1
|
Fallahi-Pashaki T, Shirzadian-Khoramabad R, Sohani MM. Artemin molecular chaperone from Artemia urmiana improves tolerance of Arabidopsis thaliana to abiotic stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24208. [PMID: 39612235 DOI: 10.1071/fp24208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/10/2024] [Indexed: 12/01/2024]
Abstract
Artemia is a genus of aquatic microcrustaceans that belong to the class Branchiopoda. Encysted Artemia urmiana embryos are resistant to harsh environmental stressors, including repeated desiccation, prolonged anoxia, extreme temperatures, and high levels of UV radiation. The protein artemin has a chaperone activity and is believed to play a crucial role in protecting the organism against such stresses. To elucidate the potential functional roles of artemin in plants, the cDNA sequence of artemin was cloned into the pZPY122 binary plant expression vector. Agrobacterium -mediated transformation and the floral-dip technique were used to introduce this construct into Arabidopsis thaliana . Three independent transgenic lines (art1 , art2 , art3 ) were generated and subjected to heat stress at 45°C. Results showed a significant interaction between heat stress and genotype for germination rate, germination speed, vigor index, and seedling and root length. The transgenic lines with the artemin transgene (ART ) exhibited remarkable heat stress tolerance compared with wild-type plants. They also had markedly lower levels of electrolyte leakage, hydrogen peroxide content, higher activities of catalase, superoxide dismutase and peroxidase, greater total protien content, and increased accumulation of proline. Under heat stress conditions, the expression of two key abiotic stress-responsive genes, DREB2A and HSFA3 , was significantly upregulated in the ART lines compared to the wild-type . These findings suggest that the ART gene from A. urmiana may act as molecular chaperone when expressed in Arabidopsis , thereby enhancing the plant's tolerance to heat stress.
Collapse
Affiliation(s)
- Tayebe Fallahi-Pashaki
- Department of Plant Biotechnology, College of Agricultural Sciences, University of Guilan, Khalij Fars Highway, Rasht 4199613769, Iran
| | - Reza Shirzadian-Khoramabad
- Department of Plant Biotechnology, College of Agricultural Sciences, University of Guilan, Khalij Fars Highway, Rasht 4199613769, Iran
| | - M Mehdi Sohani
- Department of Plant Biotechnology, College of Agricultural Sciences, University of Guilan, Khalij Fars Highway, Rasht 4199613769, Iran
| |
Collapse
|
2
|
Parvate AD, Powell SM, Brookreson JT, Moser TH, Novikova IV, Zhou M, Evans JE. Cryo-EM structure of the diapause chaperone artemin. Front Mol Biosci 2022; 9:998562. [DOI: 10.3389/fmolb.2022.998562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2022] Open
Abstract
The protein artemin acts as both an RNA and protein chaperone and constitutes over 10% of all protein in Artemia cysts during diapause. However, its mechanistic details remain elusive since no high-resolution structure of artemin exists. Here we report the full-length structure of artemin at 2.04 Å resolution. The cryo-EM map contains density for an intramolecular disulfide bond between Cys22-Cys61 and resolves the entire C-terminus extending into the core of the assembled protein cage but in a different configuration than previously hypothesized with molecular modeling. We also provide data supporting the role of C-terminal helix F towards stabilizing the dimer form that is believed to be important for its chaperoning activity. We were able to destabilize this effect by placing a tag at the C-terminus to fully pack the internal cavity and cause limited steric hindrance.
Collapse
|
3
|
The co-expression of denileukin diftitox immunotoxin with Artemin: soluble and aggregation analysis in presence of an efficient protein chaperone. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Lipid metabolism in Calanus finmarchicus is sensitive to variations in predation risk and food availability. Sci Rep 2020; 10:22322. [PMID: 33339843 PMCID: PMC7749129 DOI: 10.1038/s41598-020-79165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Late developmental stages of the marine copepods in the genus Calanus can spend extended periods in a dormant stage (diapause) that is preceded by the accumulation of large lipid stores. We assessed how lipid metabolism during development from the C4 stage to adult is altered in response to predation risk and varying food availability, to ultimately understand more of the metabolic processes during development in Calanus copepods. We used RNA sequencing to assess if perceived predation risk in combination with varied food availability affects expression of genes associated with lipid metabolism and diapause preparation in C. finmarchicus. The lipid metabolism response to predation risk differed depending on food availability, time and life stage. Predation risk caused upregulation of lipid catabolism with high food, and downregulation with low food. Under low food conditions, predation risk disrupted lipid accumulation. The copepods showed no clear signs of diapause preparation, supporting earlier observations of the importance of multiple environmental cues in inducing diapause in C. finmarchicus. This study demonstrates that lipid metabolism is a sensitive endpoint for the interacting environmental effects of predation pressure and food availability. As diapause may be controlled by lipid accumulation, our findings may contribute towards understanding processes that can ultimately influence diapause timing.
Collapse
|
5
|
Takalloo Z, Ardakani ZA, Maroufi B, Shahangian SS, Sajedi RH. Stress-dependent conformational changes of artemin: Effects of heat and oxidant. PLoS One 2020; 15:e0242206. [PMID: 33196673 PMCID: PMC7668597 DOI: 10.1371/journal.pone.0242206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022] Open
Abstract
Artemin is an abundant thermostable protein in Artemia embryos and it is considered as a highly efficient molecular chaperone against extreme environmental stress conditions. The conformational dynamics of artemin have been suggested to play a critical role in its biological functions. In this study, we have investigated the conformational and functional changes of artemin under heat and oxidative stresses to identify the relationship between its structure and function. The tertiary and quaternary structures of artemin were evaluated by fluorescence measurements, protein cross-linking analysis, and dynamic light scattering. Based on the structural analysis, artemin showed irreversible substantial conformational lability in responses to heat and oxidant, which was mainly mediated through the hydrophobic interactions and dimerization of the chaperone. In addition, the chaperone-like activity of heated and oxidized artemin was examined using lysozyme refolding assay and the results showed that although both factors, i.e. heat and oxidant, at specific levels improved artemin potency, simultaneous incubation with both stressors significantly triggered the chaperone activation. Moreover, the heat-induced dimerization of artemin was found to be the most critical factor for its activation. It was suggested that oxidation presumably acts through stabilizing the dimer structures of artemin through formation of disulfide bridges between the subunits and strengthens its chaperoning efficacy. Accordingly, it is proposed that artemin probably exists in a monomer–oligomer equilibrium in Artemia cysts and environmental stresses and intracellular portion of protein substrates may shift the equilibrium towards the active dimer forms of the chaperone.
Collapse
Affiliation(s)
- Zeinab Takalloo
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Afshar Ardakani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | - Reza H. Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- * E-mail:
| |
Collapse
|
6
|
Hibshman JD, Clegg JS, Goldstein B. Mechanisms of Desiccation Tolerance: Themes and Variations in Brine Shrimp, Roundworms, and Tardigrades. Front Physiol 2020; 11:592016. [PMID: 33192606 PMCID: PMC7649794 DOI: 10.3389/fphys.2020.592016] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/25/2020] [Indexed: 01/05/2023] Open
Abstract
Water is critical for the survival of most cells and organisms. Remarkably, a small number of multicellular animals are able to survive nearly complete drying. The phenomenon of anhydrobiosis, or life without water, has been of interest to researchers for over 300 years. In this review we discuss advances in our understanding of protectants and mechanisms of desiccation tolerance that have emerged from research in three anhydrobiotic invertebrates: brine shrimp (Artemia), roundworms (nematodes), and tardigrades (water bears). Discovery of molecular protectants that allow each of these three animals to survive drying diversifies our understanding of desiccation tolerance, and convergent themes suggest mechanisms that may offer a general model for engineering desiccation tolerance in other contexts.
