, C-Trap and total internal reflection fluorescence (TIRF), to investigate the dynamics of LIG1-nick DNA binding. Our C-Trap data reveal that DNA binding by LIG1 full-length is enriched near the nick sites and the protein exhibits diffusive behavior to form a long-lived ligase/nick complex after binding to a non-nick region. However, LIG1 C-terminal mutant, containing the catalytic core and DNA-binding domain, predominantly binds throughout DNA non-specifically to the regions lacking nick site for shorter time. These results are further supported by TIRF data for LIG1 binding to DNA with a single nick site and demonstrate that a fraction of LIG1 full-length binds significantly longer period compared to the C-terminal mutant. Overall comparison of DNA binding modes provides a mechanistic model where the N-terminal domain promotes 1D diffusion and the enrichment of LIG1 binding at nick sites with longer binding lifetime, thereby facilitating an efficient nick search process.
Collapse
Affiliation(s)
- Surajit Chatterjee
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Loïc Chaubet
- LUMICKS B.V., 1059 CH, Paalbergweg 31105 AG, Amsterdam, The Netherlands
| | | | - Ann Mukhortava
- LUMICKS B.V., 1059 CH, Paalbergweg 31105 AG, Amsterdam, The Netherlands
| | - Danah Almohdar
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Jacob Ratcliffe
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Balu KE, Gulkis M, Almohdar D, Çağlayan M. Structures of LIG1 provide a mechanistic basis for understanding a lack of sugar discrimination against a ribonucleotide at the 3'-end of nick DNA. J Biol Chem 2024; 300:107216. [PMID: 38522520 PMCID: PMC11035063 DOI: 10.1016/j.jbc.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
Human DNA ligase 1 (LIG1) is the main replicative ligase that seals Okazaki fragments during nuclear replication and finalizes DNA repair pathways by joining DNA ends of the broken strand breaks in the three steps of the ligation reaction. LIG1 can tolerate the RNA strand upstream of the nick, yet an atomic insight into the sugar discrimination mechanism by LIG1 against a ribonucleotide at the 3'-terminus of nick DNA is unknown. Here, we determined X-ray structures of LIG1/3'-RNA-DNA hybrids and captured the ligase during pre- and post-step 3 the ligation reaction. Furthermore, the overlays of 3'-rA:T and 3'-rG:C step 3 structures with step 2 structures of canonical 3'-dA:T and 3'-dG:C uncover a network of LIG1/DNA interactions through Asp570 and Arg871 side chains with 2'-OH of the ribose at nick showing a final phosphodiester bond formation and the other ligase active site residues surrounding the AMP site. Finally, we demonstrated that LIG1 can ligate the nick DNA substrates with pre-inserted 3'-ribonucleotides as efficiently as Watson-Crick base-paired ends in vitro. Together, our findings uncover a novel atomic insight into a lack of sugar discrimination by LIG1 and the impact of improper sugar on the nick sealing of ribonucleotides at the last step of DNA replication and repair.
Collapse
Affiliation(s)
- Kanal Elamparithi Balu
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Danah Almohdar
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
3
|
Chatterjee S, Chaubet L, van den Berg A, Mukhortava A, Gulkis M, Çağlayan M. Uncovering nick DNA binding by LIG1 at the single-molecule level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587287. [PMID: 38586032 PMCID: PMC10996606 DOI: 10.1101/2024.03.28.587287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
DNA ligases repair the strand breaks are made continually and naturally throughout the genome, if left unrepaired and allowed to persist, they can lead to genome instability in the forms of lethal double-strand (ds) breaks, deletions, and duplications. DNA ligase 1 (LIG1) joins Okazaki fragments during the replication machinery and seals nicks at the end of most DNA repair pathways. Yet, how LIG1 recognizes its target substrate is entirely missing. Here, we uncover the dynamics of nick DNA binding by LIG1 at the single-molecule level. Our findings reveal that LIG1 binds to dsDNA both specifically and non-specifically and exhibits diffusive behavior to form a stable complex at the nick. Furthermore, by comparing with the LIG1 C-terminal protein, we demonstrate that the N-terminal non-catalytic region promotes binding enriched at nick sites and facilitates an efficient nick search process by promoting 1D diffusion along the DNA. Our findings provide a novel single-molecule insight into the nick binding by LIG1, which is critical to repair broken phosphodiester bonds in the DNA backbone to maintain genome integrity.
Collapse
|
4
|
Gulkis M, Tang Q, Petrides M, Çağlayan M. Structures of LIG1 active site mutants reveal the importance of DNA end rigidity for mismatch discrimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533718. [PMID: 36993234 PMCID: PMC10055324 DOI: 10.1101/2023.03.21.533718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
ATP-dependent DNA ligases catalyze phosphodiester bond formation in the conserved three-step chemical reaction of nick sealing. Human DNA ligase I (LIG1) finalizes almost all DNA repair pathways following DNA polymerase-mediated nucleotide insertion. We previously reported that LIG1 discriminates mismatches depending on the architecture of the 3'-terminus at a nick, however the contribution of conserved active site residues to faithful ligation remains unknown. Here, we comprehensively dissect the nick DNA substrate specificity of LIG1 active site mutants carrying Ala(A) and Leu(L) substitutions at Phe(F)635 and Phe(F)F872 residues and show completely abolished ligation of nick DNA substrates with all 12 non-canonical mismatches. LIG1 EE/AA structures of F635A and F872A mutants in complex with nick DNA containing A:C and G:T mismatches demonstrate the importance of DNA end rigidity, as well as uncover a shift in a flexible loop near 5'-end of the nick, which causes an increased barrier to adenylate transfer from LIG1 to the 5'-end of the nick. Furthermore, LIG1 EE/AA /8oxoG:A structures of both mutants demonstrated that F635 and F872 play critical roles during steps 1 or 2 of the ligation reaction depending on the position of the active site residue near the DNA ends. Overall, our study contributes towards a better understanding of the substrate discrimination mechanism of LIG1 against mutagenic repair intermediates with mismatched or damaged ends and reveals the importance of conserved ligase active site residues to maintain ligation fidelity.
