1
|
A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology. Biochem Pharmacol 2022; 206:115321. [DOI: 10.1016/j.bcp.2022.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022]
|
2
|
Perrault R, Molnar P, Poole J, Zahradka P. PDGF-BB-mediated activation of CREB in vascular smooth muscle cells alters cell cycling via Rb, FoxO1 and p27 kip1. Exp Cell Res 2021; 404:112612. [PMID: 33895117 DOI: 10.1016/j.yexcr.2021.112612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION & AIM The vascular response to injury leads to the secretion of several factors, including platelet-derived growth factor (PDGF-BB). PDGF-BB stimulates smooth muscle cell (SMC) conversion to the synthetic phenotype, thereby enhancing proliferation and migration, and contributing to neointimal hyperplasia. Likewise, the cAMP response element binding protein (CREB) transcription factor has been shown to mediate SMC proliferation in response to various mitogens. We therefore investigated the contribution of CREB to PDGF-BB-dependent proliferation of SMCs with the intention of identifying signaling pathways involved both up and downstream of CREB activation. METHODS & RESULTS Treatments were performed on vascular SMCs from a porcine coronary artery explant model. The role of CREB was examined via adenoviral expression of a dominant-negative CREB mutant (kCREB) as well as inhibition of CREB binding protein (CBP). Involvement of the p27kip1 pathway was determined using a constitutively expressing p27kip1 adenoviral vector. PDGF-BB stimulated transient CREB phosphorylation on Ser-133 via ERK1/2-, PI3-kinase- and Src-dependent pathways. Expression of kCREB decreased PDGF-BB-dependent cell proliferation. PCNA expression and Rb phosphorylation were also inhibited by kCREB. These cell cycle proteins are controlled via p27kip1 expression in response to CREB-dependent post-translational modification of FoxO1. kCREB had no effect on Cyclin D1 expression, but did prevent PDGF-BB-induced Cyclin D1 nuclear translocation. An interaction inhibitor of CBP confirmed that Cyclin D1 is downstream of PDGF-BB and CREB. CONCLUSION CREB phosphorylation is required for SMC proliferation in response to PDGF-BB. This phenotypic change requires CBP and is mediated by Cyclin D1 and p27kip as a result of changes in FoxO1 activity.
Collapse
Affiliation(s)
- Raissa Perrault
- Department of Physiology and Pathophysiology, University of Manitoba, Canada; Molecular Physiology Laboratory, St. Boniface Albrechtsen Research Centre, Canada; Department of Experimental Sciences, Université de Saint Boniface, Winnipeg, Manitoba, Canada
| | - Peter Molnar
- Department of Physiology and Pathophysiology, University of Manitoba, Canada; Molecular Physiology Laboratory, St. Boniface Albrechtsen Research Centre, Canada
| | - Jenna Poole
- Molecular Physiology Laboratory, St. Boniface Albrechtsen Research Centre, Canada
| | - Peter Zahradka
- Department of Physiology and Pathophysiology, University of Manitoba, Canada; Molecular Physiology Laboratory, St. Boniface Albrechtsen Research Centre, Canada.