Collapse
Affiliation(s)
- Jonathan D. Hibshman
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - James S. Clegg
- Bodega Marine Laboratory, University of California, Davis, Davis, CA, United States
| | - Bob Goldstein
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Khodajou-Masouleh H, Shahangian SS, Attar F, H Sajedi R, Rasti B. Characteristics, dynamics and mechanisms of actions of some major stress-induced biomacromolecules; addressing Artemia as an excellent biological model. J Biomol Struct Dyn 2020; 39:5619-5637. [PMID: 32734830 DOI: 10.1080/07391102.2020.1796793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Stress tolerance is one of the most prominent and interesting topics in biology since many macro- and micro-adaptations have evolved in resistant organisms that are worth studying. When it comes to confronting various environmental stressors, the extremophile Artemia is unrivaled in the animal kingdom. In the present review, the evolved molecular and cellular basis of stress tolerance in resistant biological systems are described, focusing on Artemia cyst as an excellent biological model. The main purpose of the review is to discuss how the structure and physicochemical characteristics of protective factors such as late embryogenesis abundant proteins (LEAPs), small heat shock proteins (sHSPs) and trehalose are related to their functions and by which mechanisms, they exert their functions. In addition, some metabolic depressors in Artemia encysted embryos are also mentioned, indirectly playing important roles in stress tolerance. Importantly, a great deal of attention is given to the LEAPs, exhibiting distinctive folding behaviors and mechanisms of actions. For instance, molecular shield function, chaperone-like activity, moonlighting property, sponging and snorkeling capabilities of the LEAPs are delineated here. Moreover, the molecular interplay between some of these factors is mentioned, leading to their synergistic effects. Interestingly, Artemia life cycle adapts to environmental conditions. Diapause is the defense mode of this life cycle, safeguarding Artemia encysted embryos against various environmental stressors. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| |
Collapse
|
8
|
Tan J, MacRae TH. The synthesis of diapause-specific molecular chaperones in embryos of Artemia franciscana is determined by the quantity and location of heat shock factor 1 (Hsf1). Cell Stress Chaperones 2019; 24:385-392. [PMID: 30701477 PMCID: PMC6439115 DOI: 10.1007/s12192-019-00971-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 01/09/2023] Open
Abstract
The crustacean, Artemia franciscana, displays a complex life history in which embryos either arrest development and undertake diapause as cysts or they develop into swimming nauplii. Diapause entry is preceded during embryogenesis by the synthesis of specific molecular chaperones, namely the small heat shock proteins p26, ArHsp21, and ArHsp22, and the ferritin homolog, artemin. Maximal synthesis of diapause-specific molecular chaperones is dependent on the transcription factor, heat shock factor 1 (Hsf1), found in similar amounts in cysts and nauplii newly released from females. This investigation was performed to determine why, if cysts and nauplii contain comparable amounts of Hsf1, only cyst-destined embryos synthesize diapause-specific molecular chaperones. Quantification by qPCR and immunoprobing of Western blots, respectively, demonstrated that hsf1 mRNA and Hsf1 peaked by day 2 post-fertilization in embryos that were developing into cysts and then declined. hsf1 mRNA and Hsf1 were present in nauplii-destined embryos on day 2 post-fertilization, but in much smaller amounts than in cyst-destined embryos, and they increased in quantity until release of nauplii from females. Immunofluorescent staining revealed that the amount of Hsf1 in nuclei was greatest on day 4 post-fertilization in cyst-destined embryos but could not be detected in nuclei of nauplius-destined embryos at this time. The differences in quantity and location of Hsf1 explain why embryos fated to become cysts and eventually enter diapause synthesize p26, ArHsp21, ArHsp22, and artemin, whereas nauplius-destined embryos do not produce these molecular chaperones.
Collapse
Affiliation(s)
- Jiabo Tan
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
9
|
Mosaddegh B, Takalloo Z, Sajedi RH, Shirin Shahangian S, Hassani L, Rasti B. An inter-subunit disulfide bond of artemin acts as a redox switch for its chaperone-like activity. Cell Stress Chaperones 2018; 23:685-693. [PMID: 29429019 PMCID: PMC6045527 DOI: 10.1007/s12192-018-0880-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/25/2017] [Accepted: 01/22/2018] [Indexed: 12/14/2022] Open
Abstract
Encysted embryos of Artemia are among the most stress-resistant eukaryotes partly due to the massive amount of a cysteine-rich protein termed artemin. High number of cysteine residues in artemin and their intramolecular spatial positions motivated us to investigate the role of the cysteine residues in the chaperone-like activity of artemin. According to the result of Ellman's assay, there are nine free thiols (seven buried and two exposed) and one disulfide bond per monomer of artemin. Subsequent theoretical analysis of the predicted 3D structure of artemin confirmed the data obtained by the spectroscopic study. Native and reduced/modified forms of artemin were also compared with respect to their efficiency in chaperoning activity, tertiary structure, and stability. Since the alkylation and reduction of artemin diminished its chaperone activity, it appears that its chaperoning potential depends on the formation of intermolecular disulfide bond and the presence of cysteine residues. Comparative fluorescence studies on the structure and stability of the native and reduced protein revealed some differences between them. Due to the redox-dependent functional switching of artemin from the less to more active form, it can be finally suggested as a redox-dependent chaperone.
Collapse
Affiliation(s)
- Bita Mosaddegh
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Zeinab Takalloo
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Leila Hassani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45195-1159, Iran
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| |
Collapse
|
10
|
Liu QN, Xin ZZ, Liu Y, Wang ZF, Chen YJ, Zhang DZ, Jiang SH, Chai XY, Zhou CL, Tang BP. A ferritin gene from Procambarus clarkii, molecular characterization and in response to heavy metal stress and lipopolysaccharide challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 63:297-303. [PMID: 28232280 DOI: 10.1016/j.fsi.2017.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/11/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
Ferritin plays important roles in iron storage, detoxification, and immune response. Here, a ferritin gene (PcFer) was identified in Procambarus clarkii, an economically important freshwater crayfish. Full-length PcFer cDNA was 1022-bp, including a 135-bp 5'-untranslated region (UTR) with a typical iron responsive element, a 374-bp 3'-UTR, and a 513-bp open reading frame encoding a polypeptide of 170 amino acids which contained the Ferritin domain. PcFer has ion binding sites, a ferrihydrite nucleation center, and an iron ion channel. PcFer is phylogenetically closely-related to Pacifastacus leniusculus and Eriocheir sinensis ferritins. Real-time quantitative reverse-transcription PCR analysis showed that PcFer was expressed in all tested P. clarkii tissues, and expressed most in hepatopancreas. After challenge with various heavy metals and lipopolysaccharide, respectively, the hepatopancreatic expression levels of PcFer were markedly upregulated. These results suggest that expression of PcFer might be involved in immune defense and protection of P. clarkii against heavy metal stress.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China
| | - Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China
| | - Zheng-Fei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China.