Collapse
|
5
|
Rabaan AA, Abas AH, Tallei TE, Al-Zaher MA, Al-Sheef NM, Fatimawali, Al-Nass EZ, Al-Ebrahim EA, Effendi Y, Idroes R, Alhabib MF, Al-Fheid HA, Adam AA, Bin Emran T. Monkeypox outbreak 2022: What we know so far and its potential drug targets and management strategies. J Med Virol 2023; 95:e28306. [PMID: 36372558 DOI: 10.1002/jmv.28306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Monkeypox is a rare zoonotic disease caused by infection with the monkeypox virus. The disease can result in flu-like symptoms, fever, and a persistent rash. The disease is currently spreading throughout the world and prevention and treatment efforts are being intensified. Although there is no treatment that has been specifically approved for monkeypox virus infection, infected patients may benefit from using certain antiviral medications that are typically prescribed for the treatment of smallpox. The drugs are tecovirimat, brincidofovir, and cidofovir, all of which are currently in short supply due to the spread of the monkeypox virus. Resistance is also a concern, as widespread replication of the monkeypox virus can lead to mutations that produce monkeypox viruses that are resistant to the currently available treatments. This article discusses monkeypox disease, potential drug targets, and management strategies to overcome monkeypox disease. With the discovery of new drugs, it is hoped that the problem of insufficient drugs will be resolved, and it is not anticipated that drug resistance will become a major issue in the near future.
Collapse
Affiliation(s)
- Ali A Rabaan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia.,Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Abdul Hawil Abas
- Faculty of Bioscience and Engineering, Ghent University, Ghent, Belgium
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Mona A Al-Zaher
- Department of Commitment management, Directorate of Health Affairs in the Eastern Province, Dammam, Saudi Arabia
| | - Noor M Al-Sheef
- Department of Commitment management, Directorate of Health Affairs in the Eastern Province, Dammam, Saudi Arabia
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Esraa Z Al-Nass
- Department of Commitment management, Directorate of Health Affairs in the Eastern Province, Dammam, Saudi Arabia
| | - Eba A Al-Ebrahim
- Department of Commitment management, Directorate of Health Affairs in the Eastern Province, Dammam, Saudi Arabia
| | - Yunus Effendi
- Department of Biology, Faculty of Science and Technology, Al-Azhar Indonesia University, Jakarta, Indonesia
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Mather F Alhabib
- Molecular Diagnostic Laboratory, Dammam Regional Laboratory and Blood Bank, Dammam, Saudi Arabia
| | - Hussain A Al-Fheid
- Molecular Diagnostic Laboratory, Dammam Regional Laboratory and Blood Bank, Dammam, Saudi Arabia
| | - Ahmad Akroman Adam
- Dentistry Study Program, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
6
|
Yang Z, Zhang C, Lian G, Dong S, Song M, Shao H, Wang J, Zhong T, Luo Z, Jin S, Ding C. Direct adenylation from 5'-OH-terminated oligonucleotides by a fusion enzyme containing Pfu RNA ligase and T4 polynucleotide kinase. Nucleic Acids Res 2022; 50:7560-7569. [PMID: 35819229 PMCID: PMC9303275 DOI: 10.1093/nar/gkac604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022] Open
Abstract
5′-Adenylated oligonucleotides (AppOligos) are widely used for single-stranded DNA/RNA ligation in next-generation sequencing (NGS) applications such as microRNA (miRNA) profiling. The ligation between an AppOligo adapter and target molecules (such as miRNA) no longer requires ATP, thereby minimizing potential self-ligations and simplifying library preparation procedures. AppOligos can be produced by chemical synthesis or enzymatic modification. However, adenylation via chemical synthesis is inefficient and expensive, while enzymatic modification requires pre-phosphorylated substrate and additional purification. Here we cloned and characterized the Pfu RNA ligase encoded by the PF0353 gene in the hyperthermophilic archaea Pyrococcus furiosus. We further engineered fusion enzymes containing both Pfu RNA ligase and T4 polynucleotide kinase. One fusion enzyme, 8H-AP, was thermostable and can directly catalyze 5′-OH-terminated DNA substrates to adenylated products. The newly discovered Pfu RNA ligase and the engineered fusion enzyme may be useful tools for applications using AppOligos.
Collapse
Affiliation(s)
- Zhengquan Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chengliang Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Department of Clinical Laboratory, Kunming Third People's Hospital, Kunming, Yunnan, 650041, China
| | - Guojun Lian
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shijie Dong
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Menghui Song
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hengrong Shao
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jingmei Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tao Zhong
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhenni Luo
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shengnan Jin
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chunming Ding
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
7
|
DNA ligase I fidelity mediates the mutagenic ligation of pol β oxidized and mismatch nucleotide insertion products in base excision repair. J Biol Chem 2021; 296:100427. [PMID: 33600799 PMCID: PMC8024709 DOI: 10.1016/j.jbc.2021.100427] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 11/22/2022] Open
Abstract
DNA ligase I (LIG1) completes the base excision repair (BER) pathway at the last nick-sealing step after DNA polymerase (pol) β gap-filling DNA synthesis. However, the mechanism by which LIG1 fidelity mediates the faithful substrate-product channeling and ligation of repair intermediates at the final steps of the BER pathway remains unclear. We previously reported that pol β 8-oxo-2'-deoxyribonucleoside 5'-triphosphate insertion confounds LIG1, leading to the formation of ligation failure products with a 5'-adenylate block. Here, using reconstituted BER assays in vitro, we report the mutagenic ligation of pol β 8-oxo-2'-deoxyribonucleoside 5'-triphosphate insertion products and an inefficient ligation of pol β Watson-Crick-like dG:T mismatch insertion by the LIG1 mutant with a perturbed fidelity (E346A/E592A). Moreover, our results reveal that the substrate discrimination of LIG1 for the nicked repair intermediates with preinserted 3'-8-oxodG or mismatches is governed by mutations at both E346 and E592 residues. Finally, we found that aprataxin and flap endonuclease 1, as compensatory DNA-end processing enzymes, can remove the 5'-adenylate block from the abortive ligation products harboring 3'-8-oxodG or the 12 possible noncanonical base pairs. These findings contribute to the understanding of the role of LIG1 as an important determinant in faithful BER and how a multiprotein complex (LIG1, pol β, aprataxin, and flap endonuclease 1) can coordinate to prevent the formation of mutagenic repair intermediates with damaged or mismatched ends at the downstream steps of the BER pathway.