| |
Collapse
|
3
|
Tian L, Yao K, Liu K, Han B, Dong H, Zhao W, Jiang W, Qiu F, Qu L, Wu Z, Zhou B, Zhong M, Zhao J, Qiu X, Zhong L, Guo X, Shi T, Hong X, Lu S. PLK1/NF-κB feedforward circuit antagonizes the mono-ADP-ribosyltransferase activity of PARP10 and facilitates HCC progression. Oncogene 2020; 39:3145-3162. [PMID: 32060423 DOI: 10.1038/s41388-020-1205-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 01/19/2020] [Accepted: 02/03/2020] [Indexed: 11/09/2022]
Abstract
Dysregulation of PARP10 has been implicated in various tumor types and plays a vital role in delaying hepatocellular carcinoma (HCC) progression. However, the mechanisms controlling the expression and activity of PARP10 in HCC remain mostly unknown. The crosstalk between PLK1, PARP10, and NF-κB pathway in HCC was determined by performing different in vitro and in vivo assays, including mass spectrometry, kinase, MARylation, chromatin immunoprecipitation, and luciferase reporter measurements. Functional examination was performed by using small chemical drug, cell culture, and mice HCC models. Correlation between PLK1, NF-κB, and PARP10 expression was determined by analyzing clinical samples of HCC patients with using immunohistochemistry. PLK1, an important regulator for cell mitosis, directly interacts with and phosphorylates PARP10 at T601. PARP10 phosphorylation at T601 significantly decreases its binding to NEMO and disrupts its inhibition to NEMO ubiquitination, thereby enhancing the transcription activity of NF-κB toward multiple target genes and promoting HCC development. In turn, NF-κB transcriptionally inhibits the PARP10 promoter activity and leads to its downregulation in HCC. Interestingly, PLK1 is mono-ADP-ribosylated by PARP10 and the MARylation of PLK1 significantly inhibits its kinase activity and oncogenic function in HCC. Clinically, the expression levels of PLK1 and phosphor-p65 show an inverse correlation with PARP10 expression in human HCC tissues. These findings are the first to uncover a PLK1/PARP10/NF-κB signaling circuit that underlies tumorigenesis and validate PLK1 inhibitors, alone or with NF-κB antagonists, as potential effective therapeutics for PARP10-expressing HCC.
Collapse
Affiliation(s)
- Lantian Tian
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
- Department of Hepatobiliary Surgery, First Clinical Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ke Yao
- The Department of Gynaecology and Obstetrics of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Kun Liu
- The General Surgery Department, The 971st Hospital of the PLA Navy, Qingdao, Shandong, China
| | - Bing Han
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Hanguang Dong
- The Department of General Surgery, Qilu Hospital of Shandong University, Qingdao, Shandong, China
| | - Wei Zhao
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Weibo Jiang
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Fabo Qiu
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Linlin Qu
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Zehua Wu
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Bin Zhou
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Mengya Zhong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jiabao Zhao
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xingfeng Qiu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lifeng Zhong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaofeng Guo
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Zhongshan University, Guangzhou, Guangdong, China
| | - Tianlu Shi
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Xuehui Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China.
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Shichun Lu
- Department of Hepatobiliary Surgery, First Clinical Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Xu JX, Xiong W, Zeng Z, Tang Y, Wang YL, Xiao M, Li M, Li QS, Song GL, Kuang J. Effect of ART1 on the proliferation and migration of mouse colon carcinoma CT26 cells in vivo. Mol Med Rep 2017; 15:1222-1228. [PMID: 28138708 PMCID: PMC5367323 DOI: 10.3892/mmr.2017.6152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 11/17/2016] [Indexed: 01/11/2023] Open
Abstract
Arginine-specific mono-ADP-ribosyltransferase 1 (ART1) is an important enzyme that catalyzes arginine-specific mono-ADP-ribosylation. There is evidence that arginine-specific mono-ADP-ribosylation may affect the proliferation of smooth muscle cells via the Rho-dependent signaling pathway. Previous studies have demonstrated that ART1 may have a role in the proliferation, invasion and apoptosis of colon carcinoma in vitro. However, the effect of ART1 on the proliferation and invasion of colon carcinoma in vivo has yet to be elucidated. In the present study, mouse colon carcinoma CT26 cells were infected with a lentivirus to produce ART1 gene silencing or overexpression, and were then subcutaneously transplanted. To observe the effect of ART1 on tumor growth or liver metastasis in vivo, a spleen transplant tumor model of CT26 cells in BALB/c mice was successfully constructed. Expression levels of focal adhesion kinase (FAK), Ras homolog gene family member A (RhoA) and the downstream factors, c-myc, c-fos and cyclooxygenase-2 (COX-2) proteins, were measured in vivo. The results demonstrated that ART1 gene silencing inhibited the growth of the spleen transplanted tumor and its ability to spread to the liver via metastasis. There was also an accompanying increase in expression of FAK, RhoA, c-myc, c-fos and COX-2, whereas CT26 cells with ART1 overexpression demonstrated the opposite effect. These results suggest a potential role for ART1 in the proliferation and invasion of CT26 cells and a possible mechanism in vivo.
