1
|
Szöllősi D, Chiba P, Szakacs G, Stockner T. Conversion of chemical to mechanical energy by the nucleotide binding domains of ABCB1. Sci Rep 2020; 10:2589. [PMID: 32054924 PMCID: PMC7018802 DOI: 10.1038/s41598-020-59403-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 01/13/2023] Open
Abstract
P-glycoprotein (ABCB1) is an important component of barrier tissues that extrudes a wide range of chemically unrelated compounds. ABCB1 consists of two transmembrane domains forming the substrate binding and translocation domain, and of two cytoplasmic nucleotide binding domains (NBDs) that provide the energy by binding and hydrolyzing ATP. We analyzed the mechanistic and energetic properties of the NBD dimer via molecular dynamics simulations. We find that MgATP stabilizes the NBD dimer through strong attractive forces by serving as an interaction hub. The irreversible ATP hydrolysis step converts the chemical energy stored in the phosphate bonds of ATP into potential energy. Following ATP hydrolysis, interactions between the NBDs and the ATP hydrolysis products MgADP + Pi remain strong, mainly because Mg2+ forms stabilizing interactions with ADP and Pi. Despite these stabilizing interactions MgADP + Pi are unable to hold the dimer together, which becomes separated by avid interactions of MgADP + Pi with water. ATP binding to the open NBDs and ATP hydrolysis in the closed NBD dimer represent two steps of energy input, each leading to the formation of a high energy state. Relaxation from these high energy states occurs through conformational changes that push ABCB1 through the transport cycle.
Collapse
Affiliation(s)
- Dániel Szöllősi
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Waehringerstr. 13A, 1090, Vienna, Austria
| | - Peter Chiba
- Medical University of Vienna, Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Waehringerstr. 10, 1090, Vienna, Austria
| | - Gergely Szakacs
- Medical University of Vienna, Institute of Cancer Research, Borschkegasse 8A, 1090, Vienna, Austria
| | - Thomas Stockner
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Waehringerstr. 13A, 1090, Vienna, Austria.
| |
Collapse
|
2
|
de Marcos Lousa C, Dietrich D, Johnson B, Baldwin S, Holdsworth M, Theodoulou FL, Baker A. The NBDs that wouldn't die. Commun Integr Biol 2014. [DOI: 10.4161/cib.7621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
3
|
Ford RC, Kamis AB, Kerr ID, Callaghan R. The ABC Transporters: Structural Insights into Drug Transport. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/9783527627424.ch1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
4
|
Crowley E, O'Mara ML, Reynolds C, Tieleman DP, Storm J, Kerr ID, Callaghan R. Transmembrane helix 12 modulates progression of the ATP catalytic cycle in ABCB1. Biochemistry 2009; 48:6249-58. [PMID: 19456124 DOI: 10.1021/bi900373x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multidrug efflux pumps, such as P-glycoprotein (ABCB1), present major barriers to the success of chemotherapy in a number of clinical settings. Molecular details of the multidrug efflux process by ABCB1 remain elusive, in particular, the interdomain communication associated with bioenergetic coupling. The present investigation has focused on the role of transmembrane helix 12 (TM12) in the multidrug efflux process of ABCB1. Cysteine residues were introduced at various positions within TM12, and their effect on ATPase activity, nucleotide binding, and drug interaction were assessed. Mutation of several residues within TM12 perturbed the maximal ATPase activity of ABCB1, and the underlying cause was a reduction in basal (i.e., drug-free) hydrolysis of the nucleotide. Two of the mutations (L976C and F978C) were found to reduce the binding of [gamma-(32)P]-azido-ATP to ABCB1. In contrast, the A980C mutation within TM12 enhanced the rate of ATP hydrolysis; once again, this was due to modified basal activity. Several residues also caused reductions in the potency of stimulation of ATP hydrolysis by nicardipine and vinblastine, although the effects were independent of changes in drug binding per se. Overall, the results indicate that TM12 plays a key role in the progression of the ATP hydrolytic cycle in ABCB1, even in the absence of the transported substrate.