Collapse
|
8
|
Osman EA, Alladin-Mustan BS, Hales SC, Matharu GK, Gibbs JM. Enhanced mismatch selectivity of T4 DNA ligase far above the probe: Target duplex dissociation temperature. Biopolymers 2020; 112:e23393. [PMID: 32896905 DOI: 10.1002/bip.23393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 11/06/2022]
Abstract
T4 DNA ligase is a widely used ligase in many applications; yet in single nucleotide polymorphism analysis, it has been found generally lacking owing to its tendency to ligate mismatches quite efficiently. To address this lack of selectivity, we explored the effect of temperature on the selectivity of the ligase in discriminating single base pair mismatches at the 3'-terminus of the ligating strand using short ligation probes (9-mers). Remarkably, we observe outstanding selectivities when the assay temperature is increased to 7 °C to 13 °C above the dissociation temperature of the matched probe:target duplexes using commercially available enzyme at low concentration. Higher enzyme concentration shifts the temperature range to 13 °C to 19 °C above the probe:target dissociation temperatures. Finally, substituting the 5'-phosphate terminus with an abasic nucleotide decreases the optimal temperature range to 7 °C to 10 °C above the matched probe:target duplex. We compare the temperature dependence of the T4 DNA ligase catalyzed ligation and a nonenzymatic ligation system to contrast the origin of their modes of selectivity. For the latter, temperatures above the probe:target duplex dissociation lead to lower ligation conversions even for the perfect matched system. This difference between the two ligation systems reveals the uniqueness of the T4 DNA ligase's ability to maintain excellent ligation yields for the matched system at elevated temperatures. Although our observations are consistent with previous mechanistic work on T4 DNA ligase, by mapping out the temperature dependence for different ligase concentrations and probe modifications, we identify simple strategies for introducing greater selectivity into SNP discrimination based on ligation yields.
Collapse
Affiliation(s)
- Eiman A Osman
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Sarah C Hales
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gunwant K Matharu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Çağlayan M. The ligation of pol β mismatch insertion products governs the formation of promutagenic base excision DNA repair intermediates. Nucleic Acids Res 2020; 48:3708-3721. [PMID: 32140717 PMCID: PMC7144901 DOI: 10.1093/nar/gkaa151] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
DNA ligase I and DNA ligase III/XRCC1 complex catalyze the ultimate ligation step following DNA polymerase (pol) β nucleotide insertion during base excision repair (BER). Pol β Asn279 and Arg283 are the critical active site residues for the differentiation of an incoming nucleotide and a template base and the N-terminal domain of DNA ligase I mediates its interaction with pol β. Here, we show inefficient ligation of pol β insertion products with mismatched or damaged nucleotides, with the exception of a Watson–Crick-like dGTP insertion opposite T, using BER DNA ligases in vitro. Moreover, pol β N279A and R283A mutants deter the ligation of the promutagenic repair intermediates and the presence of N-terminal domain of DNA ligase I in a coupled reaction governs the channeling of the pol β insertion products. Our results demonstrate that the BER DNA ligases are compromised by subtle changes in all 12 possible noncanonical base pairs at the 3′-end of the nicked repair intermediate. These findings contribute to understanding of how the identity of the mismatch affects the substrate channeling of the repair pathway and the mechanism underlying the coordination between pol β and DNA ligase at the final ligation step to maintain the BER efficiency.
Collapse
Affiliation(s)
- Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
10
|
Çağlayan M. Interplay between DNA Polymerases and DNA Ligases: Influence on Substrate Channeling and the Fidelity of DNA Ligation. J Mol Biol 2019; 431:2068-2081. [PMID: 31034893 DOI: 10.1016/j.jmb.2019.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
DNA ligases are a highly conserved group of nucleic acid enzymes that play an essential role in DNA repair, replication, and recombination. This review focuses on functional interaction between DNA polymerases and DNA ligases in the repair of single- and double-strand DNA breaks, and discusses the notion that the substrate channeling during DNA polymerase-mediated nucleotide insertion coupled to DNA ligation could be a mechanism to minimize the release of potentially mutagenic repair intermediates. Evidence suggesting that DNA ligases are essential for cell viability includes the fact that defects or insufficiency in DNA ligase are casually linked to genome instability. In the future, it may be possible to develop small molecule inhibitors of mammalian DNA ligases and/or their functional protein partners that potentiate the effects of chemotherapeutic compounds and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
11
|
McCloskey CM, Liao JY, Bala S, Chaput JC. Ligase-Mediated Threose Nucleic Acid Synthesis on DNA Templates. ACS Synth Biol 2019; 8:282-286. [PMID: 30629885 DOI: 10.1021/acssynbio.8b00511] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ligases are a class of enzymes that catalyze the formation of phosphodiester bonds between an oligonucleotide donor with a 5' terminal phosphate and an oligonucleotide acceptor with a 3' terminal hydroxyl group. Here, we wished to explore the substrate specificity of naturally occurring DNA and RNA ligases to determine whether the molecular recognition of these enzymes is sufficiently general to synthesize alternative genetic polymers with backbone structures that are distinct from those found in nature. We chose threose nucleic acid (TNA) as a model system, as TNA is known to be biologically stable and capable of undergoing Darwinian evolution. Enzyme screening and reaction optimization identified several ligases that can recognize TNA as either the donor or acceptor strand with DNA. Less discrimination occurs on the acceptor strand indicating that the determinants of substrate specificity depend primarily on the composition of the donor strand. Remarkably, T3 and T7 ligases were able to join TNA homopolymers together, which is surprising given that the TNA backbone is one atom shorter than that of DNA. In this reaction, the base composition of the ligation junction strongly favors the formation of A-T and A-G linkages. We suggest that these results will enable the assembly of TNA oligonucleotides of lengths beyond what is currently possible by solid-phase synthesis and provide a starting point for further optimization by directed evolution.