Collapse
Affiliation(s)
- Jian-Xia Xu
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Xiong
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhen Zeng
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yi Tang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ya-Lan Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ming Xiao
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ming Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qing Shu Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guang-Lin Song
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Kuang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
5
|
Song GL, Jin CC, Zhao W, Tang Y, Wang YL, Li M, Xiao M, Li X, Li QS, Lin X, Chen WW, Kuang J. Regulation of the RhoA/ROCK/AKT/β-catenin pathway by arginine-specific ADP-ribosytransferases 1 promotes migration and epithelial-mesenchymal transition in colon carcinoma. Int J Oncol 2016; 49:646-56. [PMID: 27277835 DOI: 10.3892/ijo.2016.3539] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/05/2016] [Indexed: 11/06/2022] Open
Abstract
Arginine-specific ADP-ribosytransferases 1 (ART1) is able to modify the arginine of specific proteins by mono-ADP-ribosylation. We previously reported that the expression of ART1 in human colon adenocarcinoma tissues was higher than in adjacent tissues. Herein, we primarily revealed that ART1 could regulate the epithelial-mesenchymal transition (EMT) and, therefore, the development of colon carcinoma. In CT26 cells, which overexpressed ART1 by lentiviral transfection, the following were promoted: alterations of spindle-like non-polarization, expression of EMT inducers and mesenchymal markers, migration, invasion and adhesion. However, epithelial marker expression was decreased. Correspondingly, knockdown of ART1 in CT26 cells had the opposite effects. The effect of ART1 on EMT and carcinoma metastasis was also verified in a liver metastasis model of BALB/c mice. To further explore the molecular mechanism of ART1 in EMT, CT26 cells were treated with several specific inhibitors and gene silencing. Our data suggest that ART1 could regulate EMT by regulating the RhoA/ROCK1/AKT/β-catenin pathway and its downstream factors (snail1, vimentin, N-cadherin and E-cadherin) and that it therefore plays an important role in the progression of colon carcinoma.
Collapse
Affiliation(s)
- Guang-Lin Song
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Cong-Cong Jin
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Zhao
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yi Tang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ya-Lan Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ming Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ming Xiao
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xian Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qing-Shu Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiao Lin
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wen-Wen Chen
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Kuang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
6
|
KUANG JING, WANG YALAN, XIAO MING, TANG YI, CHEN WENWEN, SONG GUANGLIN, YANG XI, LI MING. Synergistic effect of arginine-specific ADP-ribosyltransferase 1 and poly(ADP-ribose) polymerase-1 on apoptosis induced by cisplatin in CT26 cells. Oncol Rep 2014; 31:2335-43. [DOI: 10.3892/or.2014.3100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/06/2014] [Indexed: 11/06/2022] Open
|
7
|
Molnar P, Perrault R, Louis S, Zahradka P. The cyclic AMP response element-binding protein (CREB) mediates smooth muscle cell proliferation in response to angiotensin II. J Cell Commun Signal 2013; 8:29-37. [PMID: 24327051 DOI: 10.1007/s12079-013-0215-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/14/2013] [Indexed: 10/25/2022] Open
Abstract
The cAMP response element-binding protein (CREB) is a transcription factor that mediates the cellular response to metabolic and mitogenic signals. Whether CREB contributes to vascular function has received little attention, especially in relation to the processes associated with atherosclerotic disease progression and restenosis. This study examined the involvement of CREB in the mitogenic actions of angiotensin II (AngII), a growth factor that promotes neointimal hyperplasia in response to vascular injury. Treatments were performed on quiescent vascular smooth muscle cells (VSMCs) obtained from a porcine explant model. Organ culture was performed on porcine hearts subjected to angioplasty ex vivo. Stimulation of VSMCs with AngII resulted in transient CREB phosphorylation. Proliferation of smooth muscle cells in response to AngII was reduced by 90 % after infection with adenovirus expressing dominant-negative killer CREB (kCREB) mutant. Likewise, expression of kCREB prevented angioplasty-induced neointimal hyperplasia. AngII-induced CREB phosphorylation was independent of cAMP activation. Examination of putative CREB kinases revealed that MSK was responsible for phosphorylating CREB. In addition, inhibition of PKC revealed that this kinase operates upstream and activates MSK. These results indicate that activation of CREB via PKC and MSK is essential for SMC proliferation in response to AngII.