Collapse
Affiliation(s)
- Emily Crowley
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
5
|
Orelle C, Gubellini F, Durand A, Marco S, Lévy D, Gros P, Di Pietro A, Jault JM. Conformational change induced by ATP binding in the multidrug ATP-binding cassette transporter BmrA. Biochemistry 2008; 47:2404-12. [PMID: 18215075 DOI: 10.1021/bi702303s] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ATP-binding cassette (ABC) transporters are involved in the transport of a wide variety of substrates, and ATP-driven dimerization of their nucleotide binding domains (NBDs) has been suggested to be one of the most energetic steps of their catalytic cycle. Taking advantage of the propensity of BmrA, a bacterial multidrug resistance ABC transporter, to form stable, highly ordered ring-shaped structures [Chami et al. (2002) J. Mol. Biol. 315, 1075-1085], we show here that addition of ATP in the presence of Mg2+ prevented ring formation or destroyed the previously formed rings. To pinpoint the catalytic step responsible for such an effect, two classes of hydrolysis-deficient mutants were further studied. In contrast to hydrolytically inactive glutamate mutants that behaved essentially as the wild-type, lysine Walker A mutants formed ring-shaped structures even in the presence of ATP-Mg. Although the latter mutants still bound ATP-Mg, and even slowly hydrolyzed it for the K380R mutant, they were most likely unable to undergo a proper NBD dimerization upon ATP-Mg addition. The ATP-driven dimerization step, which was still permitted in glutamate mutants and led to a stable conformation suitable to monitor the growth of 2D crystals, appeared therefore responsible for destabilization of the BmrA ring structures. Our results provide direct visual evidence that the ATP-induced NBD dimerization triggers a conformational change large enough in BmrA to destabilize the rings, which is consistent with the assumption that this step might constitute the "power stroke" for ABC transporters.
Collapse
Affiliation(s)
- Cédric Orelle
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-Université de Lyon 1 and IFR 128 BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367 Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Lawson J, O'Mara ML, Kerr ID. Structure-based interpretation of the mutagenesis database for the nucleotide binding domains of P-glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:376-91. [PMID: 18035039 DOI: 10.1016/j.bbamem.2007.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/12/2007] [Accepted: 10/25/2007] [Indexed: 12/15/2022]
Abstract
P-glycoprotein (P-gp) is the most intensively studied eukaryotic ATP binding cassette (ABC) transporter, due to its involvement in the multidrug resistance phenotype of a number of cancers. In common with most ABC transporters, P-gp is comprised of two transmembrane domains (TMDs) and two nucleotide binding domains (NBD), the latter coupling ATP hydrolysis with substrate transport (efflux in the case of P-gp). Biochemical investigations over the past twenty years have attempted to unlock mechanistic aspects of P-glycoprotein through scanning and site-directed mutagenesis of both the TMDs and the NBDs. Contemporaneously, crystallographers have elucidated the atomic structure of numerous ABC transporter NBDs, as well as the intact structure (i.e. NBDs and TMDs) of a distantly related ABC-exporter Sav1866. Significantly, the structure of P-gp remains unknown, and only low resolution electron microscopy data exists. Within the current manuscript we employ crystallographic data for homologous proteins, and a molecular model for P-gp, to perform a structural interpretation of the existing "mutagenesis database" for P-gp NBDs. Consequently, this will enable testable predictions to be made that will result in further in-roads into our understanding of this clinically important drug pump.
Collapse
Affiliation(s)
- J Lawson
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | |
Collapse
|
7
|
Storm J, O'Mara ML, Crowley EH, Peall J, Tieleman DP, Kerr ID, Callaghan R. Residue G346 in transmembrane segment six is involved in inter-domain communication in P-glycoprotein. Biochemistry 2007; 46:9899-910. [PMID: 17696319 DOI: 10.1021/bi700447p] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multidrug transporters such as P-glycoprotein require considerable inter-domain communication to couple energy utilization with substrate translocation. Elucidation of the regions or residues involved in these communication pathways is a key step in the eventual molecular description of multidrug transport. We used cysteine-scanning mutagenesis to probe the functional involvement of residues along the cytoplasmic half of transmembrane segment 6 (TM6) and its extension toward the nucleotide binding domain. The mutation of one residue (G346C) in this segment adversely affected drug transport in cells. Further investigation using purified protein revealed that the underlying biochemical effect was a reduction in basal ATP hydrolysis. This G346C mutation also affected the stimulation of ATPase activity in a drug dependent manner but had no effect on drug binding, ATP binding, or ADP release. Homology modeling of P-glycoprotein indicated that the G346C mutation caused a steric interaction between TM5 and TM6, thereby precluding a helical movement required to support ATP hydrolysis.
Collapse
Affiliation(s)
- Janet Storm
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
8
|
Jha S, Karnani N, Lynn AM, Prasad R. Covalent modification of cysteine 193 impairs ATPase function of nucleotide-binding domain of a Candida drug efflux pump. Biochem Biophys Res Commun 2003; 310:869-75. [PMID: 14550284 DOI: 10.1016/j.bbrc.2003.09.094] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-ethylmaleimide (NEM) impairs the ATPase function of N-terminal NBD of Candida drug resistance gene product Cdr1p. To identify the reactive cysteine(s) for such a contribution, we adopted a three-arm approach that included covalent modification, cysteine mutagenesis, and structure homology modeling. The covalent modification results clearly indicate the ability of NEM and iodoacetic acid (IAA) to potently inhibit the ATPase activity of N-terminal NBD. Since this domain contains five cysteine residues in its sequence, we mutated each and found four of these (C325A, C363A, C402A, and C462A) to stay sensitive to NEM/IAA modification and influence ATPase activity, while C193A mutation completely abrogated the catalytic function. The structural homology modeling data further validate these biochemical findings by ruling out any plausible interactions within the cysteine residues, and deriving the importance of Cys-193 in lying at a bond length clearly feasible to interact with ATP and divalent cation to critically influence ATP hydrolysis.