Collapse
|
12
|
Bauer RJ, Jurkiw TJ, Evans TC, Lohman GJS. Rapid Time Scale Analysis of T4 DNA Ligase-DNA Binding. Biochemistry 2017; 56:1117-1129. [PMID: 28165732 DOI: 10.1021/acs.biochem.6b01261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA ligases, essential to both in vivo genome integrity and in vitro molecular biology, catalyze phosphodiester bond formation between adjacent 3'-OH and 5'-phosphorylated termini in dsDNA. This reaction requires enzyme self-adenylylation, using ATP or NAD+ as a cofactor, and AMP release concomitant with phosphodiester bond formation. In this study, we present the first fast time scale binding kinetics of T4 DNA ligase to both nicked substrate DNA (nDNA) and product-equivalent non-nicked dsDNA, as well as binding and release kinetics of AMP. The described assays utilized a fluorescein-dT labeled DNA substrate as a reporter for ligase·DNA interactions via stopped-flow fluorescence spectroscopy. The analysis revealed that binding to nDNA by the active adenylylated ligase occurs in two steps, an initial rapid association equilibrium followed by a transition to a second bound state prior to catalysis. Furthermore, the ligase binds and dissociates from nicked and nonsubstrate dsDNA rapidly with initial association affinities on the order of 100 nM regardless of enzyme adenylylation state. DNA binding occurs through a two-step mechanism in all cases, confirming prior proposals of transient binding followed by a transition to a productive ligase·nDNA (Lig·nDNA) conformation but suggesting that weaker nonproductive "closed" complexes are formed as well. These observations demonstrate the mechanistic underpinnings of competitive inhibition by rapid binding of nonsubstrate DNA, and of substrate inhibition by blocking of the self-adenylylation reaction through nick binding by deadenylylated ligase. Our analysis further reveals that product release is not the rate-determining step in turnover.
Collapse
Affiliation(s)
- Robert J Bauer
- DNA Enzymes Division, New England BioLabs, Inc. , Ipswich, Massachusetts 01938-2723, United States
| | - Thomas J Jurkiw
- University of Michigan Medical School , Ann Arbor, Michigan 48109-0600, United States
| | - Thomas C Evans
- DNA Enzymes Division, New England BioLabs, Inc. , Ipswich, Massachusetts 01938-2723, United States
| | - Gregory J S Lohman
- DNA Enzymes Division, New England BioLabs, Inc. , Ipswich, Massachusetts 01938-2723, United States
| |
Collapse
|
13
|
The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase. PLoS One 2016; 11:e0150802. [PMID: 26954034 PMCID: PMC4782999 DOI: 10.1371/journal.pone.0150802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/19/2016] [Indexed: 02/02/2023] Open
Abstract
DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site.
Collapse
|
14
|
Abstract
With the advent of nanotechnology, a variety of nanoarchitectures with varied physicochemical properties have been designed. Owing to the unique characteristics, DNAs have been used as a functional building block for novel nanoarchitecture. In particular, a self-assembly of long DNA molecules via a piece DNA staple has been utilized to attain such constructs. However, it needs many talented prerequisites (e.g., complicated computer program) with fewer yields of products. In addition, it has many limitations to overcome: for instance, (i) thermal instability under moderate environments and (ii) restraint in size caused by the restricted length of scaffold strands. Alternatively, the enzymatic sewing linkage of short DNA blocks is simply designed into long DNA assemblies but it is more error-prone due to the undeveloped sequence data. Here, we present, for the first time, a comprehensive study for directly combining DNA structures into higher DNA sewing constructs through the 5′-end cohesive ligation of T4 enzyme. Inspired by these achievements, the synthesized DNA nanomaterials were also utilized for effective detection and real-time diagnosis of cancer-specific and cytosolic RNA markers. This generalized protocol for generic DNA sewing is expected to be useful in several DNA nanotechnology as well as any nucleic acid-related fields.
Collapse
|
15
|
From Structure-Function Analyses to Protein Engineering for Practical Applications of DNA Ligase. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:267570. [PMID: 26508902 PMCID: PMC4609770 DOI: 10.1155/2015/267570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/18/2015] [Indexed: 01/03/2023]
Abstract
DNA ligases are indispensable in all living cells and ubiquitous in all organs. DNA ligases are broadly utilized in molecular biology research fields, such as genetic engineering and DNA sequencing technologies. Here we review the utilization of DNA ligases in a variety of in vitro gene manipulations, developed over the past several decades. During this period, fewer protein engineering attempts for DNA ligases have been made, as compared to those for DNA polymerases. We summarize the recent progress in the elucidation of the DNA ligation mechanisms obtained from the tertiary structures solved thus far, in each step of the ligation reaction scheme. We also present some examples of engineered DNA ligases, developed from the viewpoint of their three-dimensional structures.