Collapse
Affiliation(s)
- Peter Molnar
- Department of Physiology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
8
|
Winter DL, Paulin D, Mericskay M, Li Z. Posttranslational modifications of desmin and their implication in biological processes and pathologies. Histochem Cell Biol 2013; 141:1-16. [DOI: 10.1007/s00418-013-1148-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2013] [Indexed: 11/29/2022]
|
9
|
TANG YI, WANG YALAN, YANG LIAN, XU JIANXIA, XIONG WEI, XIAO MING, LI MING. Inhibition of arginine ADP-ribosyltransferase 1 reduces the expression of poly(ADP-ribose) polymerase-1 in colon carcinoma. Int J Mol Med 2013; 32:130-6. [DOI: 10.3892/ijmm.2013.1370] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/08/2013] [Indexed: 11/06/2022] Open
|
10
|
Fuerst M, Taylor CG, Wright B, Tworek L, Zahradka P. Inhibition of smooth muscle cell proliferation by adiponectin requires proteolytic conversion to its globular form. J Endocrinol 2012; 215:107-17. [PMID: 22859860 DOI: 10.1530/joe-12-0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accelerated atherosclerosis is the primary cardiovascular manifestation of diabetes and correlates inversely with levels of circulating adiponectin, an anti-atherosclerotic adipokine that declines in diabetes. We therefore initiated a study to examine the mechanisms by which adiponectin, a hormone released from adipose tissue, influences the proliferation of vascular smooth muscle cells (SMCs). Addition of adiponectin to quiescent porcine coronary artery SMCs increased both protein and DNA synthesis and concurrently activated ERK1/2 and Akt. By contrast, globular adiponectin, a truncated form of this protein, exhibited anti-mitogenic properties as indicated by the inhibition of protein and DNA synthesis in SMCs stimulated with platelet-derived growth factor (PDGF). Whereas globular adiponectin did not stimulate growth-related signal transduction pathways, it was able to block the PDGF-dependent phosphorylation of eukaryotic elongation factor 2 kinase, a regulator of protein synthesis. Proteolysis of adiponectin with trypsin, which produces globular adiponectin, reversed the growth-stimulating actions of the undigested protein. As the existence of globular adiponectin remains controversial, western blotting was used to establish its presence in rat serum. We found that globular adiponectin was detectable in rat serum, but this result was not obtained with all antibodies. The contrasting properties of adiponectin and its globular form with respect to SMC proliferation suggest that protection against atherosclerosis may therefore be mediated, in part, by the level of globular adiponectin.
Collapse
Affiliation(s)
- Melissa Fuerst
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | | | | | | | | |
Collapse
|
11
|
Yeganeh A, Stelmack GL, Fandrich RR, Halayko AJ, Kardami E, Zahradka P. Connexin 43 phosphorylation and degradation are required for adipogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1731-44. [PMID: 22705883 DOI: 10.1016/j.bbamcr.2012.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 11/25/2022]
Abstract
Connexin-43 (Cx43) is a membrane phosphoprotein that mediates direct inter-cellular communication by forming gap junctions. In this way Cx43 can influence gene expression, differentiation and growth. Its role in adipogenesis, however, is poorly understood. In this study, we established that Cx43 becomes highly phosphorylated in early adipocyte differentiation and translocates to the plasma membrane from the endoplasmic reticulum. As preadipocytes differentiate, Cx43 phosphorylation declines, the protein is displaced from the plasma membrane, and total cellular levels are reduced via proteosomal degradation. Notably, we show that inhibiting Cx43 degradation or constitutively over-expressing Cx43 blocks adipocyte differentiation. These data reveal that transient activation of Cx43 via phosphorylation followed by its degradation is vital for preadipocyte differentiation and maturation of functional adipocytes.