| | - Yi-Jing Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China
| | - Xin-Yue Chai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
11
|
Takalloo Z, Sajedi RH, Hosseinkhani S, Moazzenzade T. Artemin protects cells and proteins against oxidative and salt stress. Int J Biol Macromol 2017; 95:618-624. [DOI: 10.1016/j.ijbiomac.2016.11.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
|
12
|
The total and mitochondrial lipidome of Artemia franciscana encysted embryos. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1727-1735. [DOI: 10.1016/j.bbalip.2016.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/22/2016] [Accepted: 08/15/2016] [Indexed: 01/12/2023]
|
13
|
Takalloo Z, Sajedi RH, Hosseinkhani S, Asghari SM. Real-time monitoring of artemin in vivo chaperone activity using luciferase as an intracellular reporter. Arch Biochem Biophys 2016; 610:33-40. [DOI: 10.1016/j.abb.2016.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/25/2016] [Accepted: 09/27/2016] [Indexed: 12/21/2022]
|
14
|
Zhou K, Wang M, Sun S. Effects of Elevated Temperature and Food Supply on the Termination of Over-Summering and Subsequent Development of the Calanoid Copepod Calanus sinicus: Morphology, Physiology and Gene Expression. PLoS One 2016; 11:e0161838. [PMID: 27652608 PMCID: PMC5031433 DOI: 10.1371/journal.pone.0161838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022] Open
Abstract
The copepod Calanus sinicus Brodsky dominates the zooplankton in the Yellow Sea, China, and undergoes over-summering within the Yellow Sea Cold Water Mass (YSCWM). Termination of over-summering and subsequent development are regarded as key processes in population recruitment, and are probably linked to environmental variations in the YSCWM. In this study, we examined the effects of temperature (9 and 18°C) and food conditions (0.1 μg C mL-1 and unfed) on metabolic rates, morphological characteristics, and relative gene expressions of six genes involved in molting, gonad development, lipid catabolism, and stress tolerance processes of C. sinicus during termination of over-summering and subsequent development. Both elevated temperature and external food supply rapidly ended over-summering of C. sinicus, accompanied by up-regulation of the ecdysteroid receptor (EcR) gene expression and increased metabolic rates. These environmental conditions resulted in irreversible termination of over-summering and ensure the success of molting. During subsequent development, the lipid reserve in oil sacs could permit only early gonad development. The food supply might be a trigger to activate the final maturity of gonad by up-regulating expression of the vitellogenin receptor (VgR) gene. Thus, food played an indispensable role in population recruitment after termination of over-summering, whereas the elevated temperature accelerated these physiological processes. This study revealed the first dynamic profiles of physiological processes involved in over-summering termination and the subsequent development of C. sinicus using morphological, physiological and molecular methods simultaneously, confirmed the quiescent state of over-summering C5 copepodites, detected the effects of environmental changes on over-summering termination and subsequent development, and provided a foundation for future investigations of the mechanisms involved in over-summering in YSCWM.
Collapse
Affiliation(s)
- Konglin Zhou
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Minxiao Wang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Song Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail:
| |
Collapse
|
15
|
Warner AH, Guo ZH, Moshi S, Hudson JW, Kozarova A. Study of model systems to test the potential function of Artemia group 1 late embryogenesis abundant (LEA) proteins. Cell Stress Chaperones 2016; 21:139-154. [PMID: 26462928 PMCID: PMC4679747 DOI: 10.1007/s12192-015-0647-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 10/23/2022] Open
Abstract
Embryos of the brine shrimp, Artemia franciscana, are genetically programmed to develop either ovoviparously or oviparously depending on environmental conditions. Shortly upon their release from the female, oviparous embryos enter diapause during which time they undergo major metabolic rate depression while simultaneously synthesize proteins that permit them to tolerate a wide range of stressful environmental events including prolonged periods of desiccation, freezing, and anoxia. Among the known stress-related proteins that accumulate in embryos entering diapause are the late embryogenesis abundant (LEA) proteins. This large group of intrinsically disordered proteins has been proposed to act as molecular shields or chaperones of macromolecules which are otherwise intolerant to harsh conditions associated with diapause. In this research, we used two model systems to study the potential function of the group 1 LEA proteins from Artemia. Expression of the Artemia group 1 gene (AfrLEA-1) in Escherichia coli inhibited growth in proportion to the number of 20-mer amino acid motifs expressed. As well, clones of E. coli, transformed with the AfrLEA-1 gene, expressed multiple bands of LEA proteins, either intrinsically or upon induction with isopropyl-β-thiogalactoside (IPTG), in a vector-specific manner. Expression of AfrLEA-1 in E. coli did not overcome the inhibitory effects of high concentrations of NaCl and KCl but modulated growth inhibition resulting from high concentrations of sorbitol in the growth medium. In contrast, expression of the AfrLEA-1 gene in Saccharomyces cerevisiae did not alter the growth kinetics or permit yeast to tolerate high concentrations of NaCl, KCl, or sorbitol. However, expression of AfrLEA-1 in yeast improved its tolerance to drying (desiccation) and freezing. Under our experimental conditions, both E. coli and S. cerevisiae appear to be potentially suitable hosts to study the function of Artemia group 1 LEA proteins under environmentally stressful conditions.
Collapse
Affiliation(s)
- Alden H Warner
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada.
| | - Zhi-Hao Guo
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Sandra Moshi
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - John W Hudson
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Anna Kozarova
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
16
|
MacRae TH. Stress tolerance during diapause and quiescence of the brine shrimp, Artemia. Cell Stress Chaperones 2016; 21:9-18. [PMID: 26334984 PMCID: PMC4679736 DOI: 10.1007/s12192-015-0635-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/12/2015] [Accepted: 08/24/2015] [Indexed: 02/06/2023] Open
Abstract
Oviparously developing embryos of the brine shrimp, Artemia, arrest at gastrulation and are released from females as cysts before entering diapause, a state of dormancy and stress tolerance. Diapause is terminated by an external signal, and growth resumes if conditions are permissible. However, if circumstances are unfavorable, cysts enter quiescence, a dormant stage that continues as long as adverse conditions persist. Artemia embryos in diapause and quiescence are remarkably resistant to environmental and physiological stressors, withstanding desiccation, cold, heat, oxidation, ultraviolet radiation, and years of anoxia at ambient temperature when fully hydrated. Cysts have adapted to stress in several ways; they are surrounded by a rigid cell wall impermeable to most chemical compounds and which functions as a shield against ultraviolet radiation. Artemia cysts contain large amounts of trehalose, a non-reducing sugar thought to preserve membranes and proteins during desiccation by replacing water molecules and/or contributing to vitrification. Late embryogenesis abundant proteins similar to those in seeds and other anhydrobiotic organisms are found in cysts, and they safeguard cell organelles and proteins during desiccation. Artemia cysts contain abundant amounts of p26, a small heat shock protein, and artemin, a ferritin homologue, both ATP-independent molecular chaperones important in stress tolerance. The evidence provided in this review supports the conclusion that it is the interplay of these protective elements that make Artemia one of the most stress tolerant of all metazoan organisms.