Collapse
|
16
|
Jang EK, Yang M, Pack SP. Highly-efficient T4 DNA ligase-based SNP analysis using a ligation fragment containing a modified nucleobase at the end. Chem Commun (Camb) 2015; 51:13090-3. [DOI: 10.1039/c5cc03761a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A highly accurate ligase-based SNP analysis was developed by using modified base-end downstream ligation fragments as detection probes, which can clearly distinguish C/T SNP types without any “false-positive” results.
Collapse
Affiliation(s)
- Eui Kyoung Jang
- Department of Biotechnology and Bioinformatics
- Korea University
- Jochiwon
- Korea
| | - Munhee Yang
- Department of Psychology
- University of Texas
- Austin
- USA
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics
- Korea University
- Jochiwon
- Korea
| |
Collapse
|
17
|
Roushan M, Kaur P, Karpusenko A, Countryman PJ, Ortiz CP, Fang Lim S, Wang H, Riehn R. Probing transient protein-mediated DNA linkages using nanoconfinement. BIOMICROFLUIDICS 2014; 8:034113. [PMID: 25379073 PMCID: PMC4162420 DOI: 10.1063/1.4882775] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 05/30/2014] [Indexed: 05/16/2023]
Abstract
We present an analytic technique for probing protein-catalyzed transient DNA loops that is based on nanofluidic channels. In these nanochannels, DNA is forced in a linear configuration that makes loops appear as folds whose size can easily be quantified. Using this technique, we study the interaction between T4 DNA ligase and DNA. We find that T4 DNA ligase binding changes the physical characteristics of the DNApolymer, in particular persistence length and effective width. We find that the rate of DNA fold unrolling is significantly reduced when T4 DNA ligase and ATP are applied to bare DNA. Together with evidence of T4 DNA ligase bridging two different segments of DNA based on AFM imaging, we thus conclude that ligase can transiently stabilize folded DNA configurations by coordinating genetically distant DNA stretches.
Collapse
Affiliation(s)
- Maedeh Roushan
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| | - Parminder Kaur
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| | - Alena Karpusenko
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| | | | - Carlos P Ortiz
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| | - Shuang Fang Lim
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| | - Hong Wang
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| | - Robert Riehn
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| |
Collapse
|
18
|
Liang X, Fujioka K, Asanuma H. Nick sealing by T4 DNA ligase on a modified DNA template: tethering a functional molecule on D-threoninol. Chemistry 2011; 17:10388-96. [PMID: 21815224 DOI: 10.1002/chem.201100215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Indexed: 01/15/2023]
Abstract
Efficient DNA nick sealing catalyzed by T4 DNA ligase was carried out on a modified DNA template in which an intercalator such as azobenzene had been introduced. The intercalator was attached to a D-threoninol linker inserted into the DNA backbone. Although the structure of the template at the point of ligation was completely different from that of native DNA, two ODNs could be connected with yields higher than 90% in most cases. A systematic study of sequence dependence demonstrated that the ligation efficiency varied greatly with the base pairs adjacent to the azobenzene moiety. Interestingly, when the introduced azobenzene was photoisomerized to the cis form on subjection to UV light (320-380 nm), the rates of ligation were greatly accelerated for all sequences investigated. These unexpected ligations might provide a new approach for the introduction of functional molecules into long DNA strands in cases in which direct PCR cannot be used because of blockage of DNA synthesis by the introduced functional molecule. The biological significance of this unexpected enzymatic action is also discussed on the basis of kinetic analysis.
Collapse
Affiliation(s)
- Xingguo Liang
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | | | | |
Collapse
|
19
|
Pack SP, Doi A, Choi YS, Kim HB, Makino K. Accurate guanine:cytosine discrimination in T4 DNA ligase-based single nucleotide polymorphism analysis using an oxanine-containing ligation fragment. Anal Biochem 2010; 398:257-9. [DOI: 10.1016/j.ab.2009.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 11/10/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
|
20
|
Pyshnaya IA, Vinogradova OA, Kabilov MR, Ivanova EM, Pyshnyi DV. Bridged oligonucleotides as molecular probes for investigation of enzyme-substrate interaction and allele-specific analysis of DNA. BIOCHEMISTRY (MOSCOW) 2010; 74:1009-20. [PMID: 19916912 DOI: 10.1134/s0006297909090090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The efficiency of enzymatic conversion of DNA complexes containing non-nucleotide inserts has been studied. T4 DNA ligase and Taq DNA polymerase have been included in the study as examples of widely used DNA-dependent enzymes. A series of substrate DNA complexes have been formed using native oligonucleotides and bridged ones bearing non-nucleotide inserts based on phosphodiesters of di-, tetra-, or hexaethylene glycol, 1,5-pentanediol, 1,10-decanediol, and 3-hydroxy-2(hydroxymethyl)-tetrahydrofuran. The perturbation in DNA located far from the site of the enzyme action had almost no influence on the substrate properties of the complex, while insertion near this site significantly deteriorated them. The use of a series of modified duplexes allows one to locate the position of the enzyme-binding site on DNA substrate with the accuracy of 1-2 nucleotides. The presence of a non-nucleotide insert in the complex has been also shown to enhance the efficiency of single mismatch discrimination upon both template-directed ligation and extension of oligonucleotides.
