1
|
Lemma RB, Fuglerud BM, Frampton J, Gabrielsen OS. MYB: A Key Transcription Factor in the Hematopoietic System Subject to Many Levels of Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:3-29. [PMID: 39017837 DOI: 10.1007/978-3-031-62731-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
MYB is a master regulator and pioneer factor highly expressed in hematopoietic progenitor cells (HPCs) where it contributes to the reprogramming processes operating during hematopoietic development. MYB plays a complex role being involved in several lineages of the hematopoietic system. At the molecular level, the MYB gene is subject to intricate regulation at many levels through several enhancer and promoter elements, through transcriptional elongation control, as well as post-transcriptional regulation. The protein is modulated by post-translational modifications (PTMs) such as SUMOylation restricting the expression of its downstream targets. Together with a range of interaction partners, cooperating transcription factors (TFs) and epigenetic regulators, MYB orchestrates a fine-tuned symphony of genes expressed during various stages of haematopoiesis. At the same time, the complex MYB system is vulnerable, being a target for unbalanced control and cancer development.
Collapse
Affiliation(s)
- Roza Berhanu Lemma
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | | | - Jon Frampton
- Department of Cancer & Genomic Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK
| | | |
Collapse
|
2
|
Lemma RB, Ledsaak M, Fuglerud BM, Rodríguez-Castañeda F, Eskeland R, Gabrielsen OS. MYB regulates the SUMO protease SENP1 and its novel interaction partner UXT, modulating MYB target genes and the SUMO landscape. J Biol Chem 2023; 299:105062. [PMID: 37468105 PMCID: PMC10463205 DOI: 10.1016/j.jbc.2023.105062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
SUMOylation is a post-translational modification frequently found on nuclear proteins, including transcription factors (TFs) and coactivators. By controlling the activity of several TFs, SUMOylation may have far-reaching effects. MYB is an example of a developmental TF subjected to SUMO-mediated regulation, through both SUMO conjugation and SUMO binding. How SUMO affects MYB target genes is unknown. Here, we explored the global effect of reduced SUMOylation of MYB on its downstream gene programs. RNA-Seq in K562 cells after MYB knockdown and rescue with mutants having an altered SUMO status revealed a number of differentially regulated genes and distinct gene ontology term enrichments. Clearly, the SUMO status of MYB both quantitatively and qualitatively affects its regulome. The transcriptome data further revealed that MYB upregulates the SUMO protease SENP1, a key enzyme that removes SUMO conjugation from SUMOylated proteins. Given this role of SENP1 in the MYB regulome, we expanded the analysis, mapped interaction partners of SENP1, and identified UXT as a novel player affecting the SUMO system by acting as a repressor of SENP1. MYB inhibits the expression of UXT suggesting that MYB is able not only to control a specific gene program directly but also indirectly by affecting the SUMO landscape through SENP1 and UXT. These findings suggest an autoactivation loop whereby MYB, through enhancing SENP1 and reducing UXT, is itself being activated by a reduced level of repressive SUMOylation. We propose that overexpressed MYB, seen in multiple cancers, may drive this autoactivation loop and contribute to oncogenic activation of MYB.
Collapse
Affiliation(s)
- Roza Berhanu Lemma
- Department of Biosciences, University of Oslo, Oslo, Norway; Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway.
| | - Marit Ledsaak
- Department of Biosciences, University of Oslo, Oslo, Norway; Faculty of Medicine, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | - Ragnhild Eskeland
- Department of Biosciences, University of Oslo, Oslo, Norway; Faculty of Medicine, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Faculty of Medicine, Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
3
|
Biyanee A, Yusenko MV, Klempnauer KH. Src-Family Protein Kinase Inhibitors Suppress MYB Activity in a p300-Dependent Manner. Cells 2022; 11:1162. [PMID: 35406726 PMCID: PMC8997952 DOI: 10.3390/cells11071162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Recent studies have disclosed transcription factor MYB as a potential drug target for malignancies that are dependent on deregulated MYB function, including acute myeloid leukemia (AML) and adenoid cystic carcinoma (ACC). Although transcription factors are often regarded as undruggable, successful targeting of MYB by low-molecular-weight compounds has recently been demonstrated. In an attempt to repurpose known drugs as novel MYB-inhibitory agents, we have screened libraries of approved drugs and drug-like compounds for molecules with MYB-inhibitory potential. Here, we present initial evidence for the MYB-inhibitory activity of the protein kinase inhibitors bosutinib, PD180970 and PD161570, that we identified in a recent screen. We show that these compounds interfere with the activity of the MYB transactivation domain, apparently by disturbing the ability of MYB to cooperate with the coactivator p300. We show that treatment of the AML cell line HL60 with these compounds triggers the up-regulation of the myeloid differentiation marker CD11b and induces cell death. Importantly, we show that these effects are significantly dampened by forced expression of an activated version of MYB, confirming that the ability to suppress MYB function is a relevant activity of these compounds. Overall, our work identifies several protein kinase inhibitors as novel MYB-inhibitory agents and suggests that the inhibition of MYB function may play a role in their pharmacological impact on leukemic cells.
Collapse
Affiliation(s)
| | | | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany; (A.B.); (M.V.Y.)
| |
Collapse
|
4
|
Yusenko MV, Klempnauer KH. Characterization of the MYB-inhibitory potential of the Pan-HDAC inhibitor LAQ824. BBA ADVANCES 2022; 2:100034. [PMID: 37082582 PMCID: PMC10074929 DOI: 10.1016/j.bbadva.2021.100034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
A large body of work has shown that MYB acts as a master transcription regulator in hematopoietic cells and has pinpointed MYB as a potential drug target for acute myeloid leukemia (AML). Here, we have examined the MYB-inhibitory potential of the HDAC inhibitor LAQ824, which was identified in a screen for novel MYB inhibitors. We show that nanomolar concentrations of LAQ824 and the related HDAC inhibitors vorinostat and panobinostat interfere with MYB function in two ways, by inducing its degradation and inhibiting its activity. Reporter assays show that the inhibition of MYB activity by LAQ824 involves the MYB transactivation domain and the cooperation of MYB with co-activator p300, a key MYB interaction partner and driver of MYB activity. In AML cells, LAQ824-induced degradation of MYB is accompanied by expression of myeloid differentiation markers and apoptotic and necrotic cell death. The ability of LAQ824 to inhibit MYB activity is supported by the observation that down-regulation of direct MYB target genes MYC and GFI1 occurs without apparent decrease of MYB expression already after 2 h of treatment with LAQ824. Furthermore, ectopic expression of an activated version of MYB In HL60 cells counteracts the induction of myeloid differentiation by LAQ824. Overall, our data identify LAQ824 and related HDAC inhibitors as potent MYB-inhibitory agents that exert dual effects on MYB expression and activity in AML cells.
Collapse
|
5
|
Yusenko MV, Biyanee A, Frank D, Köhler LHF, Andersson MK, Khandanpour C, Schobert R, Stenman G, Biersack B, Klempnauer KH. Bcr-TMP, a Novel Nanomolar-Active Compound That Exhibits Both MYB- and Microtubule-Inhibitory Activity. Cancers (Basel) 2021; 14:cancers14010043. [PMID: 35008207 PMCID: PMC8750090 DOI: 10.3390/cancers14010043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Recent work has identified the transcription regulator MYB as an interesting therapeutic target for the treatment of certain leukemias and other cancers that are dependent on deregulated MYB activity, such as acute myeloid leukemia (AML) and adenoid cystic carcinoma (ACC). Here we report the identification and characterization of 2-amino-4-(3,4,5-trimethoxyphenyl)-4H-naphtho[1,2-b]pyran-3-carbonitrile (Bcr-TMP), a novel highly active MYB inhibitory compound. We show that nanomolar concentrations of Bcr-TMP are sufficient to down-regulate the expression of MYB target genes and induce both cell-death and differentiation in AML cell lines. Importantly, Bcr-TMP also and exerts stronger anti-proliferative effects on MYB-addicted primary AML cells and patient-derived ACC cells than on their non-oncogenic counterparts. Preliminary work shows that Bcr-TMP acts through p300, a protein interacting with MYB and stimulating its activity. Interestingly, Bcr-TMP has an additional activity as an anti-microtubule agent. Overall, Bcr-TMP is an interesting compound that warrants further research to understand its mechanism of action and its therapeutic potential for MYB-dependent malignancies. Abstract Studies of the role of MYB in human malignancies have highlighted MYB as a potential drug target for acute myeloid leukemia (AML) and adenoid cystic carcinoma (ACC). Here, we present the initial characterization of 2-amino-4-(3,4,5-trimethoxyphenyl)-4H-naphtho[1,2-b]pyran-3-carbonitrile (Bcr-TMP), a nanomolar-active MYB-inhibitory compound identified in a screen for novel MYB inhibitors. Bcr-TMP affects MYB function in a dual manner by inducing its degradation and suppressing its transactivation potential by disrupting its cooperation with co-activator p300. Bcr-TMP also interferes with the p300-dependent stimulation of C/EBPβ, a transcription factor co-operating with MYB in myeloid cells, indicating that Bcr-TMP is a p300-inhibitor. Bcr-TMP reduces the viability of AML cell lines at nanomolar concentrations and induces cell-death and expression of myeloid differentiation markers. It also down-regulates the expression of MYB target genes and exerts stronger anti-proliferative effects on MYB-addicted primary murine AML cells and patient-derived ACC cells than on their non-oncogenic counterparts. Surprisingly, we observed that Bcr-TMP also has microtubule-disrupting activity, pointing to a possible link between MYB-activity and microtubule stability. Overall, Bcr-TMP is a highly potent multifunctional MYB-inhibitory agent that warrants further investigation of its therapeutic potential and mechanism(s) of action.
Collapse
Affiliation(s)
- Maria V. Yusenko
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, 48149 Munster, Germany; (M.V.Y.); (A.B.)
| | - Abhiruchi Biyanee
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, 48149 Munster, Germany; (M.V.Y.); (A.B.)
| | - Daria Frank
- Department of Medicine A, Hematology and Oncology, University Hospital, Westfälische-Wilhelms-Universität, 48149 Munster, Germany; (D.F.); (C.K.)
| | - Leonhard H. F. Köhler
- Organic Chemistry Laboratory, Universität Bayreuth, 95440 Bayreuth, Germany; (L.H.F.K.); (R.S.); (B.B.)
| | - Mattias K. Andersson
- Sahlgrenska Center for Cancer Research, Department of Pathology, University of Gothenburg, 41345 Gothenburg, Sweden; (M.K.A.); (G.S.)