Collapse
Affiliation(s)
- Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, N.S., B3H 4R2, Canada.
| |
Collapse
|
17
|
The ferritin gene in ridgetail white prawn Exopalaemon carinicauda: Cloning, expression and function. Int J Biol Macromol 2015; 72:320-5. [DOI: 10.1016/j.ijbiomac.2014.08.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 11/20/2022]
|
18
|
Identification and characterization of a Ste20-like kinase in Artemia and its role in the developmental regulation and resistance to environmental stress. PLoS One 2014; 9:e92234. [PMID: 24637947 PMCID: PMC3956927 DOI: 10.1371/journal.pone.0092234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/19/2014] [Indexed: 12/01/2022] Open
Abstract
Background To adapt to extreme environments, the crustacean Artemia has evolved two alternative reproductive pathways. During ovoviviparous (direct) development, nauplius larvae are produced. In contrast, Artemia females release encysted diapause embryos (cysts) via the oviparous pathway. To date, the cellular mechanisms that regulate stress resistance of Artemia remain largely unknown. Ste20-like kinase (SLK) participates in multiple biological processes, including stress responses, apoptosis, and cell cycle progression. Principal Finding We isolated and characterized a member of the SLK superfamily termed ArSLK from Artemia parthenogenetica. The ArSLK gene is transcribed throughout both ovoviviparous and oviparous development; however, the protein is located mainly in the nuclei of stress-resistant diapause cysts, unlike the nauplii and nauplius-destined embryos where it is cytoplasmic. Interestingly, exposure of nauplii to heat shock, acidic pH, and UV irradiation induced the translocation of ArSLK from cytoplasm to nucleus. This translocation was reversed following stress removal. Moreover, under physiologically-stressful conditions, the nauplius larvae produced by adults after gene knockdown of endogenous ArSLK by RNAi, lost the ability of free-swimming much earlier than those of control larvae from females injected with GFP dsRNA. Conclusions/Significance Taken together, this study demonstrated that trafficking of ArSLK between the cytoplasm and the nucleus participates in regulating the stress resistance of Artemia. Our findings may provide significant insight into the functions of members of the SLK superfamily.
Collapse
|
19
|
King AM, Toxopeus J, MacRae TH. Artemin, a diapause-specific chaperone, contributes to the stress tolerance of Artemia franciscana cysts and influences their release from females. ACTA ACUST UNITED AC 2014; 217:1719-24. [PMID: 24526727 DOI: 10.1242/jeb.100081] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Females of the crustacean Artemia franciscana produce either motile nauplii or gastrula stage embryos enclosed in a shell impermeable to nonvolatile compounds and known as cysts. The encysted embryos enter diapause, a state of greatly reduced metabolism and profound stress tolerance. Artemin, a diapause-specific ferritin homolog in cysts has molecular chaperone activity in vitro. Artemin represents 7.2% of soluble protein in cysts, approximately equal to the amount of p26, a small heat shock protein. However, there is almost twice as much artemin mRNA in cysts as compared with p26 mRNA, suggesting that artemin mRNA is translated less efficiently. RNA interference employing the injection of artemin double-stranded RNA into the egg sacs of A. franciscana females substantially reduced artemin mRNA and protein in cysts. Decreasing artemin diminished desiccation and freezing tolerance of cysts, demonstrating a role for this protein in stress resistance. Knockdown of artemin increased the time required for complete discharge of a brood of cysts carried within a female from a few hours up to 4 days, an effect weakened in successive broods. Artemin, an abundant molecular chaperone, contributes to stress tolerance of A. franciscana cysts while influencing their development and/or exit from females.
Collapse
Affiliation(s)
- Allison M King
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jantina Toxopeus
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
20
|
Zhu B, Huang L, Huang HQ. Cloning analysis of ferritin and the cisplatin-subunit for cancer cell apoptosis in Aplysia juliana hepatopancreas. Comp Biochem Physiol C Toxicol Pharmacol 2012; 156:95-103. [PMID: 22579997 DOI: 10.1016/j.cbpc.2012.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 04/03/2012] [Accepted: 04/25/2012] [Indexed: 11/27/2022]
Abstract
Ferritin, an iron storage protein, plays a key role in iron metabolism in vivo. Here, we have cloned an inducible ferritin cDNA with 519 bp within the open reading frame fragment from the hepatopancreas of Aplysia juliana (AJ). The subunit sequence of the ferritin was predicted to be a polypeptide of 172 amino acids with a molecular mass of 19.8291kDa and an isoelectric point of 5.01. The cDNA sequence of hepatopancreas ferritin in AJ was constructed into a pET-32a system for expressing its relative protein efficiently in E. coli strain BL21, under isopropyl-β-d-thiogalactoside induction. The recombinant ferritin, which was further purified on a Ni-NTA resin column and digested with enterokinase, was detected as a single subunit of approximately 20 kDa mass using both SDS-PAGE and mass spectrometry. The secondary structure and phosphorylation sites of the deduced amino acids were predicted using both ExPASy proteomic tools and the NetPhos 2.0 server, and the subunit space structure of the recombinant AJ ferritin (rAjFer) was built using a molecular operating environment software system. The result of in-gel digestion and identification using MALDI-TOF MS/MS showed that the recombinant protein was AjFer. ICP-MS results indicated that the rAjFer subunit could directly bind to cisplatin[cis-Diaminedichloroplatinum(CDDP)], giving approximately 17.6 CDDP/ferritin subunits and forming a novel CDDP-subunit. This suggests that a nanometer CDDP core-ferritin was constructed, which could be developed as a new anti-cancer drug. The flow cytometry results indicated that CDDP-rAjFer could induce Hela cell apoptosis. Results of the real-time PCR and Western blotting showed that the expression of AjFer mRNA was up-regulated in AJ under Cd(2+) stress. The recombinant AjFer protein should prove to be useful for further study of the structure and function of ferritin in Aplysia.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antineoplastic Agents/pharmacology
- Aplysia/drug effects
- Aplysia/genetics
- Aplysia/metabolism
- Apoptosis
- Base Sequence
- Cadmium/pharmacology
- Cell Proliferation/drug effects
- Cisplatin/metabolism
- Cisplatin/pharmacology
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Drug Screening Assays, Antitumor
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Ferritins/classification
- Ferritins/genetics
- Ferritins/metabolism
- Ferritins/pharmacology
- Flow Cytometry
- Gene Expression Regulation
- HeLa Cells
- Hepatopancreas/drug effects
- Hepatopancreas/metabolism
- Humans
- Isoelectric Point
- Isopropyl Thiogalactoside/metabolism
- Molecular Sequence Data
- Molecular Weight
- Open Reading Frames
- Phosphorylation
- Phylogeny
- Protein Binding
- Protein Structure, Secondary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Recombinant Fusion Proteins/pharmacology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Bo Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, China
| | | | | |
Collapse
|
21
|
Isolation and gene expression of yellow grouper ferritin heavy chain subunit after lipopolysaccharide treatment. Biochem Genet 2012; 50:467-75. [PMID: 22210544 DOI: 10.1007/s10528-011-9491-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 12/07/2011] [Indexed: 02/05/2023]
Abstract
Ferritin is a ubiquitous and conserved iron storage protein that plays a central role in iron metabolism. The ferritin heavy chain subunit (FerH) homolog was isolated from yellow grouper (Epinephelus awoara) spleen using suppression subtractive hybridization and RACE-PCR. The nucleotide sequence of FerH full-length cDNA was 1173 bp and contained an open reading frame of 534 bp, encoding a putative protein of 177 amino acids. The encoded protein shows 78-94% identity with homologs. Based on phylogenetic analysis, yellow grouper FerH is highly conserved throughout evolution and is closer to European seabass than to other species. RT-PCR analysis demonstrated that FerH was widely expressed in various healthy tissues and significantly up-regulated in liver, spleen, and anterior kidney by lipopolysaccharide. The results suggest that yellow grouper FerH may play a role in immune response.