Collapse
Affiliation(s)
- Sudhakar Jha
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | |
Collapse
|
9
|
Kerr ID, Berridge G, Linton KJ, Higgins CF, Callaghan R. Definition of the domain boundaries is critical to the expression of the nucleotide-binding domains of P-glycoprotein. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2003; 32:644-54. [PMID: 12830334 DOI: 10.1007/s00249-003-0327-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Accepted: 05/02/2003] [Indexed: 10/26/2022]
Abstract
Heterologous expression of domains of eukaryotic proteins is frequently associated with formation of inclusion bodies, consisting of aggregated mis-folded protein. This phenomenon has proved a significant barrier to the characterization of domains of eukaryotic ATP binding cassette (ABC) transporters. We hypothesized that the solubility of heterologously expressed nucleotide binding domains (NBDs) of ABC transporters is dependent on the definition of the domain boundaries. In this paper we have defined a core NBD, and tested the effect of extensions to and deletions of this core domain on protein expression. Of 10 NBDs constructed, only one was expressed as a soluble protein in Escherichia coli, with expression of the remaining NBDs being associated with inclusion body formation. The soluble NBD protein we have obtained corresponds to residues 386-632 of P-glycoprotein and represents an optimally defined domain. The NBD has been isolated and purified to 95% homogeneity by a two-step purification protocol, involving affinity chromatography and gel filtration. Although showing no detectable ATP hydrolysis, the protein retains specific ATP binding and has a secondary structure compatible with X-ray crystallographic data on bacterial NBDs. We have interpreted our results in terms of homology models, which suggest that the N-terminal NBD of P-glycoprotein can be produced as a stable, correctly folded, isolate domain with judicious design of the expression construct.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/classification
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Adenosine Triphosphate/chemistry
- Adenosine Triphosphate/metabolism
- Amino Acid Sequence
- Escherichia coli/chemistry
- Escherichia coli/metabolism
- Molecular Sequence Data
- Nucleotides/chemistry
- Nucleotides/metabolism
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Sequence Analysis, Protein/methods
- Sequence Homology, Amino Acid
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Ian D Kerr
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| | | | | | | | | |
Collapse
|
10
|
Gabriel MP, Storm J, Rothnie A, Taylor AM, Linton KJ, Kerr ID, Callaghan R. Communication between the nucleotide binding domains of P-glycoprotein occurs via conformational changes that involve residue 508. Biochemistry 2003; 42:7780-9. [PMID: 12820887 DOI: 10.1021/bi0341049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our aim is to provide molecular understanding of the mechanisms underlying the (i) interaction between the two nucleotide binding domains (NBDs) and (ii) coupling between NBDs and transmembrane domains within P-glycoprotein (Pgp) during a transport cycle. To facilitate this, we have introduced a number of unique cysteine residues at surface exposed positions (E393C, S452C, I500C, N508C, and K578C) in the N-terminal NBD of Pgp, which had previously been engineered to remove endogenous cysteines. Positions of the mutations were designed using a model based on crystallographic features of prokaryotic NBDs. The single cysteine mutants were expressed in insect cells using recombinant baculovirus and the proteins purified by metal affinity chromatography by virtue of a polyhistidine tag. None of the introduced cysteine residues perturbed the function of Pgp as judged by the characteristics of drug stimulated ATP hydrolysis. The role of residues at each of the introduced sites in the catalytic cycle of Pgp was investigated by the effect of covalent conjugation with N-ethyl-maleimide (NEM). All but one mutation (K578C) was accessible to labeling with [(3)H]-NEM. However, perturbation of ATPase activity was only observed for the derivitized N508C isoform. The principle functional manifestation was a marked inhibition of the "basal" rate of ATP hydrolysis. Neither the extent nor potency to which a range of drugs could affect the ATPase activity were altered in the NEM conjugated N508C isoform. The results imply that the accessibility of residue 508, located in the alpha-helical subdomain of NBD1 in Pgp, is altered by the conformational changes that occur during ATP hydrolysis.
Collapse
Affiliation(s)
- Mark P Gabriel
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, UK
| | | | | | | | | | | | | |
Collapse
|