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology and Oncology, University Hospital, Westfälische-Wilhelms-Universität, 48149 Munster, Germany; (D.F.); (C.K.)
| | - Rainer Schobert
- Organic Chemistry Laboratory, Universität Bayreuth, 95440 Bayreuth, Germany; (L.H.F.K.); (R.S.); (B.B.)
| | - Göran Stenman
- Sahlgrenska Center for Cancer Research, Department of Pathology, University of Gothenburg, 41345 Gothenburg, Sweden; (M.K.A.); (G.S.)
| | - Bernhard Biersack
- Organic Chemistry Laboratory, Universität Bayreuth, 95440 Bayreuth, Germany; (L.H.F.K.); (R.S.); (B.B.)
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, 48149 Munster, Germany; (M.V.Y.); (A.B.)
- Correspondence: ; Tel.: +49-251-8333203; Fax: +49-251-8333206
| |
Collapse
|
6
|
Yusenko MV, Biyanee A, Andersson MK, Radetzki S, von Kries JP, Stenman G, Klempnauer KH. Proteasome inhibitors suppress MYB oncogenic activity in a p300-dependent manner. Cancer Lett 2021; 520:132-142. [PMID: 34256093 DOI: 10.1016/j.canlet.2021.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 01/18/2023]
Abstract
Studies of the role of MYB in human malignancies have highlighted MYB as a potential drug target for acute myeloid leukemia (AML) and adenoid cystic carcinoma (ACC). Although transcription factors are often considered un-druggable, recent work has demonstrated successful targeting of MYB by low molecular weight compounds. This has fueled the notion that inhibition of MYB has potential as a therapeutic approach against MYB-driven malignancies. Here, we have used a MYB reporter cell line to screen a library of FDA-approved drugs for novel MYB inhibitors. We demonstrate that proteasome inhibitors have significant MYB-inhibitory activity, prompting us to characterize the proteasome inhibitor oprozomib in more detail. Oprozomib was shown to interfere with the ability of the co-activator p300 to stimulate MYB activity and to exert anti-proliferative effects on human AML and ACC cells. Overall, our work demonstrated suppression of oncogenic MYB activity as a novel result of proteasome inhibition.
Collapse
Affiliation(s)
- Maria V Yusenko
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, Münster, Germany
| | - Abhiruchi Biyanee
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, Münster, Germany
| | - Mattias K Andersson
- Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Silke Radetzki
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Jens P von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Göran Stenman
- Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
7
|
Næs G, Storesund JO, Udayakumar P, Ledsaak M, Gabrielsen OS. Dissecting the transactivation domain (tAD) of the transcription factor c-Myb to assess recent models of tAD function. FEBS Open Bio 2020; 10:2329-2342. [PMID: 32937031 PMCID: PMC7609802 DOI: 10.1002/2211-5463.12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022] Open
Abstract
Transcription factors use a DNA-binding domain to localize their action and a transactivation domain (tAD) to stimulate activation of the associated gene. Recent work has renewed interest in how tADs activate genes, which remains poorly understood. Key features in the new models are exposure of short linear motifs (SLMs) and liquid-liquid phase separation (LLPS). Inspired by the new models for tAD function, we decided to revisit the tAD of the haematopoietic transcription factor c-Myb by performing a mutational analysis to see how these new models fit and potentially explain the tAD behaviour of this master regulator. We know that c-Myb has an acidic tAD, which contains a well-characterized SLM in the form of a LxxLL motif. By testing 12 alanine-scanning mutants and three mutants with major reorganization of its tAD in two mammalian reporter systems, we found a pattern of effects very close to what would be expected from the SLM-exposure model, with strong effects exerted by both acidic replacements and SLM mutation. When the same mutants were tested in a yeast system, the pattern of effects was dramatically different, with the SLM mutation exerting no effect, and tAD behaviour was much less affected by small alterations, as would be expected from a LLPS model. These observations are discussed in the light of the two new tAD models, and a two-step hypothesis for transactivation, combining both models, is proposed.
Collapse
Affiliation(s)
- Guro Næs
- Department of BiosciencesUniversity of OsloNorway
| | | | | | | | | |
Collapse
|
8
|
Gong X, Chen Q, Zheng F. Identification of protein inhibitor of activated STAT 4, a novel host interacting partner that involved in bovine viral diarrhea virus growth. Virol J 2020; 17:59. [PMID: 32321515 PMCID: PMC7178618 DOI: 10.1186/s12985-020-01330-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background Bovine viral diarrhea virus (BVDV) belongs to the Flaviviridae family and the pestivius virus group. BVDV is responsible for significant economic loss in cattle industry worldwide because of reducing reproductive performance, increasing incidence of other diseases and mortality among young stock. The core (C) protein of the Flaviviridae family member is involved in host antiviral immune response through activation of related signaling pathways that affect the viral replication. However, the influence of C protein-interaction partners in BVDV infections is poorly defined. Methods To explore C-protein-interacting partners, yeast two-hybrid was used to screen the interaction protein of C protein using bovine peripheral blood mononuclear cell (PBMC) cDNA library. The co-immunoprecipitation and confocal assays were manipulated to determine the interaction between potential partners and C protein. Knockdown and overexpression of the partner were used to examine whether the C-protein-interacting partner plays a role in BVDV proliferation and virulence. Meanwhile, qRT-PCR and western blot assays were used to investigate the effect of C protein and C-protein-interacting partner on the immune response of host cells. Results We identified protein inhibitor of activated STAT 4 (PIAS4) as a novel interacting partner of the BVDV C protein. Co-immunoprecipitation and confocal assays demonstrated a strong interaction between C protein and PIAS4. Silencing of PIAS4 with small interfering RNA suppressed C protein expression and BVDV growth, while overexpression of PISA4 increased C protein expression and BVDV growth. The overexpression of PIAS4 increased the cell apoptosis. Meanwhile, the expressions of STAT4, SOCS3, IFITM, IFN-α were negatively regulated by the expression of PIAS4. The expression of C protein suppressed the antiviral proteins expression, and the inhibition effect was enhanced by interaction of PIAS4 and C protein. These results highlighted the beneficial properties of cellular PIAS4 for BVDV protein expression and growth. Conclusions This study provides reliable clues for understanding the roles of PIAS4 in the regulation of BVDV growth.
Collapse
Affiliation(s)
- Xiaowei Gong
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, China
| | - Qiwei Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, China
| | - Fuying Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, China.
| |
Collapse
|
9
|
Monensin, a novel potent MYB inhibitor, suppresses proliferation of acute myeloid leukemia and adenoid cystic carcinoma cells. Cancer Lett 2020; 479:61-70. [PMID: 32014461 DOI: 10.1016/j.canlet.2020.01.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
Abstract
The master transcriptional regulator MYB is a key oncogenic driver in several human neoplasms, particularly in acute myeloid leukemia (AML) and adenoid cystic carcinoma (ACC). MYB is therefore an attractive target for drug development in MYB-activated malignancies. Here, we employed a MYB-reporter cell line and identified the polyether ionophores monensin, salinomycin, and nigericin as novel inhibitors of MYB activity. As a proof of principle, we show that monensin affects the expression of a significant number of MYB-regulated genes in AML cells and causes down-regulation of MYB expression, loss of cell viability, and induction of differentiation and apoptosis. Furthermore, monensin significantly inhibits proliferation of primary murine AML cells but not of normal hematopoietic progenitors, reflecting a high MYB-dependence of leukemic cells and underscoring the efficacy of monensin in MYB-activated malignancies. Importantly, monensin also suppressed the viability and non-adherent growth of adenoid cystic carcinoma (ACC) cells expressing MYB-NFIB fusion oncoproteins. Our data show that a single compound with significant MYB-inhibitory activity is effective against malignant cells from two distinct MYB-driven human neoplasms. Hence, monensin and related compounds are promising molecular scaffolds for development of novel MYB inhibitors.
Collapse
|
10
|
Tenorio J, Nevado J, González-Meneses A, Arias P, Dapía I, Venegas-Vega CA, Calvente M, Hernández A, Landera L, Ramos S, Cigudosa JC, Pérez-Jurado LA, Lapunzina P. Further definition of the proximal 19p13.3 microdeletion/microduplication syndrome and implication of PIAS4 as the major contributor. Clin Genet 2020; 97:467-476. [PMID: 31972898 DOI: 10.1111/cge.13689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
Abstract
The proximal 19p13.3 microdeletion/microduplication (prox19p13.3del/dup) syndrome is a recently described disorder with common clinical features including developmental delay, intellectual disability, speech delay, facial dysmorphic features with ear defects, anomalies of the hands and feet, umbilical hernia and hypotonia. While deletions are associated with macrocephaly, patients with duplications have microcephaly. The smallest region of overlap in multiple patients (113.5 kb) included three genes and one pseudogene, with a suggested major role of PIAS4 in determination of the phenotype and head size in these patients. Here, we refine the prox19p13.3del/dup with four additional patients: two with microdeletions, one with microduplication and one family with single-nucleotide nonsense variant in PIAS4. The patient with the PIAS4 loss of function variant displayed a phenotype quite similar to deletion patients -including the macrocephaly and many other core features of the syndrome. Patient's SNV was inherited from her mother who is similarly affected. Thus, our data indicate that PIAS4 is a major contributor to the proximal 19p13.3del/dup syndrome phenotype. In summary, we report the first patient with a pathogenic variant in PIAS4- and three additional rearrangements at the proximal 19p13.3 locus. These observations add further evidence about the molecular basis of this microdeletion/microduplication syndrome.