Collapse
Affiliation(s)
- I A Pyshnaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | | | | | |
Collapse
|
21
|
Pack SP, Doi A, Choi YS, Kodaki T, Makino K. Biomolecular response of oxanine in DNA strands to T4 polynucleotide kinase, T4 DNA ligase, and restriction enzymes. Biochem Biophys Res Commun 2010; 391:118-22. [DOI: 10.1016/j.bbrc.2009.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
|
22
|
Scott BOS, Lavesa-Curto M, Bullard DR, Butt JN, Bowater RP. Immobilized DNA hairpins for assay of sequential breaking and joining of DNA backbones. Anal Biochem 2006; 358:90-8. [PMID: 16996469 DOI: 10.1016/j.ab.2006.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 07/21/2006] [Accepted: 08/05/2006] [Indexed: 10/24/2022]
Abstract
Immobilized DNA hairpins are exploited in a novel approach to assay DNA ligases and nucleases. A fundamental characteristic of the assay is that a fluorophore at the remote terminus of the hairpin reports on the integrity of the DNA backbone. The functionality of the protocol is confirmed using ATP- and NAD+-dependent DNA ligases and the nicking enzyme N.BbvCIA. The assay format is amenable to high-throughput analysis and quantitation of enzyme activity, and it is shown to be in excellent agreement with the more laborious electrophoretic approaches that are widely used for such analyses. Significantly, the assay is used to demonstrate sequential breaking and rejoining of a specific nucleic acid. Thus, a simple platform for biochemically innovative studies of pathways in cellular nucleic acid metabolism is demonstrated.
Collapse
Affiliation(s)
- Benjamin O S Scott
- School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | |
Collapse
|
23
|
Bullard D, Bowater R. Direct comparison of nick-joining activity of the nucleic acid ligases from bacteriophage T4. Biochem J 2006; 398:135-44. [PMID: 16671895 PMCID: PMC1525015 DOI: 10.1042/bj20060313] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The genome of bacteriophage T4 encodes three polynucleotide ligases, which seal the backbone of nucleic acids during infection of host bacteria. The T4Dnl (T4 DNA ligase) and two RNA ligases [T4Rnl1 (T4 RNA ligase 1) and T4Rnl2] join a diverse array of substrates, including nicks that are present in double-stranded nucleic acids, albeit with different efficiencies. To unravel the biochemical and functional relationship between these proteins, a systematic analysis of their substrate specificity was performed using recombinant proteins. The ability of each protein to ligate 20 bp double-stranded oligonucleotides containing a single-strand break was determined. Between 4 and 37 degrees C, all proteins ligated substrates containing various combinations of DNA and RNA. The RNA ligases ligated a more diverse set of substrates than T4Dnl and, generally, T4Rnl1 had 50-1000-fold lower activity than T4Rnl2. In assays using identical conditions, optimal ligation of all substrates was at pH 8 for T4Dnl and T4Rnl1 and pH 7 for T4Rnl2, demonstrating that the protein dictates the pH optimum for ligation. All proteins ligated a substrate containing DNA as the unbroken strand, with the nucleotides at the nick of the broken strand being RNA at the 3'-hydroxy group and DNA at the 5'-phosphate. Since this RNA-DNA hybrid was joined at a similar maximal rate by T4Dnl and T4Rnl2 at 37 degrees C, we consider the possibility that this could be an unexpected physiological substrate used during some pathways of 'DNA repair'.
Collapse
Affiliation(s)
- Desmond R. Bullard
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Richard P. Bowater
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
24
|
Gul S, Brown R, May E, Mazzulla M, Smyth MG, Berry C, Morby A, Powell DJ. Staphylococcus aureus DNA ligase: characterization of its kinetics of catalysis and development of a high-throughput screening compatible chemiluminescent hybridization protection assay. Biochem J 2005; 383:551-9. [PMID: 15283677 PMCID: PMC1133749 DOI: 10.1042/bj20040054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNA ligases are key enzymes involved in the repair and replication of DNA. Prokaryotic DNA ligases uniquely use NAD+ as the adenylate donor during catalysis, whereas eukaryotic enzymes use ATP. This difference in substrate specificity makes the bacterial enzymes potential targets for therapeutic intervention. We have developed a homogeneous chemiluminescence-based hybridization protection assay for Staphylococcus aureus DNA ligase that uses novel acridinium ester technology and demonstrate that it is an alternative to the commonly used radiometric assays for ligases. The assay has been used to determine a number of kinetic constants for S. aureus DNA ligase catalysis. These included the K(m) values for NAD+ (2.75+/-0.1 microM) and the acridinium-ester-labelled DNA substrate (2.5+/-0.2 nM). A study of the pH-dependencies of kcat, K(m) and kcat/K(m) has revealed values of kinetically influential ionizations within the enzyme-substrate complexes (kcat) and free enzyme (kcat/K(m)). In each case, the curves were shown to be composed of one kinetically influential ionization, for k(cat), pK(a)=6.6+/-0.1 and kcat/K(m), pK(a)=7.1+/-0.1. Inhibition characteristics of the enzyme against two Escherichia coli DNA ligase inhibitors have also been determined with IC50 values for these being 3.30+/-0.86 microM for doxorubicin and 1.40+/-0.07 microM for chloroquine diphosphate. The assay has also been successfully miniaturized to a sufficiently low volume to allow it to be utilized in a high-throughput screen (384-well format; 20 microl reaction volume), enabling the assay to be used in screening campaigns against libraries of compounds to discover leads for further drug development.