Collapse
|
22
|
Deletion of extra C-terminal segment and its effect on the function and structure of artemin. Int J Biol Macromol 2011; 49:311-6. [DOI: 10.1016/j.ijbiomac.2011.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 11/24/2022]
|
23
|
Bron JE, Frisch D, Goetze E, Johnson SC, Lee CE, Wyngaard GA. Observing copepods through a genomic lens. Front Zool 2011; 8:22. [PMID: 21933388 PMCID: PMC3184258 DOI: 10.1186/1742-9994-8-22] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 09/20/2011] [Indexed: 01/08/2023] Open
Abstract
Background Copepods outnumber every other multicellular animal group. They are critical components of the world's freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored. Genome-wide and EST studies of parasitic copepods of salmon and large EST studies of selected free-living copepods have demonstrated the potential utility of modern genomics approaches for the study of copepods and have generated resources such as EST libraries, shotgun genome sequences, BAC libraries, genome maps and inbred lines that will be invaluable in assisting further efforts to provide genomics tools for copepods. Summary Genomics research on copepods is needed to extend our exploration and characterization of their fundamental biological traits, so that we can better understand how copepods function and interact in diverse environments. Availability of large scale genomics resources will also open doors to a wide range of systems biology type studies that view the organism as the fundamental system in which to address key questions in ecology and evolution.
Collapse
Affiliation(s)
- James E Bron
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Hengherr S, Schill RO, Clegg JS. Mechanisms associated with cellular desiccation tolerance in the animal extremophile artemia. Physiol Biochem Zool 2011; 84:249-57. [PMID: 21527815 DOI: 10.1086/659314] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Using differential scanning calorimetry, we demonstrated the presence of biological glasses and measured the transition temperatures in dry encysted embryos (cysts) of the brine shrimp, Artemia franciscana. Cysts from the following three geographic locations were studied: San Francisco Bay (SFB); the Great Salt Lake, Utah (GSL); and the Mekong Delta, Vietnam (VN; these cysts were produced from previous sequential inoculations of SFB cysts into growth ponds). Values for the glass transition temperature, T(g), were highest in VN cysts. This study indicates that the composition and properties of these biological glasses can be altered by natural selection and thermal adaptation. To our knowledge, T(g) values for all three kinds of cysts were significantly higher than those for any other desiccation-tolerant animal system. To gain insight into the significance of T(g), we examined the thermal stability of these dry cysts at 80 °C. GSL cysts were the least tolerant, by far, with VN cysts being extremely tolerant and SFB cysts not far behind. Those results correlated with the thermal transition values. Also measured were alcohol-soluble carbohydrates, ~90% of which is the disaccharide trehalose, a known component of biological glasses. Amounts in the GSL cysts were significantly less than those in the other two kinds of cysts. Several stress proteins were measured in the three groups of cysts, with all of them being in lesser amounts in GSL cysts compared with the SFB and VN cysts. We interpret the data in terms of mechanisms involved with desiccation tolerance and thermal conditions at the sites of cyst collection.
Collapse
Affiliation(s)
- Steffen Hengherr
- Biological Institute, Zoology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | | | | |
Collapse
|
25
|
Bai Z, Yuan Y, Yue G, Li J. Molecular cloning and copy number variation of a ferritin subunit (Fth1) and its association with growth in freshwater pearl mussel Hyriopsis cumingii. PLoS One 2011; 6:e22886. [PMID: 21818403 PMCID: PMC3144951 DOI: 10.1371/journal.pone.0022886] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/06/2011] [Indexed: 11/24/2022] Open
Abstract
Iron is one of the most important minor elements in the shells of bivalves. This study was designed to investigate the involvement of ferritin, the principal protein for iron storage, in shell growth. A novel ferritin subunit (Fth1) cDNA from the freshwater pearl mussel (Hyriopsis cumingii) was isolated and characterized. The complete cDNA contained 822 bp, with an open reading frame (ORF) of 525 bp, a 153 bp 5′ untranslated region (UTR) and a 144 bp 3′ UTR. The complete genomic DNA was 4125 bp, containing four exons and three introns. The ORF encoded a protein of 174 amino acids without a signal sequence. The deduced ferritin contained a highly conserved motif for the ferroxidase center comprising seven residues of a typical vertebrate heavy-chain ferritin. It contained one conserved iron associated residue (Try27) and iron-binding region signature 1 residues. The mRNA contained a 27 bp iron-responsive element with a typical stem-loop structure in the 5′-UTR position. Copy number variants (CNVs) of Fth1 in two populations (PY and JH) were detected using quantitative real-time PCR. Associations between CNVs and growth were also analyzed. The results showed that the copy number of the ferritin gene of in the diploid genome ranged from two to 12 in PY, and from two to six in JH. The copy number variation in PY was higher than that in JH. In terms of shell length, mussels with four copies of the ferritin gene grew faster than those with three copies (P<0.05), suggesting that CNVs in the ferritin gene are associated with growth in shell length and might be a useful molecular marker in selective breeding of H. cumingii.
Collapse
Affiliation(s)
- Zhiyi Bai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yiming Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Genhua Yue
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai Ocean University, Shanghai, China
- E-Institute of Shanghai Universities, Shanghai Ocean University, Shanghai, China
- * E-mail:
| |
Collapse
|
26
|
Shell-bound iron dependant nitric oxide synthesis in encysted Artemia parthenogenetica embryos during hydrogen peroxide exposure. Biometals 2011; 24:1035-44. [DOI: 10.1007/s10534-011-9462-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 05/08/2011] [Indexed: 10/18/2022]
|
27
|
Clegg JS. Stress-related proteins compared in diapause and in activated, anoxic encysted embryos of the animal extremophile, Artemia franciscana. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:660-664. [PMID: 21147115 DOI: 10.1016/j.jinsphys.2010.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 11/27/2010] [Accepted: 11/29/2010] [Indexed: 05/30/2023]
Abstract
Previous work indicated similarities between diapause and anoxic quiescence in encysted embryos (cysts) of the brine shrimp Artemia franciscana. That possibility was examined further in the present study through an immunochemical study of the following stress-related proteins in low speed supernatants and pellets: hsc70, artemin, p26, hsp21, LEA Group 1 protein and p8. Changes in the amounts and locations of these proteins occurred during the initial period after release of diapause cysts from females, and after activated (diapause-terminated) cysts were made anoxic. However, with the passage of incubation time the patterns seen in both kinds of cysts were more similar than different, lending further support to the possibility that activated anoxic embryos retain many of the mechanisms operative in the previous diapause condition.
Collapse
Affiliation(s)
- James S Clegg
- Section of Molecular and Cellular Biology and Bodega Marine Laboratory, University of California, Davis, Bodega Bay, Davis, CA 94923, USA.
| |
Collapse
|
28
|
Hu Y, Bojikova-Fournier S, King AM, MacRae TH. The structural stability and chaperone activity of artemin, a ferritin homologue from diapause-destined Artemia embryos, depend on different cysteine residues. Cell Stress Chaperones 2011; 16:133-41. [PMID: 20878295 PMCID: PMC3059798 DOI: 10.1007/s12192-010-0225-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022] Open
Abstract
Diapause-destined embryos of the crustacean, Artemia franciscana, accumulate large amounts of an oligomeric, heat-stable, molecular chaperone termed artemin, a cysteine-enriched ferritin homologue. In this study, cysteines 22, 61, 166, and 172 of artemin were substituted with alanines, respectively yielding ArtC22A, ArtC61A, ArtC166A, and ArtC172A. Wild-type and modified artemins were synthesized in transformed bacteria and purified. As measured by heat-induced denaturation of citrate synthase in vitro, each substitution reduced chaperone activity, with ArtC172A the least active. Protein modeling indicated that C172 is close to a region of surface hydrophobicity, also present in ferritin, suggesting that this site contributes to chaperone activity. Only slight differences in oligomer molecular mass were apparent between artemin variants, but ArtC22A and ArtC61A displayed significantly reduced thermostability, perhaps due to the disruption of an inter-subunit disulphide bridge. In contrast, ArtC172A was thermostable, reflecting the location of C172 on the oligomer surface and that it contributes minimally to artemin stabilization. To our knowledge, this is the initial study of structure/function relationships within a ferritin homologue of importance in diapause and the first to indicate that a defined region of hydrophobicity contributes to artemin and ferritin chaperoning.