Collapse
Affiliation(s)
- Jair Tenorio
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario LaPaz-UAM, Paseo de La Castellana, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Callede Melchor Fernández Almagro, Madrid, Spain.,ERN-ITHACA, ITHACA European Reference Network
| | - Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario LaPaz-UAM, Paseo de La Castellana, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Callede Melchor Fernández Almagro, Madrid, Spain.,ERN-ITHACA, ITHACA European Reference Network
| | - Antonio González-Meneses
- Dysmorphology and Metabolism unit, Hospital Universitario Virgen del Rocío, Av. Manuel Siurot, Sevilla, Spain
| | - Pedro Arias
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario LaPaz-UAM, Paseo de La Castellana, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Callede Melchor Fernández Almagro, Madrid, Spain
| | - Irene Dapía
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario LaPaz-UAM, Paseo de La Castellana, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Callede Melchor Fernández Almagro, Madrid, Spain
| | - Carlos A Venegas-Vega
- Unidadde Genética, Hospital General de México, México City, Mexico, Facultad deMedicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - María Calvente
- NIMGENETICS, c/ Faraday, 7 Parque Científico de Madrid, Madrid, Spain
| | - Alicia Hernández
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario LaPaz-UAM, Paseo de La Castellana, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Callede Melchor Fernández Almagro, Madrid, Spain
| | - Leandro Landera
- Congenital Malformations Laboratory, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, Rio deJaneiro, Brazil
| | - Sergio Ramos
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario LaPaz-UAM, Paseo de La Castellana, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Callede Melchor Fernández Almagro, Madrid, Spain
| | -
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario LaPaz-UAM, Paseo de La Castellana, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Callede Melchor Fernández Almagro, Madrid, Spain
| | | | - Luis A Pérez-Jurado
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Callede Melchor Fernández Almagro, Madrid, Spain.,Genetics Unit, Universitat Pompeu Fabra, and IMIM-Hospital del Mar, Barcelona, Spain.,Women's and Children's Hospital, South Australian Health and Medical Research Institute (SAHMRI), The University of Adelaide, Adelaide, Australia
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario LaPaz-UAM, Paseo de La Castellana, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Callede Melchor Fernández Almagro, Madrid, Spain.,ERN-ITHACA, ITHACA European Reference Network
| |
Collapse
|
11
|
Li F, Okreglicka KM, Pohlmeier LM, Schneider C, Kopf M. Fetal monocytes possess increased metabolic capacity and replace primitive macrophages in tissue macrophage development. EMBO J 2020; 39:e103205. [PMID: 31894879 DOI: 10.15252/embj.2019103205] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Tissue-resident macrophages (MΦTR ) originate from at least two distinct waves of erythro-myeloid progenitors (EMP) arising in the yolk sac (YS) at E7.5 and E8.5 with the latter going through a liver monocyte intermediate. The relative potential of these precursors in determining development and functional capacity of MΦTR remains unclear. Here, we studied development of alveolar macrophages (AM) after single and competitive transplantation of different precursors from YS, fetal liver, and fetal lung into neonatal Csf2ra-/- mice, which lack endogenous AM. Fetal monocytes, promoted by Myb, outcompeted primitive MΦ (pMΦ) in empty AM niches and preferentially developed to mature AM, which is associated with enhanced mitochondrial respiratory and glycolytic capacity and repression of the transcription factors c-Maf and MafB. Interestingly, AM derived from pMΦ failed to efficiently clear alveolar proteinosis and protect from fatal lung failure following influenza virus infection. Thus, our data demonstrate superior developmental and functional capacity of fetal monocytes over pMΦ in AM development and underlying mechanisms explaining replacement of pMΦ in fetal tissues.
Collapse
Affiliation(s)
- Fengqi Li
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Lea Maria Pohlmeier
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Christoph Schneider
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland.,Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Manfred Kopf
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
12
|
Yusenko M, Jakobs A, Klempnauer KH. A novel cell-based screening assay for small-molecule MYB inhibitors identifies podophyllotoxins teniposide and etoposide as inhibitors of MYB activity. Sci Rep 2018; 8:13159. [PMID: 30177851 PMCID: PMC6120916 DOI: 10.1038/s41598-018-31620-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022] Open
Abstract
The transcription factor MYB plays key roles in hematopoietic cells and has been implicated the development of leukemia. MYB has therefore emerged as an attractive target for drug development. Recent work has suggested that targeting MYB by small-molecule inhibitors is feasible and that inhibition of MYB has potential as a therapeutic approach against acute myeloid leukemia. To facilitate the identification of small-molecule MYB inhibitors we have re-designed and improved a previously established cell-based screening assay and have employed it to screen a natural product library for potential inhibitors. Our work shows that teniposide and etoposide, chemotherapeutic agents causing DNA-damage by inhibiting topoisomerase II, potently inhibit MYB activity and induce degradation of MYB in AML cell lines. MYB inhibition is suppressed by caffeine, suggesting that MYB is inhibited indirectly via DNA-damage signalling. Importantly, ectopic expression of an activated version of MYB in pro-myelocytic NB4 cells diminished the anti-proliferative effects of teniposide, suggesting that podophyllotoxins disrupt the proliferation of leukemia cells not simply by inducing general DNA-damage but that their anti-proliferative effects are boosted by inhibition of MYB. Teniposide and etoposide therefore act like double-edged swords that might be particularly effective to inhibit tumor cells with deregulated MYB.
Collapse
Affiliation(s)
- Maria Yusenko
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Anke Jakobs
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany.
| |
Collapse
|
13
|
Rodríguez-Castañeda F, Lemma RB, Cuervo I, Bengtsen M, Moen LM, Ledsaak M, Eskeland R, Gabrielsen OS. The SUMO protease SENP1 and the chromatin remodeler CHD3 interact and jointly affect chromatin accessibility and gene expression. J Biol Chem 2018; 293:15439-15454. [PMID: 30082317 DOI: 10.1074/jbc.ra118.002844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/12/2018] [Indexed: 01/22/2023] Open
Abstract
The small ubiquitin-like modifier (SUMO) post-translationally modifies lysine residues of transcription factors and co-regulators and thereby contributes to an important layer of control of the activities of these transcriptional regulators. Likewise, deSUMOylation of these factors by the sentrin-specific proteases (SENPs) also plays a role in gene regulation, but whether SENPs functionally interact with other regulatory factors that control gene expression is unclear. In the present work, we focused on SENP1, specifically, on its role in activation of gene expression investigated through analysis of the SENP1 interactome, which revealed that SENP1 physically interacts with the chromatin remodeler chromodomain helicase DNA-binding protein 3 (CHD3). Using several additional methods, including GST pulldown and co-immunoprecipitation assays, we validated and mapped this interaction, and using CRISPR-Cas9-generated CHD3- and SENP1-KO cells (in the haploid HAP1 cell line), we investigated whether these two proteins are functionally linked in regulating chromatin remodeling and gene expression. Genome-wide ATAC-Seq analysis of the CHD3- and SENP1-KO cells revealed a large degree of overlap in differential chromatin openness between these two mutant cell lines. Moreover, motif analysis and comparison with ChIP-Seq profiles in K562 cells pointed to an association of CHD3 and SENP1 with CCCTC-binding factor (CTCF) and SUMOylated chromatin-associated factors. Lastly, genome-wide RNA-Seq also indicated that these two proteins co-regulate the expression of several genes. We propose that the functional link between chromatin remodeling by CHD3 and deSUMOylation by SENP1 uncovered here provides another level of control of gene expression.
Collapse
Affiliation(s)
| | - Roza Berhanu Lemma
- From the Department of Biosciences, University of Oslo, P. O. Box 1066 Blindern, N-0316 Oslo and
| | - Ignacio Cuervo
- From the Department of Biosciences, University of Oslo, P. O. Box 1066 Blindern, N-0316 Oslo and
| | - Mads Bengtsen
- From the Department of Biosciences, University of Oslo, P. O. Box 1066 Blindern, N-0316 Oslo and
| | - Lisa Marie Moen
- From the Department of Biosciences, University of Oslo, P. O. Box 1066 Blindern, N-0316 Oslo and
| | - Marit Ledsaak
- From the Department of Biosciences, University of Oslo, P. O. Box 1066 Blindern, N-0316 Oslo and
| | - Ragnhild Eskeland
- From the Department of Biosciences, University of Oslo, P. O. Box 1066 Blindern, N-0316 Oslo and.,the Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, P.O. Box 1112 Blindern, N-0317 Oslo, Norway
| | - Odd Stokke Gabrielsen
- From the Department of Biosciences, University of Oslo, P. O. Box 1066 Blindern, N-0316 Oslo and
| |
Collapse
|
14
|
Fuglerud BM, Ledsaak M, Rogne M, Eskeland R, Gabrielsen OS. The pioneer factor activity of c-Myb involves recruitment of p300 and induction of histone acetylation followed by acetylation-induced chromatin dissociation. Epigenetics Chromatin 2018; 11:35. [PMID: 29954426 PMCID: PMC6022509 DOI: 10.1186/s13072-018-0208-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/26/2018] [Indexed: 12/17/2022] Open
Abstract
Background The concept of pioneer transcription factors is emerging as an essential part of the epigenetic regulation, taking place during cell development and differentiation. However, the precise molecular mechanism underlying pioneer factor activity remains poorly understood. We recently reported that the transcription factor c-Myb acts as a pioneer factor in haematopoiesis, and a point mutation in its DNA binding domain, D152V, is able to abrogate this function. Results Here, we show that specific histone modifications, including H3K27ac, prevent binding of c-Myb to histone tails, representing a novel effect of histone modifications, namely restricting binding of a pioneer factor to chromatin. Furthermore, we have taken advantage of the pioneer-defect D152V mutant to investigate mechanisms of c-Myb’s pioneer factor activity. We show that c-Myb-dependent transcriptional activation of a gene in inaccessible chromatin relies on c-Myb binding to histones, as well as on c-Myb interacting with the histone acetyltransferase p300. ChIP assays show that both wild type and the D152V mutant of c-Myb bind to a selected target gene at its promoter and enhancer, but only wild-type c-Myb causes opening and activation of the locus. Enhancement of histone acetylation restores activation of the same gene in the absence of c-Myb, suggesting that facilitating histone acetylation is a crucial part of the pioneer factor function of c-Myb. Conclusions We suggest a pioneer factor model in which c-Myb binds to regions of closed chromatin and then recruits histone acetyltransferases. By binding to histones, c-Myb facilitates histone acetylation, acting as a cofactor for p300 at c-Myb bound sites. The resulting H3K27ac leads to chromatin opening and detachment of c-Myb from the acetylated chromatin. We propose that the latter phenomenon, acetylation-induced chromatin dissociation, represents a mechanism for controlling the dynamics of pioneer factor binding to chromatin. Electronic supplementary material The online version of this article (10.1186/s13072-018-0208-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bettina M Fuglerud
- Department of Biosciences, University of Oslo, P.O. Box 1066, 0316, Blindern, Oslo, Norway
| | - Marit Ledsaak
- Department of Biosciences, University of Oslo, P.O. Box 1066, 0316, Blindern, Oslo, Norway
| | - Marie Rogne
- Department of Biosciences, University of Oslo, P.O. Box 1066, 0316, Blindern, Oslo, Norway
| | - Ragnhild Eskeland
- Department of Biosciences, University of Oslo, P.O. Box 1066, 0316, Blindern, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0379, Norway
| | - Odd S Gabrielsen
- Department of Biosciences, University of Oslo, P.O. Box 1066, 0316, Blindern, Oslo, Norway.
| |
Collapse
|
15
|
Hodge CD, Spyracopoulos L, Glover JNM. Ubc13: the Lys63 ubiquitin chain building machine. Oncotarget 2018; 7:64471-64504. [PMID: 27486774 PMCID: PMC5325457 DOI: 10.18632/oncotarget.10948] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022] Open
Abstract
Ubc13 is an ubiquitin E2 conjugating enzyme that participates with many different E3 ligases to form lysine 63-linked (Lys63) ubiquitin chains that are critical to signaling in inflammatory and DNA damage response pathways. Recent studies have suggested Ubc13 as a potential therapeutic target for intervention in various human diseases including several different cancers, alleviation of anti-cancer drug resistance, chronic inflammation, and viral infections. Understanding a potential therapeutic target from different angles is important to assess its usefulness and potential pitfalls. Here we present a global review of Ubc13 from its structure, function, and cellular activities, to its natural and chemical inhibition. The aim of this article is to review the literature that directly implicates Ubc13 in a biological function, and to integrate structural and mechanistic insights into the larger role of this critical E2 enzyme. We discuss observations of multiple Ubc13 structures that suggest a novel mechanism for activation of Ubc13 that involves conformational change of the active site loop.