Collapse
Affiliation(s)
- Azadeh Yeganeh
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Isomer-specific effects of conjugated linoleic acid on blood pressure, adipocyte size and function. Br J Nutr 2011; 107:1413-21. [DOI: 10.1017/s0007114511004612] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Obesity-related hypertension may be caused by activation of the local adipose tissue renin–angiotensin system, resulting in exaggerated production of the vasoconstrictor angiotensin II. Additionally, secretion of adiponectin from adipose tissue, which prevents endothelial dysfunction, is altered in obesity. Consumption of conjugated linoleic acid (CLA) has been shown to modulate cytokine release from adipocytes and positively influence blood pressure in younger rats, but its physiological actions in older models with established hypertension and isomer-specific effects on adipocyte size remain to be determined. Therefore, we investigated the effects of CLA isomers on adipocyte size in relation to blood pressure and adipokine production by hypertrophic adipocytes in older fa/fa Zucker rats with established hypertension. fa/fa Zucker rats were fed with cis(c)9, trans(t)11-CLA or t10, c12-CLA isomers for 8 weeks and compared with lean and obese rats fed with the control diet. Blood pressure and adipocyte size were subsequently measured. Collagenase-isolated adipocytes were size-separated and angiotensinogen and adiponectin protein levels quantified by Western blotting. The t10, c12-CLA group had reduced blood pressure, fewer large adipocytes and increased serum adiponectin. Angiotensinogen was present at higher levels in the large adipocytes, whereas the converse was observed for adiponectin. The beneficial effects of the t10, c12-CLA isomer on blood pressure and adipocyte size in vivo may be due to its ability to reduce the number of large adipocytes, which alters the levels of vasoactive molecules secreted from adipose tissue.
Collapse
|
13
|
Zahradka P, Storie B, Wright B. IGF-1 receptor transactivation mediates Src-dependent cortactin phosphorylation in response to angiotensin IIThis article is one of a selection of papers published in a special issue celebrating the 125th anniversary of the Faculty of Medicine at the University of Manitoba. Can J Physiol Pharmacol 2009; 87:805-12. [DOI: 10.1139/y09-052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Release of angiotensin II (Ang II) after vascular injury promotes tissue repair by stimulating phenotypic modulation of smooth muscle cells, which enables cell proliferation and migration. This process requires cytoskeleton remodeling, which involves cortactin, a scaffold protein that is phosphorylated by Src kinase in response to Ang II. Since insulin-like growth factor (IGF)-1 receptor transactivation mediates intracellular signals originating from the Ang II type 1 (AT1) receptor in a Src kinase-dependent manner, we examined whether IGF-1 receptor transactivation was also required for cortactin phosphorylation. Treatment of quiescent smooth muscle cells with Ang II resulted in both cortactin phosphorylation and its translocation to the plasma membrane. Both events were prevented by 1-(1,1-dimethylethyl)-1-(4-methylphenyl)-1H-pyrazolo(3,4-d)pyrimidin-4-amine (PP1), a Src kinase inhibitor, and by AG1024, an inhibitor of the IGF-1 receptor tyrosine kinase. Additionally, PP1 and AG1024 blocked the association of cortactin with actin-related protein (Arp) 3, an actin nucleation factor. These results indicate that Src kinase and the IGF-1 receptor kinase are necessary for activating cortactin. Phosphorylation of Src kinase in Ang II-treated cells was subsequently examined and was shown to be prevented by AG1024. Furthermore, Src kinase phosphorylation was blocked by inhibitors of protein kinase C (PKC), but not by inhibitors of phosphatidylinositol (PI) 3-kinase. These data establish that IGF-1 receptor transactivation is required for Src kinase-mediated cortactin phosphorylation and cytoskeletal reorganization in response to Ang II.
Collapse
Affiliation(s)
- Peter Zahradka
- Department of Physiology, University of Manitoba, Winnipeg, Canada; Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface General Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
- Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Benjamin Storie
- Department of Physiology, University of Manitoba, Winnipeg, Canada; Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface General Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
- Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Brenda Wright
- Department of Physiology, University of Manitoba, Winnipeg, Canada; Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface General Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
- Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Mono ADP-ribosylation inhibitors prevent inflammatory cytokine release in alveolar epithelial cells. Mol Cell Biochem 2007; 310:77-83. [DOI: 10.1007/s11010-007-9667-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 11/22/2007] [Indexed: 10/22/2022]
|
15
|
Abstract
PKN is a serine/threonine protein kinase, which has a catalytic domain highly homologous to that of protein kinase C (PKC) in the carboxyl-terminal region and three repeats of the antiparallel coiled coil (ACC) domain in the amino-terminal region. Mammalian PKN has three isoforms each derived from different genes, PKN1 (PKNalpha/PRK1/PAK1), PKN2 (PRK2/PAK2/PKNgamma), and PKN3 (PKNbeta). PKN isoforms show different enzymatic properties and tissue distributions and have been implicated in various distinct cellular processes (reviewed in Mukai [2003]). This chapter discusses methods to prepare purified enzymes and to assay substrate phosphorylation activities.