Collapse
Affiliation(s)
- Yan Hu
- Department of Biology, Dalhousie University, Halifax, NS Canada B3H 4J1
| | | | - Allison M. King
- Department of Biology, Dalhousie University, Halifax, NS Canada B3H 4J1
| | - Thomas H. MacRae
- Department of Biology, Dalhousie University, Halifax, NS Canada B3H 4J1
| |
Collapse
|
29
|
Wu Y, MacRae TH. Truncation attenuates molecular chaperoning and apoptosis inhibition by p26, a small heat shock protein from Artemia franciscana. Biochem Cell Biol 2010; 88:937-46. [PMID: 21102656 DOI: 10.1139/o10-143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The small heat shock proteins (sHSPs), which prevent irreversible protein denaturation and inhibit apoptosis, consist of an amino-terminus, the canonical α-crystallin domain, and a carboxy-terminal extension. It remains difficult, however, to define sHSP structure-function relationships and with this in mind p26, an sHSP from the crustacean Artemia franciscana, was truncated by deletion mutagenesis. Wild-type p26 cDNA and three truncated variants inserted into the eukaryotic expression vector pcDNA3.1/HisC were used to generate stably transfected 293H cells. p26 shielded transfected cells against death upon exposure to heat and oxidative stress. Truncation reduced chaperone activity, with cells synthesizing the p26 α-crystallin domain being the least resistant. Wild-type p26 inhibited apoptosis in transfected cells, with protection against oxidation-generated apoptosis being more effective than that against heat-induced apoptosis. Truncation reduced p26 apoptotic inhibitory activity, with the α-crystallin domain again being the least effective. The results show that a crustacean sHSP functions effectively in mammalian cells, demonstrating interchangeability of these proteins between distantly related organisms and indicating similarities in their mechanisms of action. Moreover, maximal activity was observed for full-length p26, indicating that structural elements required for chaperone activity and apoptosis inhibition reside throughout the protein.
Collapse
Affiliation(s)
- Yong Wu
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
30
|
MacRae TH. Gene expression, metabolic regulation and stress tolerance during diapause. Cell Mol Life Sci 2010; 67:2405-24. [PMID: 20213274 PMCID: PMC11115916 DOI: 10.1007/s00018-010-0311-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 01/31/2010] [Accepted: 02/10/2010] [Indexed: 12/31/2022]
Abstract
Diapause entails molecular, physiological and morphological remodeling of living animals, culminating in a dormant state characterized by enhanced stress tolerance. Molecular mechanisms driving diapause resemble those responsible for biochemical processes in proliferating cells and include transcriptional, post-transcriptional and post-translational processes. The results are directed gene expression, differential mRNA and protein accumulation and protein modifications, including those that occur in response to changes in cellular redox potential. Biochemical pathways switch, metabolic products change and energy production is adjusted. Changes to biosynthetic activities result for example in the synthesis of molecular chaperones, late embryogenesis abundant (LEA) proteins and protective coverings, all contributing to stress tolerance. The purpose of this review is to consider regulatory and mechanistic strategies that are potentially key to metabolic control and stress tolerance during diapause, while remembering that organisms undergoing diapause are as diverse as the processes itself. Some of the parameters described have well-established roles in diapause, whereas the evidence for others is cursory.
Collapse
Affiliation(s)
- Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
31
|
Rinehart JP, Robich RM, Denlinger DL. Isolation of diapause-regulated genes from the flesh fly, Sarcophaga crassipalpis by suppressive subtractive hybridization. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:603-609. [PMID: 20026067 DOI: 10.1016/j.jinsphys.2009.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 11/30/2009] [Accepted: 12/09/2009] [Indexed: 05/28/2023]
Abstract
Subtractive suppressive hybridization (SSH) was used to characterize the diapause transcriptome of the flesh fly Sarcophaga crassipalpis. Through these efforts, we isolated 97 unique clones which were used as probes in northern hybridization to assess their expression during diapause. Of these, 17 were confirmed to be diapause upregulated and 1 was diapause downregulated, while 12 were shown to be unaffected by diapause in this species. The diapause upregulated genes fall into several broad categories including heat shock proteins, heavy metal responsive genes, neuropeptides, structural genes, regulatory elements, and several genes of unknown function. In combination with other large-scale analyses of gene expression during diapause, this study assists in the characterization of the S. crassipalpis diapause transcriptome, and begins to identify common elements involved in diapause across diverse taxa.
Collapse
Affiliation(s)
- Joseph P Rinehart
- Ohio State University, Department of Entomology, 318 W. 12th Ave., Columbus, OH, USA.
| | | | | |
Collapse
|
32
|
Qiu Z, MacRae TH. A Molecular Overview of Diapause in Embryos of the Crustacean, Artemia franciscana. DORMANCY AND RESISTANCE IN HARSH ENVIRONMENTS 2010. [DOI: 10.1007/978-3-642-12422-8_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Cloning, characterization and expression of ferritin subunit from clam Meretrix meretrix in different larval stages. Comp Biochem Physiol B Biochem Mol Biol 2009; 154:12-6. [DOI: 10.1016/j.cbpb.2009.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/07/2009] [Accepted: 04/25/2009] [Indexed: 11/18/2022]
|
34
|
Schill RO, Mali B, Dandekar T, Schnölzer M, Reuter D, Frohme M. Molecular mechanisms of tolerance in tardigrades: New perspectives for preservation and stabilization of biological material. Biotechnol Adv 2009; 27:348-52. [DOI: 10.1016/j.biotechadv.2009.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
35
|
Sequence and structural analysis of artemin based on ferritin: a comparative study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1407-13. [PMID: 19486949 DOI: 10.1016/j.bbapap.2009.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 05/06/2009] [Accepted: 05/26/2009] [Indexed: 11/24/2022]
Abstract
Artemia cysts can tolerate extreme environments, partly due to a heat-stable protein called artemin. According to previous studies, artemin shares structural similarity with ferritins. Actually, there is still no strong structural information about artemin three-dimensional (3-D) structure. In this research, the artemin encoding gene from Artemia urmiana was cloned and sequenced. A reliable 3-D model of artemin was initially built using ferritin as template and refined using Molecular Dynamic (MD) Simulation. It is interesting that the proposed model, confirmed by circular dichroism (CD), shows significant differences in secondary structure contents with ferritin. Three conserved regions (ferroxidase center, iron nucleation center and 3-fold channel) in ferritins, cooperating in iron-interaction, have been substantially changed in artemin. Analysis of C-terminal region of the model revealed its major role in preventing artemin from iron-binding due to some suitable interactions. Finally, it is concluded that significant differences between artemin and ferritin, both in conserved regions related to iron-interaction and three-dimensional structure, can justify their functional differences.