Collapse
Affiliation(s)
- Curtis D Hodge
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Bengtsen M, Sørensen L, Aabel L, Ledsaak M, Matre V, Gabrielsen OS. The adaptor protein ARA55 and the nuclear kinase HIPK1 assist c-Myb in recruiting p300 to chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:751-760. [DOI: 10.1016/j.bbagrm.2017.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/26/2017] [Accepted: 05/03/2017] [Indexed: 02/01/2023]
|
17
|
Novel Role for Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by the Cellular Intrinsic Antiviral Immune Response. J Virol 2016; 90:4807-4826. [PMID: 26937035 PMCID: PMC4836348 DOI: 10.1128/jvi.03055-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/22/2016] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Small ubiquitin-like modifier (SUMO) is used by the intrinsic antiviral immune response to restrict viral pathogens, such as herpes simplex virus 1 (HSV-1). Despite characterization of the host factors that rely on SUMOylation to exert their antiviral effects, the enzymes that mediate these SUMOylation events remain to be defined. We show that unconjugated SUMO levels are largely maintained throughout infection regardless of the presence of ICP0, the HSV-1 SUMO-targeted ubiquitin ligase. Moreover, in the absence of ICP0, high-molecular-weight SUMO-conjugated proteins do not accumulate if HSV-1 DNA does not replicate. These data highlight the continued importance for SUMO signaling throughout infection. We show that the SUMO ligase protein inhibitor of activated STAT 4 (PIAS4) is upregulated during HSV-1 infection and localizes to nuclear domains that contain viral DNA. PIAS4 is recruited to sites associated with HSV-1 genome entry through SUMO interaction motif (SIM)-dependent mechanisms that are destabilized by ICP0. In contrast, PIAS4 accumulates in replication compartments through SIM-independent mechanisms irrespective of ICP0 expression. Depletion of PIAS4 enhances the replication of ICP0-null mutant HSV-1, which is susceptible to restriction by the intrinsic antiviral immune response. The mechanisms of PIAS4-mediated restriction are synergistic with the restriction mechanisms of a characterized intrinsic antiviral factor, promyelocytic leukemia protein, and are antagonized by ICP0. We provide the first evidence that PIAS4 is an intrinsic antiviral factor. This novel role for PIAS4 in intrinsic antiviral immunity contrasts with the known roles of PIAS proteins as suppressors of innate immunity. IMPORTANCE Posttranslational modifications with small ubiquitin-like modifier (SUMO) proteins regulate multiple aspects of host immunity and viral replication. The protein inhibitor of activated STAT (PIAS) family of SUMO ligases is predominantly associated with the suppression of innate immune signaling. We now identify a unique and contrasting role for PIAS proteins as positive regulators of the intrinsic antiviral immune response to herpes simplex virus 1 (HSV-1) infection. We show that PIAS4 relocalizes to nuclear domains that contain viral DNA throughout infection. Depletion of PIAS4, either alone or in combination with the intrinsic antiviral factor promyelocytic leukemia protein, significantly impairs the intrinsic antiviral immune response to HSV-1 infection. Our data reveal a novel and dynamic role for PIAS4 in the cellular-mediated restriction of herpesviruses and establish a new functional role for the PIAS family of SUMO ligases in the intrinsic antiviral immune response to DNA virus infection.
Collapse
|
18
|
PIAS1 binds p300 and behaves as a coactivator or corepressor of the transcription factor c-Myb dependent on SUMO-status. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:705-18. [PMID: 27032383 DOI: 10.1016/j.bbagrm.2016.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/08/2016] [Accepted: 03/23/2016] [Indexed: 12/21/2022]
Abstract
The PIAS proteins (Protein Inhibitor of Activated STATs) constitute a family of multifunctional nuclear proteins operating as SUMO E3 ligases and being involved in a multitude of interactions. They participate in a range of biological processes, also beyond their well-established role in the immune system and cytokine signalling. They act both as transcriptional corepressors and coactivators depending on the context. In the present work, we investigated mechanisms by which PIAS1 causes activation or repression of c-Myb dependent target genes. Analysis of global expression data shows that c-Myb and PIAS1 knockdowns affect a subset of common targets, but with a dual outcome consistent with a role of PIAS1 as either a corepressor or coactivator. Our mechanistic studies show that PIAS1 engages in a novel interaction with the acetyltransferase and coactivator p300. Interaction and ChIP analysis suggest a bridging function where PIAS1 enhances p300 recruitment to c-Myb-bound sites through interaction with both proteins. In addition, the E3 activity of PIAS1 enhances further its coactivation. Remarkably, the SUMO status of c-Myb had a decisive role, indicating a SUMO-dependent switch in the way PIAS1 affects c-Myb, either as a coactivator or corepressor. Removal of the two major SUMO-conjugation sites in c-Myb (2KR mutant), which enhances its activity significantly, turned PIAS1 into a corepressor. Also, p300 was less efficiently recruited to chromatin by c-Myb-2KR. We propose that PIAS1 acts as a "protein inhibitor of activated c-Myb" in the absence of SUMOylation while, in its presence, PIAS behaves as a "protein activator of repressed c-Myb".
Collapse
|
19
|
Tan H, Xu C, Zeng H, Wang Y, Li Y, Fan X, Chen P, Jiang Y, Chen X, Huang M, Bi H. SUMOylation of pregnane X receptor suppresses rifampicin-induced CYP3A4 and P-gp expression and activity in LS174T cells. J Pharmacol Sci 2016; 130:66-71. [DOI: 10.1016/j.jphs.2015.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/29/2015] [Accepted: 11/15/2015] [Indexed: 01/17/2023] Open
|
20
|
Abstract
Strict control of tissue-specific gene expression plays a pivotal role during lineage commitment. The transcription factor c-Myb has an essential role in adult haematopoiesis and functions as an oncogene when rearranged in human cancers. Here we have exploited digital genomic footprinting analysis to obtain a global picture of c-Myb occupancy in the genome of six different haematopoietic cell-types. We have biologically validated several c-Myb footprints using c-Myb knockdown data, reporter assays and DamID analysis. We show that our predicted conserved c-Myb footprints are highly dependent on the haematopoietic cell type, but that there is a group of gene targets common to all cell-types analysed. Furthermore, we find that c-Myb footprints co-localise with active histone mark H3K4me3 and are significantly enriched at exons. We analysed co-localisation of c-Myb footprints with 104 chromatin regulatory factors in K562 cells, and identified nine proteins that are enriched together with c-Myb footprints on genes positively regulated by c-Myb and one protein enriched on negatively regulated genes. Our data suggest that c-Myb is a transcription factor with multifaceted target regulation depending on cell type.
Collapse
|
21
|
Kalkat M, Chan PK, Wasylishen AR, Srikumar T, Kim SS, Ponzielli R, Bazett-Jones DP, Raught B, Penn LZ. Identification of c-MYC SUMOylation by mass spectrometry. PLoS One 2014; 9:e115337. [PMID: 25522242 PMCID: PMC4270761 DOI: 10.1371/journal.pone.0115337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/21/2014] [Indexed: 01/10/2023] Open
Abstract
The c-MYC transcription factor is a master regulator of many cellular processes and deregulation of this oncogene has been linked to more than 50% of all cancers. This deregulation can take many forms, including altered post-translational regulation. Here, using immunoprecipitation combined with mass spectrometry, we identified a MYC SUMOylation site (K326). Abrogation of signaling through this residue by substitution with arginine (K326R) has no obvious effects on MYC half-life, intracellular localization, transcriptional targets, nor on the biological effects of MYC overexpression in two different cell systems assessed for soft agar colony formation, proliferation, and apoptosis. While we have definitively demonstrated that MYC SUMOylation can occur on K326, future work will be needed to elucidate the mechanisms and biological significance of MYC regulation by SUMOylation.
Collapse
Affiliation(s)
- Manpreet Kalkat
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Pak-Kei Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Amanda R. Wasylishen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tharan Srikumar
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Sam S. Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Romina Ponzielli
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - David P. Bazett-Jones
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Linda Z. Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
22
|
Tammsalu T, Matic I, Jaffray EG, Ibrahim AFM, Tatham MH, Hay RT. Proteome-wide identification of SUMO2 modification sites. Sci Signal 2014; 7:rs2. [PMID: 24782567 PMCID: PMC4051997 DOI: 10.1126/scisignal.2005146] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Posttranslational modification with small ubiquitin-like modifiers (SUMOs) alters the function of proteins involved in diverse cellular processes. SUMO-specific enzymes conjugate SUMOs to lysine residues in target proteins. Although proteomic studies have identified hundreds of sumoylated substrates, methods to identify the modified lysines on a proteomic scale are lacking. We developed a method that enabled proteome-wide identification of sumoylated lysines that involves the expression of polyhistidine (6His)-tagged SUMO2 with Thr(90) mutated to Lys. Endoproteinase cleavage with Lys-C of 6His-SUMO2(T90K)-modified proteins from human cell lysates produced a diGly remnant on SUMO2(T90K)-conjugated lysines, enabling immunoprecipitation of SUMO2(T90K)-modified peptides and producing a unique mass-to-charge signature. Mass spectrometry analysis of SUMO-enriched peptides revealed more than 1000 sumoylated lysines in 539 proteins, including many functionally related proteins involved in cell cycle, transcription, and DNA repair. Not only can this strategy be used to study the dynamics of sumoylation and other potentially similar posttranslational modifications, but also, these data provide an unprecedented resource for future research on the role of sumoylation in cellular physiology and disease.