Collapse
Affiliation(s)
- Sheraz Gul
- Assay Development and Compound Profiling, GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park (North), Third Avenue, Harlow, Essex CM19 4AW, UK.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Feng H, Parker JM, Lu J, Cao W. Effects of deletion and site-directed mutations on ligation steps of NAD+-dependent DNA ligase: a biochemical analysis of BRCA1 C-terminal domain. Biochemistry 2004; 43:12648-59. [PMID: 15449954 DOI: 10.1021/bi049451c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA strand joining entails three consecutive steps: enzyme adenylation to form AMP-ligase, substrate adenylation to form AMP-DNA, and nick closure. In this study, we investigate the effects on ligation steps by deletion and site-directed mutagenesis of the BRCA1 C-terminal (BRCT) domain using NAD(+)-dependent DNA ligase from Thermus species AK16D. Deletion of the BRCT domain resulted in substantial loss of ligation activity, but the mutant was still able to form an AMP-ligase intermediate, suggesting that the defects caused by deletion of the entire BRCT domain occur primarily at steps after enzyme adenylation. The lack of AMP-DNA accumulation by the domain deletion mutant as compared to the wild-type ligase indicates that the BRCT domain plays a role in the substrate adenylation step. Gel mobility shift analysis suggests that the BRCT domain and helix-hairpin-helix subdomain play a role in DNA binding. Similar to the BRCT domain deletion mutant, the G617I mutant showed a low ligation activity and lack of accumulation of AMP-DNA intermediate. However, the G617I mutant was only weakly adenylated, suggesting that a point mutation in the BRCT domain could also affect the enzyme adenylation step. The significant reduction of ligation activity by G634I appears to be attributable to a defect at the substrate adenylation step. The greater ligation of mismatched substrates by G638I is accountable by accelerated conversion of the AMP-DNA intermediate to a ligation product at the final nick closure step. The mutational effects of the BRCT domain on ligation steps in relation to protein-DNA and potential protein-protein interactions are discussed.
Collapse
Affiliation(s)
- Hong Feng
- Department of Genetics, Biochemistry & Life Science Studies, South Carolina Experiment Station, Clemson University, Room 219, Biosystems Research Complex, 51 New Cherry Street, Clemson, South Carolina 29634, USA
| | | | | | | |
Collapse
|
26
|
Lu J, Tong J, Feng H, Huang J, Afonso CL, Rock DL, Barany F, Cao W. Unique ligation properties of eukaryotic NAD+-dependent DNA ligase from Melanoplus sanguinipes entomopoxvirus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1701:37-48. [PMID: 15450174 DOI: 10.1016/j.bbapap.2004.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 05/26/2004] [Accepted: 06/04/2004] [Indexed: 10/26/2022]
Abstract
The eukaryotic Melanoplus sanguinipes entomopoxvirus (MsEPV) genome reveals a homologous sequence to eubacterial nicotinamide adenine dinucleotide (NAD(+))-dependent DNA ligases [J. Virol. 73 (1999) 533]. This 522-amino acid open reading frame (ORF) contains all conserved nucleotidyl transferase motifs but lacks the zinc finger motif and BRCT domain found in conventional eubacterial NAD(+) ligases. Nevertheless, cloned MsEPV ligase seals DNA nicks in a NAD(+)-dependent fashion, while adenosine 5'-monophosphate (ATP) cannot serve as an adenylation cofactor. The ligation activity of MsEPV ligase requires Mg(2+) or Mn(2+). MsEPV ligase seals sticky ends efficiently, but has little activity on 1-nucleotide gap or blunt-ended DNA substrates even in the presence of polyethylene glycol. In comparison, bacterial NAD(+)-dependent ligases seal blunt-ended DNA substrates in the presence of polyethylene glycol. MsEPV DNA ligase readily joins DNA nicks with mismatches at either side of the nick junction, except for mismatches at the nick junction containing an A base in the template strand (A/A, G/A, and C/A). MsEPV NAD(+)-dependent DNA ligase can join DNA probes on RNA templates, a unique property that distinguishes this enzyme from other conventional bacterial NAD(+) DNA ligases. T4 ATP-dependent DNA ligase shows no detectable mismatch ligation at the 3' side of the nick but substantial 5' T/G mismatch ligation on an RNA template. In contrast, MsEPV ligase joins mismatches at the 3' side of the nick more frequently than at the 5' side of the nick on an RNA template. The complementary specificities of these two enzymes suggest alternative primer design for genomic profiling approaches that use allele-specific detection directly from RNA transcripts.
Collapse
Affiliation(s)
- Jing Lu
- Department of Genetics, Biochemistry and Life Science Studies, South Carolina Experiment Station, Clemson University, Room 219, Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu P, Burdzy A, Sowers LC. DNA ligases ensure fidelity by interrogating minor groove contacts. Nucleic Acids Res 2004; 32:4503-11. [PMID: 15328364 PMCID: PMC516055 DOI: 10.1093/nar/gkh781] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA ligases, found in both prokaryotes and eukaryotes, covalently link the 3'-hydroxyl and 5'-phosphate ends of duplex DNA segments. This reaction represents a completion step for DNA replication, repair and recombination. It is well established that ligases are sensitive to mispairs present on the 3' side of the ligase junction, but tolerant of mispairs on the 5' side. While such discrimination would increase the overall accuracy of DNA replication and repair, the mechanisms by which this fidelity is accomplished are as yet unknown. In this paper, we present the results of experiments with Tth ligase from Thermus thermophilus HB8 and a series of nucleoside analogs in which the mechanism of discrimination has been probed. Using a series of purine analogs substituted in the 2 and 6 positions, we establish that the apparent base pair geometry is much more important than relative base pair stability and that major groove contacts are of little importance. This result is further confirmed using 5-fluorouracil (FU) mispaired with guanine. At neutral pH, the FU:G mispair on the 3' side of a ligase junction is predominantly in a neutral wobble configuration and is poorly ligated. Increasing the solution pH increases the proportion of an ionized base pair approximating Watson-Crick geometry, substantially increasing the relative ligation efficiency. These results suggest that the ligase could distinguish Watson-Crick from mispaired geometry by probing the hydrogen bond acceptors present in the minor groove as has been proposed for DNA polymerases. The significance of minor groove hydrogen bonding interactions is confirmed with both Tth and T4 DNA ligases upon examination of base pairs containing the pyrimidine shape analog, difluorotoluene (DFT). Although DFT paired with adenine approximates Watson-Crick geometry, a minor groove hydrogen bond acceptor is lost. Consistent with this hypothesis, we observe that DFT-containing base pairs inhibit ligation when on the 3' side of the ligase junction. The NAD+-dependent ligase, Tth, is more sensitive to the DFT analog on the unligated strand whereas the ATP-dependent T4 ligase is more sensitive to substitutions in the template strand. Electrophoretic gel mobility-shift assays demonstrate that the Tth ligase binds poorly to oligonucleotide substrates containing analogs with altered minor groove contacts.