Collapse
|
16
|
Di Girolamo M, Dani N, Stilla A, Corda D. Physiological relevance of the endogenous mono(ADP-ribosyl)ation of cellular proteins. FEBS J 2005; 272:4565-75. [PMID: 16156779 DOI: 10.1111/j.1742-4658.2005.04876.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mono(ADP-ribosyl)ation reaction is a post-translational modification that is catalysed by both bacterial toxins and eukaryotic enzymes, and that results in the transfer of ADP-ribose from betaNAD+ to various acceptor proteins. In mammals, both intracellular and extracellular reactions have been described; the latter are due to glycosylphosphatidylinositol-anchored or secreted enzymes that are able to modify their targets, which include the purinergic receptor P2X7, the defensins and the integrins. Intracellular mono(ADP-ribosyl)ation modifies proteins that have roles in cell signalling and metabolism, such as the chaperone GRP78/BiP, the beta-subunit of heterotrimeric G-proteins and glutamate dehydrogenase. The molecular identification of the intracellular enzymes, however, is still missing. A better molecular understanding of this reaction will help in the full definition of its role in cell physiology and pathology.
Collapse
Affiliation(s)
- Maria Di Girolamo
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy.
| | | | | | | |
Collapse
|
17
|
Yau L, Litchie B, Zahradka P. MIBG, an inhibitor of arginine-dependent mono(ADP-ribosyl)ation, prevents differentiation of L6 skeletal myoblasts by inhibiting expression of myogenin and p21cip1. Exp Cell Res 2004; 301:320-30. [PMID: 15530866 DOI: 10.1016/j.yexcr.2004.08.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Revised: 07/09/2004] [Indexed: 11/20/2022]
Abstract
The development of skeletal muscle is controlled by a highly synchronized series of cellular events, and various signals from both inside and outside the cell play a role in the switch from multipotential mesodermal stem cells to muscle fibers. Meta-iodobenzylguanidine (MIBG), an inhibitor of mono(ADP-ribosyl)ation, has been shown to prevent terminal differentiation of skeletal myoblasts; however, its mechanism of action has not been established. We recently reported that MIBG is capable of preventing phenotypic modulation of smooth muscle cells by interfering with specific trans-acting factors [L. Yau, B. Litchie, S. Thomas, B. Storie, N. Yurkova, P. Zahradka, Endogenous mono-ADP-ribosylation mediates smooth muscle cell proliferation and migration via protein kinase N-dependent induction of c-fos expression. Eur. J. Biochem. 270 (2003) 101-110.]. We therefore examined the effect of MIBG on select myogenic regulatory factors known to control terminal differentiation. It was confirmed that MIBG, but not inhibitors of poly-ADP-ribose polymerase (3-aminobenzamide, PD128763), inhibits fusion of L6 skeletal myoblasts in a concentration-dependent manner. Moreover, inhibition by MIBG correlated with a failure to induce expression of myogenin and p21(cip1), while levels of MyoD and MEF2 were unaffected. Time-of-addition studies revealed that MIBG also affected a late event possibly linked to cell fusion. Finally, arginine-dependent mono(ADP-ribosyl)transferase activity increased over the first 24 h of the differentiation period. These data support a role for arginine-dependent mono(ADP-ribosyl)transferase as an essential positive regulator of differentiation in skeletal muscle cells that operates by modulating the expression of specific myogenic factors.