Collapse
Affiliation(s)
- Triin Tammsalu
- Centre for Gene Regulation and Expression, University of Dundee, Sir James Black Centre, Dow Street, Dundee DD1 5EH. UK
| | - Ivan Matic
- Centre for Gene Regulation and Expression, University of Dundee, Sir James Black Centre, Dow Street, Dundee DD1 5EH. UK
| | - Ellis G. Jaffray
- Centre for Gene Regulation and Expression, University of Dundee, Sir James Black Centre, Dow Street, Dundee DD1 5EH. UK
| | - Adel F. M. Ibrahim
- MRC Protein Phosphorylation and Ubiquitination Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, Dundee DD1 5EH. UK
| | - Michael H. Tatham
- Centre for Gene Regulation and Expression, University of Dundee, Sir James Black Centre, Dow Street, Dundee DD1 5EH. UK
| | - Ronald T. Hay
- Centre for Gene Regulation and Expression, University of Dundee, Sir James Black Centre, Dow Street, Dundee DD1 5EH. UK
| |
Collapse
|
23
|
Bies J, Sramko M, Wolff L. Stress-induced phosphorylation of Thr486 in c-Myb by p38 mitogen-activated protein kinases attenuates conjugation of SUMO-2/3. J Biol Chem 2013; 288:36983-93. [PMID: 24257756 DOI: 10.1074/jbc.m113.500264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
c-Myb plays an essential role in regulation of properly balanced hematopoiesis through transcriptional regulation of genes directly controlling cellular processes such as proliferation, differentiation, and apoptosis. The transcriptional activity and protein levels of c-Myb are strictly controlled through post-translational modifications such as phosphorylation, acetylation, ubiquitination, and SUMOylation. Conjugation of small ubiquitin-like modifier (SUMO) proteins has been shown to suppress the transcriptional activity of c-Myb. SUMO-1 modifies c-Myb under physiological conditions, whereas SUMO-2/3 conjugation was reported in cells under stress. Because stress also activates several cellular protein kinases, we investigated whether phosphorylation of c-Myb changes in stressed cells and whether a mutual interplay exists between phosphorylation and SUMOylation of c-Myb. Here we show that several types of environmental stress induce a rapid change in c-Myb phosphorylation. Interestingly, the phosphorylation of Thr(486), located in close proximity to SUMOylation site Lys(499) of c-Myb, is detected preferentially in nonSUMOylated protein and has a negative effect on stress-induced SUMOylation of c-Myb. Stress-activated p38 MAPKs phosphorylate Thr(486) in c-Myb, attenuate its SUMOylation, and increase its proteolytic turnover. Stressed cells expressing a phosphorylation-deficient T486A mutant demonstrate decreased expression of c-Myb target genes Bcl-2 and Bcl-xL and accelerated apoptosis because of increased SUMOylation of the mutant protein. These results suggest that phosphorylation-dependent modulation of c-Myb SUMOylation may be important for proper response of cells to stress. In summary, we have identified a novel regulatory interplay between phosphorylation and SUMOylation of c-Myb that regulates its activity in stressed cells.
Collapse
Affiliation(s)
- Juraj Bies
- From the Laboratory of Cellular Oncology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
24
|
Davidson CJ, Guthrie EE, Lipsick JS. Duplication and maintenance of the Myb genes of vertebrate animals. Biol Open 2012; 2:101-10. [PMID: 23431116 PMCID: PMC3575645 DOI: 10.1242/bio.20123152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/09/2012] [Indexed: 12/21/2022] Open
Abstract
Gene duplication is an important means of generating new genes. The major mechanisms by which duplicated genes are preserved in the face of purifying selection are thought to be neofunctionalization, subfunctionalization, and increased gene dosage. However, very few duplicated gene families in vertebrate species have been analyzed by functional tests in vivo. We have therefore examined the three vertebrate Myb genes (c-Myb, A-Myb, and B-Myb) by cytogenetic map analysis, by sequence analysis, and by ectopic expression in Drosophila. We provide evidence that the vertebrate Myb genes arose by two rounds of regional genomic duplication. We found that ubiquitous expression of c-Myb and A-Myb, but not of B-Myb or Drosophila Myb, was lethal in Drosophila. Expression of any of these genes during early larval eye development was well tolerated. However, expression of c-Myb and A-Myb, but not of B-Myb or Drosophila Myb, during late larval eye development caused drastic alterations in adult eye morphology. Mosaic analysis implied that this eye phenotype was cell-autonomous. Interestingly, some of the eye phenotypes caused by the retroviral v-Myb oncogene and the normal c-Myb proto-oncogene from which v-Myb arose were quite distinct. Finally, we found that post-translational modifications of c-Myb by the GSK-3 protein kinase and by the Ubc9 SUMO-conjugating enzyme that normally occur in vertebrate cells can modify the eye phenotype caused by c-Myb in Drosophila. These results support a model in which the three Myb genes of vertebrates arose by two sequential duplications. The first duplication was followed by a subfunctionalization of gene expression, then neofunctionalization of protein function to yield a c/A-Myb progenitor. The duplication of this progenitor was followed by subfunctionalization of gene expression to give rise to tissue-specific c-Myb and A-Myb genes.
Collapse
Affiliation(s)
- Colin J Davidson
- Departments of Pathology, Genetics, and Biology, Stanford University , Stanford, CA 94305-5324 , USA
| | | | | |
Collapse
|
25
|
Lorenzo PI, Brendeford EM, Gilfillan S, Gavrilov AA, Leedsak M, Razin SV, Eskeland R, Sæther T, Gabrielsen OS. Identification of c-Myb Target Genes in K562 Cells Reveals a Role for c-Myb as a Master Regulator. Genes Cancer 2012; 2:805-17. [PMID: 22393465 DOI: 10.1177/1947601911428224] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/08/2011] [Indexed: 11/17/2022] Open
Abstract
The c-Myb transcription factor is an important regulator of hematopoietic cell development. c-Myb is expressed in immature hematopoietic cells and plays a direct role in lineage fate selection, cell cycle progression, and differentiation of myeloid as well as B- and T-lymphoid progenitor cells. As a DNA-binding transcription factor, c-Myb regulates specific gene programs through activation of target genes. Still, our understanding of these programs is incomplete. Here, we report a set of novel c-Myb target genes, identified using a combined approach: specific c-Myb knockdown by 2 different siRNAs and subsequent global expression profiling, combined with the confirmation of direct binding of c-Myb to the target promoters by ChIP assays. The combination of these 2 approaches, as well as additional validation such as cloning and testing the promoters in reporter assays, confirmed that MYADM, LMO2, GATA2, STAT5A, and IKZF1 are target genes of c-Myb. Additional studies, using chromosome conformation capture, demonstrated that c-Myb target genes may directly interact with each other, indicating that these genes may be coordinately regulated. Of the 5 novel target genes identified, 3 are transcription factors, and one is a transcriptional co-regulator, supporting a role of c-Myb as a master regulator controlling the expression of other transcriptional regulators in the hematopoietic system.
Collapse
|
26
|
Kanei-Ishii C, Nomura T, Egoh A, Ishii S. Fbxw5 suppresses nuclear c-Myb activity via DDB1-Cul4-Rbx1 ligase-mediated sumoylation. Biochem Biophys Res Commun 2012; 426:59-64. [PMID: 22910413 DOI: 10.1016/j.bbrc.2012.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 11/26/2022]
Abstract
The c-myb proto-oncogene product (c-Myb) is degraded in response to Wnt-1 signaling. In this process, Fbxw7α, the F-box protein of the SCF complex, binds to c-Myb via its C-terminal WD40 domain, and induces the ubiquitination of c-Myb. Here, we report that Fbxw5, another F-box protein, enhances sumoylation of nuclear c-Myb. Fbxw5 enhanced c-Myb sumoylation via the DDB1-Cul4A-Rbx1 complex. Since the Fbxw5-DDB1-Cul4A-Rbx1 complex was shown to act as a ubiquitin ligase for tumor suppressor TSC2, our results suggest that this complex can function as a dual SUMO/ubiquitin ligase. Fbxw5, which is localized to both nucleus and cytosol, enhanced sumoylation of nuclear c-Myb and induced the localization of c-Myb to nuclear dot-like domains. Co-expression of Fbxw5 suppressed the trans-activation of c-myc promoter by wild-type c-Myb, but not by v-Myb, which lacks the sumoylation sites. These results suggest that multiple E3 ligases suppress c-Myb activity through sumoylation or ubiquitination, and that v-Myb is no longer subject to these negative regulations.
Collapse
Affiliation(s)
- Chie Kanei-Ishii
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | |
Collapse
|
27
|
Bujnicki T, Wilczek C, Schomburg C, Feldmann F, Schlenke P, Müller-Tidow C, Schmidt TJ, Klempnauer KH. Inhibition of Myb-dependent gene expression by the sesquiterpene lactone mexicanin-I. Leukemia 2011; 26:615-22. [PMID: 21986841 DOI: 10.1038/leu.2011.275] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The c-myb proto-oncogene encodes a transcription factor that is highly expressed in the progenitor cells of the hematopoietic system, where it regulates the expression of genes important for lineage determination, cell proliferation and differentiation. There is strong evidence that deregulation of c-myb expression is involved in the development of human tumors, particularly of certain types of leukemia, and breast and colon cancer. The c-Myb protein is therefore an interesting therapeutic target. Here, we have investigated the potential of natural sesquiterpene lactones (STLs), a class of compounds that are active constituents of a variety of medicinal plants, to suppress Myb-dependent gene expression. We have developed a test system that allows screening of compounds for their ability to interfere with the activation of Myb target genes. Using this assay system, we have identified the STL mexicanin-I as the first cell-permeable, low-molecular-weight inhibitor of Myb-induced gene expression.