Collapse
|
36
|
Clegg JS, Gajardo G. Two highly diverged New World Artemia species, A. franciscana and A. persimilis, from contrasting hypersaline habitats express a conserved stress protein complement. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:451-6. [PMID: 19379819 DOI: 10.1016/j.cbpa.2009.04.613] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/08/2009] [Accepted: 04/08/2009] [Indexed: 11/18/2022]
Abstract
The brine shrimp Artemia is a well known animal extremophile adapted to survive in very harsh hypersaline environments. We compared the small stress proteins artemin and p26, and the chaperone hsc70 in encysted embryos (cysts) of the New World species, A. franciscana and A. persimilis. Cysts of the former, from San Francisco Bay, USA (SFB), were used essentially as a reference for these proteins, while both species were from locations in Chile where they occur in habitats at latitudinal extremes, the Atacama desert and Patagonia. These two species are phylogenetically distant, A. persimilis being closer to the Old World species, whilst A. franciscana is considered younger and undergoing evolutionary expansion. Using western blotting we found all three stress proteins in cysts from these five populations in substantial although variable amounts. The protein profiles revealed by Coomassie staining after electrophoresis (SDS-PAGE) were similar qualitatively, in spite of marked differences in the habitats from which these populations originated, and the long time since they diverged. We interpret these findings as further evidence for the adaptive importance of these three conserved proteins in coping with the variable, but severe stresses these encysted embryos endure.
Collapse
Affiliation(s)
- James S Clegg
- Bodega Marine Laboratory and Section of Molecular and Cellular Biology, University of California, Davis, Bodega Bay, CA 94923, USA.
| | | |
Collapse
|
37
|
ArHsp21, a developmentally regulated small heat-shock protein synthesized in diapausing embryos of Artemia franciscana. Biochem J 2008; 411:605-11. [DOI: 10.1042/bj20071472] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Embryos of the crustacean, Artemia franciscana, undergo alternative developmental pathways, producing either larvae or encysted embryos (cysts). The cysts enter diapause, characterized by exceptionally high resistance to environmental stress, a condition thought to involve the sHSP (small heat-shock protein), p26. Subtractive hybridization has revealed another sHSP, termed ArHsp21, in diapause-destined Artemia embryos. ArHsp21 shares sequence similarity with p26 and sHSPs from other organisms, especially in the α-crystallin domain. ArHsp21 is the product of a single gene and its synthesis occurred exclusively in diapause-destined embryos. Specifically, ArHsp21 mRNA appeared 2 days post-fertilization, followed 1 day later by the protein, and then increased until embryo release at day 5. No ArHsp21 protein was detected in embryos developing directly into larvae, although there was a small amount of mRNA at 3 days post-fertilization. The protein was degraded during post-diapause development and had disappeared completely from second instar larvae. ArHsp21 formed large oligomers in encysted embryos and transformed bacteria. When purified from bacteria, ArHsp21 functioned as a molecular chaperone in vitro, preventing heat-induced aggregation of citrate synthase and reduction-driven denaturation of insulin. Sequence characteristics, synthesis patterns and functional properties demonstrate clearly that ArHsp21 is an sHSP able to chaperone other proteins and contribute to stress tolerance during diapause. As such, ArHsp21 would augment p26 chaperone activity and it may also possess novel activities that benefit Artemia embryos exposed to stress.
Collapse
|
38
|
Chen T, Villeneuve TS, Garant KA, Amons R, MacRae TH. Functional characterization of artemin, a ferritin homolog synthesized in Artemia embryos during encystment and diapause. FEBS J 2007; 274:1093-101. [PMID: 17257268 DOI: 10.1111/j.1742-4658.2007.05659.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oviparously developing embryos of the crustacean Artemia franciscana encyst and enter diapause, exhibiting a level of stress tolerance seldom seen in metazoans. The extraordinary stress resistance of encysted Artemia embryos is thought to depend in part on the regulated synthesis of artemin, a ferritin superfamily member. The objective of this study was to better understand artemin function, and to this end the protein was synthesized in Escherichia coli and purified to apparent homogeneity. Purified artemin consisted of oligomers approximately 700 kDa in molecular mass that dissociated into monomers and a small number of dimers upon SDS/PAGE. Artemin inhibited heat-induced aggregation of citrate synthase in vitro, an activity characteristic of molecular chaperones and shown here to be shared by apoferritin and ferritin. This is the first report that apoferritin/ferritin may protect cells from stress other than by iron sequestration. Stably transfected mammalian cells synthesizing artemin were more resistant to heat and H(2)O(2) than were cells transfected with vector only, actions also shared by molecular chaperones such as the small heat shock proteins. The data indicate that artemin is a structurally modified ferritin arising either from a common ancestor gene or by duplication of the ferritin gene. Divergence, including acquisition of a C-terminal peptide extension and ferroxidase center modification, eliminated iron sequestration, but chaperone activity was retained. Therefore, because artemin accumulates abundantly during development, it has the potential to protect embryos from stress during encystment and diapause without adversely affecting iron metabolism.
Collapse
Affiliation(s)
- Tao Chen
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | |
Collapse
|
39
|
Clegg JS, Campagna V. Comparisons of stress proteins and soluble carbohydrate in encysted embryos of Artemia franciscana and two species of Parartemia. Comp Biochem Physiol B Biochem Mol Biol 2006; 145:119-25. [PMID: 16914339 DOI: 10.1016/j.cbpb.2006.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/13/2006] [Accepted: 04/20/2006] [Indexed: 11/28/2022]
Abstract
We compared stress proteins (p26, artemin, hsp70) and alcohol-soluble carbohydrates (ASC) in cysts of Artemia franciscana and two as yet un-named species populations of Parartemia, the brine shrimp endemic to Australia. The small stress proteins and molecular chaperones, p26 and artemin, previously thought to be restricted to Artemia, and present in very large amounts in its encysted embryos (cysts), were also detected by western blotting in Parartemia cysts, even though roughly 85-100 million years have passed since these genera diverged. We interpret this finding as further evidence for the adaptive importance of these proteins in coping with the severe stresses these encysted embryos endure. As expected, hsp70 was present in all three groups of cysts, but apparently at somewhat lower concentrations in those of Parartemia. Based on measurements of ASC we propose that the disaccharide trehalose, critical for desiccation tolerance in many animal cells, has probably also been maintained in the metabolic repertoire of Parartemia whose cysts have well developed tolerance to severe desiccation.
Collapse
Affiliation(s)
- James S Clegg
- Bodega Marine Laboratory and Section of Molecular and Cellular Biology, University of California, Davis, Bodega Bay, CA 94923, USA.
| | | |
Collapse
|
40
|
Hamburger AE, West AP, Hamburger ZA, Hamburger P, Bjorkman PJ. Crystal Structure of a Secreted Insect Ferritin Reveals a Symmetrical Arrangement of Heavy and Light Chains. J Mol Biol 2005; 349:558-69. [PMID: 15896348 DOI: 10.1016/j.jmb.2005.03.074] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 03/23/2005] [Accepted: 03/25/2005] [Indexed: 10/25/2022]
Abstract
Ferritins are iron storage proteins made of 24 subunits forming a hollow spherical shell. Vertebrate ferritins contain varying ratios of heavy (H) and light (L) chains; however, known ferritin structures include only one type of chain and have octahedral symmetry. Here, we report the 1.9A structure of a secreted insect ferritin from Trichoplusia ni, which reveals equal numbers of H and L chains arranged with tetrahedral symmetry. The H/L-chain interface includes complementary features responsible for ordered assembly of the subunits. The H chain contains a ferroxidase active site resembling that of vertebrate H chains with an endogenous, bound iron atom. The L chain lacks the residues that form a putative iron core nucleation site in vertebrate L chains. Instead, a possible nucleation site is observed at the L chain 3-fold pore. The structure also reveals inter- and intrasubunit disulfide bonds, mostly in the extended N-terminal regions unique to insect ferritins. The symmetrical arrangement of H and L chains and the disulfide crosslinks reflect adaptations of insect ferritin to its role as a secreted protein.