Collapse
Affiliation(s)
- Lorraine Yau
- Department of Physiology, University of Manitoba, Canada R3E 3J7
| | | | | |
Collapse
|
18
|
Zahradka P, Harding G, Litchie B, Thomas S, Werner JP, Wilson DP, Yurkova N. Activation of MMP-2 in response to vascular injury is mediated by phosphatidylinositol 3-kinase-dependent expression of MT1-MMP. Am J Physiol Heart Circ Physiol 2004; 287:H2861-70. [PMID: 15297252 DOI: 10.1152/ajpheart.00230.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3K) is required for smooth muscle cell (SMC) proliferation. This study reports that inhibitors of PI3K also prevent SMC migration and block neointimal hyperplasia in an organ culture model of restenosis. Inhibition of neointimal formation by LY-294002 was concentration and time dependent, with 10 muM yielding the maximal effect. Continuous exposure for at least the first 4-7 days of culture was essential for significant inhibition. To assess the role of matrix metalloproteinases (MMPs) in this process, we monitored MMP secretion by injured vessels in culture. Treatment with LY-294002 selectively reduced active MMP-2 in media samples according to zymography and Western blot analysis without concomitant changes in latent MMP-2. Parallel results with wortmannin indicate that MMP-2 activation is PI3K dependent. Previous research has shown a role for both furin and membrane-type 1 (MT1)-MMP (MMP-14) in the activation of MMP-2. The furin inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethylketone did not prevent MMP-2 activation after balloon angioplasty. In contrast, balloon angioplasty induced a significant increase in the levels of MT1-MMP, which was suppressed by LY-294002. No change in MT1-MMP mRNA was observed with LY-294002, because equivalent amounts of this mRNA were present in both injured and noninjured vessels. These results implicate PI3K-dependent regulation of MT1-MMP protein synthesis and subsequent activation of latent MMP-2 as critical events in neointimal hyperplasia after vascular injury.
Collapse
Affiliation(s)
- Peter Zahradka
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada R2H 2A6.
| | | | | | | | | | | | | |
Collapse
|
19
|
Zahradka P, Litchie B, Storie B, Helwer G. Transactivation of the insulin-like growth factor-I receptor by angiotensin II mediates downstream signaling from the angiotensin II type 1 receptor to phosphatidylinositol 3-kinase. Endocrinology 2004; 145:2978-87. [PMID: 14976148 DOI: 10.1210/en.2004-0029] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Angiotensin II (AngII) activates phosphatidylinositol 3-kinase (PI3-kinase), a known effector of receptor tyrosine kinases. Treatment of smooth muscle cells with AngII has also been shown to promote phosphorylation of various tyrosine kinase receptors. We therefore investigated the relationship between AngII and IGF-I receptor activation in smooth muscle cells with a phosphorylation-specific antibody. Our experiments showed that IGF-I receptor phosphorylation was maximally stimulated within 10 min by AngII. Inclusion of an IGF-I-neutralizing antibody in the culture media did not prevent IGF-I receptor phosphorylation after AngII treatment, which argues that a paracrine/autocrine loop is not required. Furthermore, this process was blocked by losartan and 1-(1,1-dimethylethyl)-1-(4-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP-1), indicating stimulation of IGF-I receptor phosphorylation occurs via AngII type 1 receptor-dependent activation of Src kinase. The functional significance of IGF-I receptor transactivation was examined with selective inhibitors of the IGF-I receptor kinase (AG1024, AG538). When AngII-treated cells were incubated with AG1024 or AG538, phosphorylation of the regulatory p85 subunit of PI3-kinase was blocked. Furthermore, phosphorylation of the downstream factor p70(S6K) did not occur. In contrast, AG1024 did not prevent MAPK or Src kinase activation by AngII. AG1024 also did not inhibit AngII-dependent cell migration, although this process was blocked by inhibitors of the epidermal growth factor and platelet-derived growth factor receptors. Transactivation of the IGF-I receptor is therefore a critical mediator of PI3-kinase activation by AngII but is not required for stimulation of the MAPK cascade.
Collapse
Affiliation(s)
- Peter Zahradka
- Institute of Cardiovascular Sciences, Molecular Physiology Laboratory, St. Boniface Research Centre, 351 Tache Avenue, Winnipeg, Maniotoba, Canada R2H 2A6.
| | | | | | | |
Collapse
|