Collapse
Affiliation(s)
- T Bujnicki
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Alm-Kristiansen AH, Lorenzo PI, Molværsmyr AK, Matre V, Ledsaak M, Sæther T, Gabrielsen OS. PIAS1 interacts with FLASH and enhances its co-activation of c-Myb. Mol Cancer 2011; 10:21. [PMID: 21338522 PMCID: PMC3050860 DOI: 10.1186/1476-4598-10-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 02/21/2011] [Indexed: 11/15/2022] Open
Abstract
Background FLASH is a huge nuclear protein involved in various cellular functions such as apoptosis signalling, NF-κB activation, S-phase regulation, processing of histone pre-mRNAs, and co-regulation of transcription. Recently, we identified FLASH as a co-activator of the transcription factor c-Myb and found FLASH to be tightly associated with active transcription foci. As a huge multifunctional protein, FLASH is expected to have many interaction partners, some which may shed light on its function as a transcriptional regulator. Results To find additional FLASH-associated proteins, we performed a yeast two-hybrid (Y2H) screening with FLASH as bait and identified the SUMO E3 ligase PIAS1 as an interaction partner. The association appears to involve two distinct interaction surfaces in FLASH. We verified the interaction by Y2H-mating, GST pulldowns, co-IP and ChIP. FLASH and PIAS1 were found to co-localize in nuclear speckles. Functional assays revealed that PIAS1 enhances the intrinsic transcriptional activity of FLASH in a RING finger-dependent manner. Furthermore, PIAS1 also augments the specific activity of c-Myb, and cooperates with FLASH to further co-activate c-Myb. The three proteins, FLASH, PIAS1, and c-Myb, are all co-localized with active RNA polymerase II foci, resembling transcription factories. Conclusions We conclude that PIAS1 is a common partner for two cancer-related nuclear factors, c-Myb and FLASH. Our results point to a functional cooperation between FLASH and PIAS1 in the enhancement of c-Myb activity in active nuclear foci.
Collapse
|
29
|
Quintana AM, Liu F, O'Rourke JP, Ness SA. Identification and regulation of c-Myb target genes in MCF-7 cells. BMC Cancer 2011; 11:30. [PMID: 21205319 PMCID: PMC3038977 DOI: 10.1186/1471-2407-11-30] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 01/25/2011] [Indexed: 12/18/2022] Open
Abstract
Background The c-Myb transcription factor regulates differentiation and proliferation in hematopoietic cells, stem cells and epithelial cells. Although oncogenic versions of c-Myb were first associated with leukemias, over expression or rearrangement of the c-myb gene is common in several types of solid tumors, including breast cancers. Expression of the c-myb gene in human breast cancer cells is dependent on estrogen stimulation, but little is known about the activities of the c-Myb protein or what genes it regulates in estrogen-stimulated cells. Methods We used chromatin immunoprecipitation coupled with whole genome promoter tiling microarrays to identify endogenous c-Myb target genes in human MCF-7 breast cancer cells and characterized the activity of c-Myb at a panel of target genes during different stages of estrogen deprivation and stimulation. Results By using different antibodies and different growth conditions, the c-Myb protein was found associated with over 10,000 promoters in MCF-7 cells, including many genes that encode cell cycle regulators or transcription factors and more than 60 genes that encode microRNAs. Several previously identified c-Myb target genes were identified, including CCNB1, MYC and CXCR4 and novel targets such as JUN, KLF4, NANOG and SND1. By studying a panel of these targets to validate the results, we found that estradiol stimulation triggered the association of c-Myb with promoters and that association correlated with increased target gene expression. We studied one target gene, CXCR4, in detail, showing that c-Myb associated with the CXCR4 gene promoter and activated a CXCR4 reporter gene in transfection assays. Conclusions Our results show that c-Myb associates with a surprisingly large number of promoters in human cells. The results also suggest that estradiol stimulation leads to large-scale, genome-wide changes in c-Myb activity and subsequent changes in gene expression in human breast cancer cells.
Collapse
Affiliation(s)
- Anita M Quintana
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | | | | | | |
Collapse
|
30
|
Zhou Y, Ness SA. Myb proteins: angels and demons in normal and transformed cells. Front Biosci (Landmark Ed) 2011; 16:1109-31. [PMID: 21196221 DOI: 10.2741/3738] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A key regulator of proliferation, differentiation and cell fate, the c-Myb transcription factor regulates the expression of hundreds of genes and is in turn regulated by numerous pathways and protein interactions. However, the most unique feature of c-Myb is that it can be converted into an oncogenic transforming protein through a few mutations that completely change its activity and specificity. The c-Myb protein is a myriad of interactions and activities rolled up in a protein that controls proliferation and differentiation in many different cell types. Here we discuss the background and recent progress that have led to a better understanding of this complex protein, and outline the questions that have yet to be answered.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | | |
Collapse
|
31
|
A functional SUMO-interacting motif in the transactivation domain of c-Myb regulates its myeloid transforming ability. Oncogene 2010; 30:212-22. [DOI: 10.1038/onc.2010.397] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Molvaersmyr AK, Saether T, Gilfillan S, Lorenzo PI, Kvaløy H, Matre V, Gabrielsen OS. A SUMO-regulated activation function controls synergy of c-Myb through a repressor-activator switch leading to differential p300 recruitment. Nucleic Acids Res 2010; 38:4970-84. [PMID: 20385574 PMCID: PMC2926607 DOI: 10.1093/nar/gkq245] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Synergy between transcription factors operating together on complex promoters is a key aspect of gene activation. The ability of specific factors to synergize is restricted by sumoylation (synergy control, SC). Focusing on the haematopoietic transcription factor c-Myb, we found evidence for a strong SC linked to SUMO-conjugation in its negative regulatory domain (NRD), while AMV v-Myb has escaped this control. Mechanistic studies revealed a SUMO-dependent switch in the function of NRD. When NRD is sumoylated, the activity of c-Myb is reduced. When sumoylation is abolished, NRD switches into being activating, providing the factor with a second activation function (AF). Thus, c-Myb harbours two AFs, one that is constitutively active and one in the NRD being SUMO-regulated (SRAF). This double AF augments c-Myb synergy at compound natural promoters. A similar SUMO-dependent switch was observed in the regulatory domains of Sp3 and p53. We show that the change in synergy behaviour correlates with a SUMO-dependent differential recruitment of p300 and a corresponding local change in histone H3 and H4 acetylation. We therefore propose a general model for SUMO-mediated SC, where SUMO controls synergy by determining the number and strength of AFs associated with a promoter leading to differential chromatin signatures.
Collapse
|
33
|
Matre V, Nordgård O, Alm-Kristiansen AH, Ledsaak M, Gabrielsen OS. HIPK1 interacts with c-Myb and modulates its activity through phosphorylation. Biochem Biophys Res Commun 2009; 388:150-4. [PMID: 19646965 DOI: 10.1016/j.bbrc.2009.07.139] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 07/27/2009] [Indexed: 12/31/2022]
Abstract
The transcription factor v-Myb is a potent inducer of myeloid leukaemias, and its cellular homologue c-Myb plays a crucial role in the regulation of haematopoiesis. In a yeast two-hybrid (Y2H) screening we identified the nuclear kinase HIPK1 as an interaction partner for human c-Myb. The interaction involves a C-terminal region of HIPK1, while a bipartite interaction surface was identified in c-Myb, including regions in its N-terminal DNA-binding domain as well as in its C-terminal region. HIPK1 and c-Myb co-localize in distinct nuclear foci upon co-transfection. c-Myb appears to be phosphorylated by HIPK1 in its negative regulatory domain as supported by both in vivo and in vitro data. A functional assay revealed that HIPK1 repressed the ability of c-Myb to activate a chromatin embedded target gene, mim-1, in haematopoetic cells. Our findings point to a novel link between an important kinase and a key regulator of haematopoiesis.
Collapse
Affiliation(s)
- Vilborg Matre
- Department of Molecular Biosciences, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
34
|
Kim KI, Baek SH. Small ubiquitin-like modifiers in cellular malignancy and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:265-311. [PMID: 19215907 DOI: 10.1016/s1937-6448(08)01807-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Small ubiquitin-like modifiers (SUMOs) mediate a variety of cellular functions of protein targets mainly in the nucleus but in other cellular compartments as well, and thereby participate in maintaining cellular homeostasis. SUMO system plays important roles in transcriptional regulation, DNA damage responses, maintaining genome integrity, and signaling pathways. Thus, in some cases, loss of regulated control on SUMOylation/deSUMOylation processes causes a defect in maintaining homeostasis and hence gives a cue to cancer development and progression. Furthermore, recent studies have revealed that SUMO system is involved in cancer metastasis. In this review, we will summarize the possible role of SUMO system in cancer development, progression, and metastasis and discuss future directions.
Collapse
Affiliation(s)
- Keun Il Kim
- Department of Biological Sciences, Research Center for Women's Disease, Sookmyung Women's University, Seoul, Korea
| | | |
Collapse
|
35
|
Alm-Kristiansen AH, Sæther T, Matre V, Gilfillan S, Dahle Ø, Gabrielsen OS. FLASH acts as a co-activator of the transcription factor c-Myb and localizes to active RNA polymerase II foci. Oncogene 2008; 27:4644-56. [DOI: 10.1038/onc.2008.105] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Chen D, Wang P, Lewis RL, Daigh CA, Ho C, Chen X, Thomson JA, Kendziorski C. A microarray analysis of the emergence of embryonic definitive hematopoiesis. Exp Hematol 2007; 35:1344-57. [PMID: 17761287 DOI: 10.1016/j.exphem.2007.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 04/19/2007] [Accepted: 06/06/2007] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Human embryonic stem (ES) cells provide a unique model for studying the development and function of human tissues and have proven utility in a number of areas. However, results from ES cell-based studies have been limited by the paucity of information available about early human hematopoietic development. METHODS To better understand early development of the hematopoietic lineage, we use microarray analysis to examine the temporal patterns of gene expression in embryoid bodies derived from human ES cells, focusing around the time of the emergence of definitive hematopoiesis. We use an empirical Bayes hierarchical modeling approach, called EBarrays, to classify genes into each of the possible temporal patterns of gene expression for five different time points, and correlate those patterns with the emergence of hematopoiesis. RESULTS We find a distinct group of genes previously identified as important in adult hematopoietic self-renewal (such as PIK3R1, ABCB1/MDR-1, RGS18, IRS1, SENP6/SUMO-1, and Wnt5A, etc.) temporally correlates with the emergence of the definitive hematopoiesis. Microarray-based results are further supported via flow cytometry and reverse transcription-polymerase chain reaction studies. CONCLUSION The novel genes demonstrating the same expression pattern as this group could further facilitate the understanding of the molecular mechanisms of embryonic hematopoiesis.