Collapse
Affiliation(s)
- Agnes E Hamburger
- Division of Biology 114-96, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
41
|
Lee YM, Kim IC, Jung SO, Lee JS. Analysis of 686 expressed sequence tags (ESTs) from the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda). MARINE POLLUTION BULLETIN 2005; 51:757-68. [PMID: 16291190 DOI: 10.1016/j.marpolbul.2005.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The intertidal harpacticoid copepod Tigriopus japonicus is an important species in the study of marine pollution. To facilitate molecular biomonitoring using T. japonicus, we constructed a T. japonicus unidirectional cDNA library using lambdaZAP expression vector, excised to pBluescript vector with the aid of helper phage, and analyzed 686 randomly picked expressed sequence tags (ESTs) from this species. From the 686 ESTs sequenced, we found several functional genes such as vitellin, kinases and potential detoxification-related genes. We are now preparing a T. japonicus cDNA chip for molecular ecotoxicological studies. In this paper, we discuss the potential use of T. japonicus ESTs and their importance in ecotoxicology.
Collapse
Affiliation(s)
- Young-Mi Lee
- Department of Environmental Science, Graduate School, Hanyang University, Seoul 133-791, South Korea
| | | | | | | |
Collapse
|
42
|
Tanguay JA, Reyes RC, Clegg JS. Habitat diversity and adaptation to environmental stress in encysted embryos of the crustaceanArtemia. J Biosci 2004; 29:489-501. [PMID: 15625404 DOI: 10.1007/bf02712121] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Encysted embryos (cysts) of the brine shrimp, Artemia, provide excellent opportunities for the study of biochemical and biophysical adaptation to extremes of environmental stress in animals. Among other virtues, this organism is found in a wide variety of hypersaline habitats, ranging from deserts, to tropics, to mountains. One adaptation implicated in the ecological success of Artemia is p26, a small heat shock protein that previous evidence indicates plays the role of a molecular chaperone in these embryos. We add to that evidence here. We summarize recently published work on thermal tolerance and stress protein levels in embryos from the San Francisco Bay (SFB) of California inoculated into experimental ponds in southern Vietnam where water temperatures are much higher. New results on the relative contents of three stress proteins (hsp70, artemin and p26) will be presented along with data on cysts of A. tibetiana collected from the high plateau of Tibet about 4.5 km above sea level. Unpublished results on the stress protein artemin are discussed briefly in the context of this paper, and its potential role as an RNA chaperone. Interestingly, we show that the substantial tolerance of A. franciscana embryos to ultraviolet (UV) light does not seem to result from intracellular biochemistry but, rather, from their surrounding thick shell, a biophysical adaptation of considerable importance since these embryos receive heavy doses of UV in nature.
Collapse
Affiliation(s)
- Joshua A Tanguay
- Section of Molecular and Cellular Biology and the Bodega Marine Laboratory, University of California (Davis), Bodega Bay, California 94923, USA
| | | | | |
Collapse
|
43
|
Larade K, Storey KB. Accumulation and translation of ferritin heavy chain transcripts following anoxia exposure in a marine invertebrate. ACTA ACUST UNITED AC 2004; 207:1353-60. [PMID: 15010486 DOI: 10.1242/jeb.00872] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Differential screening of a Littorina littorea (the common periwinkle) cDNA library identified ferritin heavy chain as an anoxia-induced gene in hepatopancreas. Northern blots showed that ferritin heavy chain transcript levels were elevated twofold during anoxia exposure, although nuclear run-off assays demonstrated that ferritin heavy chain mRNAs were not transcriptionally upregulated during anoxia. Polysome analysis indicated that existing ferritin transcripts were actively translated during the anoxic period. This result was confirmed via western blotting, which demonstrated a twofold increase in ferritin heavy chain protein levels during anoxia, with a subsequent decrease to control levels during normoxic recovery. Organ culture experiments using hepatopancreas slices demonstrated a >50% increase in ferritin heavy chain transcript levels in vitro under conditions of anoxia and freezing, as well as after incubation with the second messenger cGMP. Taken together, these results suggest that ferritin heavy chain is actively regulated during anoxia exposure in the marine snail, L. littorea.
Collapse
Affiliation(s)
- Kevin Larade
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada, K1S 5B6
| | | |
Collapse
|
44
|
Warner AH, Brunet RT, MacRae TH, Clegg JS. Artemin is an RNA-binding protein with high thermal stability and potential RNA chaperone activity. Arch Biochem Biophys 2004; 424:189-200. [PMID: 15047191 DOI: 10.1016/j.abb.2004.02.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 02/18/2004] [Indexed: 10/26/2022]
Abstract
Encysted embryos of the crustacean, Artemia franciscana, are among the most stress-resistant of all multicellular eukaryotes, due in part to massive amounts of p26, a small heat shock protein, that acts as a molecular chaperone. These embryos contain equally large amounts of another protein called artemin, of previously unknown function, that we report on here. Its thermal stability allows large-scale purification in about a day, using ammonium sulfate fractionation and incubation at 70 degrees C for 7 min, followed by gel filtration. The latter yields an artemin-RNA complex from which the pure protein, apo-artemin, was obtained by anion-exchange chromatography. We evaluated the possibility that artemin acts as a molecular chaperone for proteins, but obtained no evidence for that in vitro. The association of RNA with apo-artemin occurs at high temperatures and, although it is not yet clear whether artemin has a specific role as an RNA chaperone, it does bind non-polyadenylated RNAs which are then translated in vitro. Artemin-RNA is thermostable, some molecules resisting destruction after 30 min at 90 degrees C. The first order rate constant for denaturation and aggregation of artemin-RNA at 85 degrees C is 8.5 x 10(-3)min(-1), which compares well with other thermostable proteins of similar size ( approximately 500 kDa) such as the ferritins with which artemin has amino acid sequence similarity. The amount of artemin extracted from embryos that had been stored dry, under laboratory conditions, since 1951 is comparable to the amount in contemporary embryos, indicating its stability in situ, and supporting the in vitro heating studies.
Collapse
Affiliation(s)
- A H Warner
- Department of Biological Sciences, University of Windsor, Windsor, Ont., Canada N9B 3P4
| | | | | | | |
Collapse
|
45
|
Abstract
Embryos of the brine shrimp, Artemia franciscana, either develop directly into swimming larvae or are released from females as encysted gastrulae (cysts) which enter diapause, a reversible state of dormancy. Metabolic activity in diapause cysts is very low and these embryos are remarkably resistant to physiological stresses. Encysting embryos, but not those undergoing uninterrupted development, synthesize large amounts of two proteins, namely p26 and artemin. Cloning and sequencing demonstrated p26 is a small heat shock/alpha-crystallin protein while artemin has structural similarity to ferritin. p26 exhibits molecular chaperone activity in vitro, moves reversibly into nuclei during stress and confers thermotolerance on transformed organisms, suggesting critical roles in cyst development. The function of artemin is unknown. Encysted Artemia also contain an abundance of trehalose, a disaccharide capable of protecting embryos. Artemia represent a novel experimental system where the developmental functions of small heat shock/alpha-crystallin proteins and other stress response elements can be explored.
Collapse
Affiliation(s)
- Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, NS, Canada B3H 4J1.
| |
Collapse
|
46
|
CHEN TAO, REITH MICHAELE, ROSS NEILW, MACRAE THOMASH. Expressed sequence tag (EST)-based characterization of gene regulation inArtemialarvae. INVERTEBR REPROD DEV 2003. [DOI: 10.1080/07924259.2003.9652551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|