Collapse
Affiliation(s)
- Pingfang Liu
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
28
|
Di Giusto DA, King GC. Construction, stability, and activity of multivalent circular anticoagulant aptamers. J Biol Chem 2004; 279:46483-9. [PMID: 15322086 DOI: 10.1074/jbc.m408037200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we describe the design and construction of multivalent circular DNA aptamers. Four aptameric binding motifs directed at blood-borne targets are used as a model set from which larger, multidomain aptamers are constructed in a straightforward manner. Intra- or intermolecular ligation of precursor oligonucleotides provides a stabilizing mechanism against degradation by the predominant exonuclease activity of blood products without the need for post-selection chemical modification. In many cases, circular DNA aptamer half-lives are extended beyond 10 h in serum and plasma, making such constructs viable for therapeutic and diagnostic applications. Duplexes and three-way junctions are used as scaffold architectures around which two, three, or four aptameric motifs can be arranged in a structurally defined manner, giving rise to improved binding characteristics through stability and avidity gains. Circular aptamers targeted against thrombin display improved anticoagulant potency with EC50 values 2-3-fold better than those of the canonical GS-522 thrombin DNA aptamer. Intrinsic duplex regions provide an opportunity to incorporate additional transcription factor binding motifs, whereas ancillary loops can be used to provide further functionality. These anticoagulant aptamers provide a starting point for merging the principles of DNA nanotechnology with aptameric functions.
Collapse
Affiliation(s)
- Daniel A Di Giusto
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | | |
Collapse
|
29
|
Georlette D, Blaise V, Bouillenne F, Damien B, Thorbjarnardóttir SH, Depiereux E, Gerday C, Uversky VN, Feller G. Adenylation-dependent conformation and unfolding pathways of the NAD+-dependent DNA ligase from the thermophile Thermus scotoductus. Biophys J 2004; 86:1089-104. [PMID: 14747344 PMCID: PMC1303902 DOI: 10.1016/s0006-3495(04)74184-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 09/22/2003] [Indexed: 10/21/2022] Open
Abstract
In the last few years, an increased attention has been focused on NAD(+)-dependent DNA ligases. This is mostly due to their potential use as antibiotic targets, because effective inhibition of these essential enzymes would result in the death of the bacterium. However, development of an efficient drug requires that the conformational modifications involved in the catalysis of NAD(+)-dependent DNA ligases are understood. From this perspective, we have investigated the conformational changes occurring in the thermophilic Thermus scotoductus NAD(+)-DNA ligase upon adenylation, as well as the effect of cofactor binding on protein resistance to thermal and chemical (guanidine hydrochloride) denaturation. Our results indicate that cofactor binding induces conformational rearrangement within the active site and promotes a compaction of the enzyme. These data support an induced "open-closure" process upon adenylation, leading to the formation of the catalytically active enzyme that is able to bind DNA. These conformational changes are likely to be associated with the protein function, preventing the formation of nonproductive complexes between deadenylated ligases and DNA. In addition, enzyme adenylation significantly increases resistance of the protein to thermal denaturation and GdmCl-induced unfolding, establishing a thermodynamic link between ligand binding and increased conformational stability. Finally, chemical unfolding of deadenylated and adenylated enzyme is accompanied by accumulation of at least two equilibrium intermediates, the molten globule and premolten globule states. Maximal populations of these intermediates are shifted toward higher GdmCl concentrations in the case of the adenylated ligase. These data provide further insights into the properties of partially folded intermediates.
Collapse
Affiliation(s)
- Daphné Georlette
- Laboratory of Biochemistry, Institute of Chemistry B6, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
T4 DNA ligase is an Mg2+-dependent and ATP-dependent enzyme that seals DNA nicks in three steps: it covalently binds AMP, transadenylates the nick phosphate, and catalyses formation of the phosphodiester bond releasing AMP. In this kinetic study, we further detail the reaction mechanism, showing that the overall ligation reaction is a superimposition of two parallel processes: a 'processive' ligation, in which the enzyme transadenylates and seals the nick without dissociating from dsDNA, and a 'nonprocessive' ligation, in which the enzyme takes part in the abortive adenylation cycle (covalent binding of AMP, transadenylation of the nick, and dissociation). At low concentrations of ATP (<10 microM) and when the DNA nick is sealed with mismatching base pairs (e.g. five adjacent), this superimposition resolves into two kinetic phases, a burst ligation (approximately 0.2 min(-1)) and a subsequent slow ligation (approximately 2x10(-3) min(-1)). The relative rate and extent of each phase depend on the concentrations of ATP and Mg2+. The activation energies of self-adenylation (16.2 kcal.mol(-1)), transadenylation of the nick (0.9 kcal.mol(-1)), and nick-sealing (16.3-18.8 kcal.mol(-1)) were determined for several DNA substrates. The low activation energy of transadenylation implies that the transfer of AMP to the terminal DNA phosphate is a spontaneous reaction, and that the T4 DNA ligase-AMP complex is a high-energy intermediate. To summarize current findings in the DNA ligation field, we delineate a kinetic mechanism of T4 DNA ligase catalysis.
Collapse
Affiliation(s)
- Alexey V Cherepanov
- Kluyver Department of Biotechnology, Delft University of Technology, The Netherlands
| | | |
Collapse
|