Collapse
Affiliation(s)
- Dong Chen
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Tillmanns S, Otto C, Jaffray E, Du Roure C, Bakri Y, Vanhille L, Sarrazin S, Hay RT, Sieweke MH. SUMO modification regulates MafB-driven macrophage differentiation by enabling Myb-dependent transcriptional repression. Mol Cell Biol 2007; 27:5554-64. [PMID: 17548468 PMCID: PMC1952098 DOI: 10.1128/mcb.01811-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During the execution of differentiation programs, lineage-specific transcription factors are in competition with antagonistic factors that drive progenitor proliferation. Thus, the myeloid transcription factor MafB promotes macrophage differentiation of myeloid progenitors, but a constitutively active Myb transcription factor (v-Myb) can maintain proliferation and block differentiation. Little is known, however, about the regulatory mechanisms that control such competing activities. Here we report that the small ubiquitin-like protein SUMO-1 can modify MafB in vitro and in vivo on lysines 32 and 297. The absence of MafB SUMO modification increased MafB-driven transactivation and macrophage differentiation potential but inhibited cell cycle progression and myeloid progenitor growth. Furthermore, we observed that direct repression of MafB transactivation by v-Myb was strictly dependent on MafB SUMO modification. Consequently, a SUMOylation-deficient MafB K32R K297R (K32,297R) mutant could specify macrophage fate even after activation of inducible Myb alleles and resist their differentiation-inhibiting activity. Our findings suggest that SUMO modification of MafB affects the balance between myeloid progenitor expansion and terminal macrophage differentiation by controlling MafB transactivation capacity and susceptibility to Myb repression. SUMO modification of lineage-specific transcription factors may thus modulate transcription factor antagonism to control tissue homeostasis in the hematopoietic system.
Collapse
Affiliation(s)
- Silke Tillmanns
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Saether T, Berge T, Ledsaak M, Matre V, Alm-Kristiansen AH, Dahle O, Aubry F, Gabrielsen OS. The chromatin remodeling factor Mi-2alpha acts as a novel co-activator for human c-Myb. J Biol Chem 2007; 282:13994-4005. [PMID: 17344210 DOI: 10.1074/jbc.m700755200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The c-Myb protein belongs to a group of early hematopoietic transcription factors that are important for progenitor generation and proliferation. These factors have been hypothesized to participate in establishing chromatin patterns specific for hematopoietic genes. In a two-hybrid screening we identified the chromatin remodeling factor Mi-2alpha as an interaction partner for human c-Myb. The main interacting domains were mapped to the N-terminal region of Mi-2alpha and the DNA-binding domain of c-Myb. Surprisingly, functional analysis revealed that Mi-2alpha, previously studied as a subunit in the NuRD co-repressor complex, enhanced c-Myb-dependent reporter activation. Consistently, knock-down of endogenous Mi-2alpha in c-Myb-expressing K562 cells, led to down-regulation of the c-Myb target genes NMU and ADA. When wild-type and helicase-dead Mi-2alpha were compared, the Myb-Mi-2alpha co-activation appeared to be independent of the ATPase/DNA helicase activity of Mi-2alpha. The rationale for the unexpected co-activator function seems to lie in a dual function of Mi-2alpha, by which this factor is able to repress transcription in a helicase-dependent and activate in a helicase-independent fashion, as revealed by Gal4-tethering experiments. Interestingly, desumoylation of c-Myb potentiated the Myb-Mi-2alpha transactivational co-operation, as did co-transfection with p300.
Collapse
Affiliation(s)
- Thomas Saether
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sramko M, Markus J, Kabát J, Wolff L, Bies J. Stress-induced inactivation of the c-Myb transcription factor through conjugation of SUMO-2/3 proteins. J Biol Chem 2006; 281:40065-75. [PMID: 17077080 DOI: 10.1074/jbc.m609404200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modifications, such as phosphorylation, acetylation, ubiquitination, and SUMOylation, play an important role in regulation of the stability and the transcriptional activity of c-Myb. Conjugation of small ubiquitin-like modifier type 1 (SUMO-1) to lysines in the negative regulatory domain strongly suppresses its transcriptional activity. Here we report conjugation of two other members of the SUMO protein family, SUMO-2 and SUMO-3, and provide evidence that this post-translational modification negatively affects transcriptional activity of c-Myb. Conjugation of SUMO-2/3 proteins is strongly enhanced by several different cellular stresses and occurs primarily on two lysines, Lys(523) and Lys(499). These lysines are in the negative regulatory domain of c-Myb and also serve as acceptor sites for SUMO-1. Stress-induced SUMO-2/3 conjugation is very rapid and independent of activation of stress-activated protein kinases of the SAPK and JNK families. PIAS-3 protein was identified as a new c-Myb-specific SUMO-E3 ligase that both catalyzes conjugation of SUMO-2/3 proteins to c-Myb and exerts a negative effect on c-Myb-induced reporter gene activation. Interestingly, co-expression of a SPRING finger mutant of PIAS-3 significantly suppresses SUMOylation of c-Myb under stress. These results argue that PIAS-3 SUMO-E3 ligase plays a critical role in stress-induced conjugation of SUMO-2/3 to c-Myb. We also detected stress-induced conjugation of SUMO-2/3 to c-Myb in hematopoietic cells at the levels of endogenously expressed proteins. Furthermore, according to the negative role of SUMO conjugation on c-Myb capacity, we have observed rapid stress-induced down-regulation of the targets genes c-myc and bcl-2 of c-Myb. Our findings demonstrate that SUMO-2/3 proteins conjugate to c-Myb and negatively regulate its activity in cells under stress.
Collapse
MESH Headings
- Animals
- COS Cells
- Cell Line, Transformed
- Cell Line, Tumor
- Chlorocebus aethiops
- Down-Regulation/physiology
- Leukemia, Erythroblastic, Acute/enzymology
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/metabolism
- Lysine/genetics
- MAP Kinase Signaling System/genetics
- Mice
- Mutagenesis, Site-Directed
- Osmotic Pressure
- Protein Processing, Post-Translational/genetics
- Proto-Oncogene Proteins c-myb/antagonists & inhibitors
- Proto-Oncogene Proteins c-myb/genetics
- Proto-Oncogene Proteins c-myb/metabolism
- Proto-Oncogene Proteins c-myb/physiology
- Small Ubiquitin-Related Modifier Proteins/metabolism
- Small Ubiquitin-Related Modifier Proteins/physiology
- Stress, Physiological/enzymology
- Stress, Physiological/genetics
- Stress, Physiological/metabolism
- Trans-Activators/antagonists & inhibitors
- Trans-Activators/metabolism
- Ubiquitins/metabolism
- Ubiquitins/physiology
Collapse
Affiliation(s)
- Marek Sramko
- Center of Molecular Medicine, Cancer Research Institute, Slovak Academy of Sciences, 833 91 Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
40
|
Sato Y, Miyake K, Kaneoka H, Iijima S. Sumoylation of CCAAT/enhancer-binding protein alpha and its functional roles in hepatocyte differentiation. J Biol Chem 2006; 281:21629-21639. [PMID: 16735515 DOI: 10.1074/jbc.m600852200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sumoylation of CCAAT/enhancer-binding proteins (C/EBPs) by small ubiquitin-related modifier-1 (SUMO-1) has been reported recently. In this study, we investigated the functional role of the sumoylation of C/EBPalpha in the differentiation of hepatocytes. The amount of sumoylated C/EBPalpha gradually decreased during the differentiation, which suggests that the sumoylation is important for the control of growth/differentiation especially in the fetal liver. To analyze the function of the sumoylation of C/EBPalpha in liver-specific gene expression, we studied its effects on the expression of the albumin gene. The C/EBPalpha-mediated transactivation of the albumin gene was reduced by sumoylation of C/EBPalpha in primary fetal hepatocytes. The enhancement of C/EBPalpha-mediated transactivation by BRG1, a core subunit of the SWI/SNF chromatin remodeling complex, was hampered by sumoylation in a luciferase reporter assay. In addition, we discovered that sumoylation of C/EBPalpha blocked its inhibitory effect on cell proliferation by leading to the disruption of a proliferation-inhibitory complex because of a failure of the sumoylated C/EBPalpha to interact with BRG1. BRG1 was recruited to the dihydrofolate reductase promoter in nonproliferating C33a cells but was not detected in proliferating cells where C/EBPalpha, BRG1, and SUMO-1 were overexpressed. This result suggests that BRG1 down-regulates the expression of the dihydrofolate reductase gene. These findings provide the insight that SUMO acts as a space regulator, which affects protein-protein interactions.
Collapse
Affiliation(s)
- Yoshitaka Sato
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Katsuhide Miyake
- Ecotopia Science Institute, Nagoya University, Nagoya 464-8603, Japan.
| | - Hidenori Kaneoka
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Shinji Iijima
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
41
|
Nishida T, Terashima M, Fukami K. PIASy-mediated repression of the Ets-1 is independent of its sumoylation. Biochem Biophys Res Commun 2006; 345:1536-46. [PMID: 16729975 DOI: 10.1016/j.bbrc.2006.05.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 05/10/2006] [Indexed: 01/06/2023]
Abstract
The transcription factor Ets-1 is involved in many physiological processes, including angiogenesis, hematopoietic development, and tumor progression, and its activity can be regulated by interactions with other proteins and post-translational modifications, such as phosphorylation. Here, we show that Ets-1 is a target for SUMO modification both in vivo and in vitro. Mutational analysis reveals that sumoylation of Ets-1 occurs at two lysine residues at amino acid positions 15 and 227, which lie within previously identified synergy control motifs. Replacement of sumoylation site lysines with arginine or overexpression of SENP1, a desumoylation enzyme, enhances the transactivation ability of Ets-1. Furthermore, we identify PIASy as a novel interaction partner and a specific SUMO-E3 ligase of Ets-1. PIASy represses the Ets-1-dependent transcription, and its repression is independent of the sumoylation status of Ets-1, but it is dependent on the sumoylation of other factors.
Collapse
Affiliation(s)
- Tamotsu Nishida
- School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Japan.
| | | | | |
Collapse
|
42
|
Morita Y, Kanei-Ishii C, Nomura T, Ishii S. TRAF7 sequesters c-Myb to the cytoplasm by stimulating its sumoylation. Mol Biol Cell 2005; 16:5433-44. [PMID: 16162816 PMCID: PMC1266438 DOI: 10.1091/mbc.e05-08-0731] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small ubiquitin-related modifiers (SUMOs) are proteins that are posttranslationally conjugated to diverse proteins. The c-myb proto-oncogene product (c-Myb) regulates proliferation and differentiation of hematopoietic cells. PIASy is the only known SUMO E3 ligase for c-Myb. Here, we report that TRAF7 binds to c-Myb and stimulates its sumoylation. TRAF7 bound to the DNA-binding domain of c-Myb via its WD40 repeats. TRAF7 has an E3 ubiquitin ligase activity for self-ubiquitination, but TRAF7 also stimulated the sumoylation of c-Myb at Lys-523 and Lys-499, which are the same sites as those used for PIASy-induced sumoylation. TRAF7 inhibited trans-activation induced by wild-type c-Myb, but not by the sumoylation site mutant of c-Myb. The expression of both c-myb and TRAF7 was down-regulated during differentiation of M1 cells. Endogenous TRAF7 localized to both the cytoplasm and nucleus of M1 cells. Consistent with this, significant amounts of sumoylated c-Myb were found in the cytoplasm of M1 cells, whereas nonsumoylated c-Myb was found predominantly in the nucleus. Overexpressed TRAF7 was localized in the cytoplasm of CV-1 cells, and sequestered c-Myb and SUMO1 in the cytosol, whereas PIASy was localized in the nucleus. Thus, TRAF7 negatively regulates c-Myb activity by sequestering c-Myb to the cytosol via sumoylation.
Collapse
Affiliation(s)
- Yutaka Morita
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | |
Collapse
|
43
|
Shuai K, Liu B. Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol 2005; 5:593-605. [PMID: 16056253 DOI: 10.1038/nri1667] [Citation(s) in RCA: 321] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The protein inhibitor of activated STAT (PIAS) family of proteins has been proposed to regulate the activity of many transcription factors, including signal transducer and activator of transcription proteins (STATs), nuclear factor-kappaB, SMA- and MAD-related proteins (SMADs), and the tumour-suppressor protein p53. PIAS proteins regulate transcription through several mechanisms, including blocking the DNA-binding activity of transcription factors, recruiting transcriptional corepressors or co-activators, and promoting protein sumoylation. Recent genetic studies support an in vivo function for PIAS proteins in the regulation of innate immune responses. In this article, we review the current understanding of the molecular basis, specificity and physiological roles of PIAS proteins in the regulation of gene-activation pathways in the immune system.
Collapse
Affiliation(s)
- Ke Shuai
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
44
|
Ulrich HD. Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol 2005; 15:525-32. [PMID: 16125934 DOI: 10.1016/j.tcb.2005.08.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 06/21/2005] [Accepted: 08/11/2005] [Indexed: 01/08/2023]
Abstract
Posttranslational modification by ubiquitin and SUMO is recognized as an effective means of controlling the stability, localization or activity of intracellular proteins, thereby contributing to the regulation of many biological processes. Over the past few years, it has become apparent that the two modification systems often communicate and jointly affect the properties of common substrate proteins, in some cases by being targeted to the same site. However, although SUMO and ubiquitin might have very different effects on a given target, their actions can rarely be explained by simple competition. This article gives an overview of target proteins that can serve as substrates for both SUMO and ubiquitin to highlight the diversity of regulatory strategies that result from the crosstalk between the two modification systems.
Collapse
Affiliation(s)
- Helle D Ulrich
- Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts, UK.
| |
Collapse
|
45
|
Mencía M, de Lorenzo V. Functional transplantation of the sumoylation machinery into Escherichia coli. Protein Expr Purif 2005; 37:409-18. [PMID: 15358364 DOI: 10.1016/j.pep.2004.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 07/01/2004] [Indexed: 11/24/2022]
Abstract
Modification by SUMO proteins appears to be very common in eukaryotic cells. Many proteins have been reported to be sumoylated, at least under certain circumstances, in vivo, and new examples get published every month. On the other hand, sumoylation is, in essence, a way to construct branched proteins or protein fusions. Obtention of pure sumoylated proteins from eukaryotic cells is not easy because of the dynamic nature of this modification and the large number of sumoylated proteins in vivo. Production of sumoylated proteins in vitro requires the previous purification of most of the components of the pathway, and has the typical limitations of such systems. In this paper, we describe a method to quantitatively produce sumoylated proteins in vivo in Escherichia coli as a way to obtain large quantities of specifically sumoylated target proteins with a high degree of purity, to generate fusion proteins not limited to N- or C-end additions, and to polymerize proteins by covalent linkage.
Collapse
Affiliation(s)
- Mario Mencía
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|
46
|
Rosas-Acosta G, Langereis MA, Deyrieux A, Wilson VG. Proteins of the PIAS family enhance the sumoylation of the papillomavirus E1 protein. Virology 2005; 331:190-203. [PMID: 15582666 PMCID: PMC3481860 DOI: 10.1016/j.virol.2004.10.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 10/04/2004] [Accepted: 10/08/2004] [Indexed: 11/20/2022]
Abstract
Sumoylation of the papillomavirus (PV) origin binding helicase E1 protein is critical for its function. Consequently, factors modulating the sumoylation of E1 could ultimately alter the outcome of a papillomavirus infection. We investigated the role played by phosphorylation and two known SUMO E3 ligases, RanBP2 and PIAS proteins, on the sumoylation of E1. E1 sumoylation was unaffected by phosphorylation as both wild-type and pseudo-phosphorylation mutants of BPV E1 exhibited similar sumoylation profiles. RanBP2 bound to BPV E1, but not to HPV11 E1, and lacked sumoylation enhancing activity for either E1. In contrast, proteins of the PIAS family (except PIASy) bound to both BPV and HPV11 E1 and stimulated their sumoylation. The structural integrity of the RING finger domain of the PIAS proteins was required for their E3 SUMO ligase activity on PV E1 sumoylation but was dispensable for their PV E1 binding activity. Miz1, the PIAS protein exerting the strongest E1 sumoylation enhancing activity, favored SUMO1 versus SUMO2 as the modifier and was shown to be transcribed in a keratinocyte cell line. This study indicates PIAS proteins as possible modulators of PV E1 sumoylation during papillomavirus infections.
Collapse
Affiliation(s)
- Germán Rosas-Acosta
- Department of Medical Microbiology and Immunology, College of Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
47
|
Leight ER, Glossip D, Kornfeld K. Sumoylation of LIN-1 promotes transcriptional repression and inhibition of vulval cell fates. Development 2005; 132:1047-56. [PMID: 15689373 DOI: 10.1242/dev.01664] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The LIN-1 ETS transcription factor inhibits vulval cell fates during Caenorhabditis elegans development. We demonstrate that LIN-1 interacts with UBC-9, a small ubiquitin-related modifier (SUMO) conjugating enzyme. This interaction is mediated by two consensus sumoylation motifs in LIN-1. Biochemical studies showed that LIN-1 is covalently modified by SUMO-1. ubc-9 and smo-1, the gene encoding SUMO-1, inhibit vulval cell fates and function at the level of lin-1, indicating that sumoylation promotes LIN-1 inhibition of vulval cell fates. Sumoylation of LIN-1 promoted transcriptional repression and mediated an interaction with MEP-1, a protein previously shown to associate with the nucleosome remodeling and histone deacetylation (NuRD) transcriptional repression complex. Genetic studies showed that mep-1 inhibits vulval cell fates and functions at the level of lin-1. We propose that sumoylation of LIN-1 mediates an interaction with MEP-1 that contributes to transcriptional repression of genes that promote vulval cell fates. These studies identify a molecular mechanism for SUMO-mediated transcriptional repression.
Collapse
Affiliation(s)
- Elizabeth R Leight
- Department of Molecular Biology and Pharmacology Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
48
|
Abstract
The small ubiquitin-like modifier (SUMO) is covalently attached to lysine residues in target proteins and in doing so changes the properties of the modified protein. Here we examine the role of SUMO modification in transcriptional regulation. SUMO addition to components of the transcriptional apparatus does not have a common consequence as it can both activate and repress transcription. In most cases, however, SUMO modification of transcription factors leads to repression and various models to explain this, ranging from retention in nuclear bodies to recruitment of histone deacetylases are discussed.
Collapse
Affiliation(s)
- David W H Girdwood
- Centre for Biomolecular Sciences, School of Biology, University of St. Andrews, North Haugh, St Andrews KY16 9ST, UK
| | | | | |
Collapse
|
49
|
Zhang J, Xu LG, Han KJ, Wei X, Shu HB. PIASy represses TRIF-induced ISRE and NF-kappaB activation but not apoptosis. FEBS Lett 2004; 570:97-101. [PMID: 15251447 DOI: 10.1016/j.febslet.2004.05.081] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 05/10/2004] [Indexed: 12/21/2022]
Abstract
The TIR domain-containing adapter protein TRIP is critically involved in TLR3-induced IFN-beta production through activation of NF-kappaB and ISRE. In addition, TRIF also induces apoptosis when overexpressed in 293 cells. In this report, we demonstrate that PIASy, a member of the PIAS SUMO-ligase family, interacts with TRIP, IRF-3 and IRF-7. In reporter gene assays, PIASy dramatically inhibits TRIF-induced NF-kappaB, ISRE and IFN-beta activation but not TRIF-induced apoptosis. Furthermore, PIASy also inhibits IRF-3, IRF-7 and Sendai virus-induced ISRE activation. Our results suggest that PIASy is an inhibitor of TRIF-induced ISRE and NF-kappaB activation but not apoptosis.
Collapse
Affiliation(s)
- Jun Zhang
- National Jewish Medical and Research Center, 1400 Jackson Street, k516c, Denver, CO 80206, USA
| | | | | | | | | |
Collapse
|
50
|
Chen WY, Lee WC, Hsu NC, Huang F, Chung BC. SUMO Modification of Repression Domains Modulates Function of Nuclear Receptor 5A1 (Steroidogenic Factor-1). J Biol Chem 2004; 279:38730-5. [PMID: 15192092 DOI: 10.1074/jbc.m405006200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroidogenic factor 1 (SF-1 or NR5A1), is a Ftz-F1 member of the nuclear receptor superfamily that plays essential roles in endocrine development, steroidogenesis, and gonad differentiation. We investigated modifications that control SF-1 function and found that SF-1 could be conjugated by SUMO-1 both in vitro and in vivo. SF-1 was modified predominantly at Lys(194) and much less at Lys(119) when free SUMO-1 was supplied. Mutations of Lys(194) and Lys(119) enhanced transcriptional activity of SF-1, although the DNA binding activity of SF-1 was not affected. Sequences around Lys(194) and Lys(119) both repressed transcription intrinsically. The Lys(194) motif repressed transcription more efficiently than the Lys(119) domain, consistent with its ability to be a better substrate for SUMO conjugation. Thus, SUMO modification of SF-1 correlates with transcriptional repression. Wild-type but not conjugation-deficient SF-1 was localized at the nuclear speckles together with SUMO-1. Thus, SUMO-1 conjugation could also target SF-1 into nuclear speckles. Collectively, these results suggest that SUMO modification at the repression domains targets SF-1 to nuclear speckles; this could be an important mechanism by which SF-1 is regulated.
Collapse
Affiliation(s)
- Wei-Yi Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | | | | | | | | |
Collapse
|