1
|
Naganawa R, Zhao H, Takano Y, Maeki M, Tokeshi M, Harashima H, Yamada Y. Investigation of the Nanoparticulation Method and Cell-Killing Effect following the Mitochondrial Delivery of Hydrophobic Porphyrin-Based Photosensitizers. Int J Mol Sci 2024; 25:4294. [PMID: 38673875 PMCID: PMC11050504 DOI: 10.3390/ijms25084294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Photodynamic therapy is expected to be a less invasive treatment, and strategies for targeting mitochondria, the main sources of singlet oxygen, are attracting attention to increase the efficacy of photodynamic therapy and reduce its side effects. To date, we have succeeded in encapsulating the photosensitizer rTPA into MITO-Porter (MP), a mitochondria-targeted Drug Delivery System (DDS), aimed at mitochondrial delivery of the photosensitizer while maintaining its activity. In this study, we report the results of our studies to alleviate rTPA aggregation in an effort to improve drug efficacy and assess the usefulness of modifying the rTPA side chain to improve the mitochondrial retention of MITO-Porter, which exhibits high therapeutic efficacy. Conventional rTPA with anionic side chains and two rTPA analogs with side chains that were converted to neutral or cationic side chains were encapsulated into MITO-Porter. Low-MP (MITO-Porter with Low Drug/Lipid) exhibited high drug efficacy for all three types of rTPA, and in Low-MP, charged rTPA-encapsulated MP exhibited high drug efficacy. The cellular uptake and mitochondrial translocation capacities were similar for all particles, suggesting that differences in aggregation rates during the incorporation of rTPA into MITO-Porter resulted in differences in drug efficacy.
Collapse
Grants
- 23H00541 Ministry of Education, Culture, Sports, Science and Technology
- 21H01753 Ministry of Education, Culture, Sports, Science and Technology
- 21K19928 Ministry of Education, Culture, Sports, Science and Technology
- Special Education and Research Expenses Ministry of Education, Culture, Sports, Science and Technology
- JPMJFR203X Japan Science and Technology Agency
Collapse
Affiliation(s)
- Rina Naganawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hanjun Zhao
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan (Y.T.)
| | - Yuta Takano
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan (Y.T.)
- Research Institute for Electronic Science, Hokkaido University, Sapporo 010-0020, Japan
| | - Masatoshi Maeki
- Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Manabu Tokeshi
- Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Fusion Oriented Research for Disruptive Science and Technology (FOREST) Program, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| |
Collapse
|
2
|
Turrini E, Ulfo L, Costantini PE, Saporetti R, Di Giosia M, Nigro M, Petrosino A, Pappagallo L, Kaltenbrunner A, Cantelli A, Pellicioni V, Catanzaro E, Fimognari C, Calvaresi M, Danielli A. Molecular engineering of a spheroid-penetrating phage nanovector for photodynamic treatment of colon cancer cells. Cell Mol Life Sci 2024; 81:144. [PMID: 38494579 PMCID: PMC10944812 DOI: 10.1007/s00018-024-05174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 03/19/2024]
Abstract
Photodynamic therapy (PDT) represents an emerging strategy to treat various malignancies, including colorectal cancer (CC), the third most common cancer type. This work presents an engineered M13 phage retargeted towards CC cells through pentavalent display of a disulfide-constrained peptide nonamer. The M13CC nanovector was conjugated with the photosensitizer Rose Bengal (RB), and the photodynamic anticancer effects of the resulting M13CC-RB bioconjugate were investigated on CC cells. We show that upon irradiation M13CC-RB is able to impair CC cell viability, and that this effect depends on i) photosensitizer concentration and ii) targeting efficiency towards CC cell lines, proving the specificity of the vector compared to unmodified M13 phage. We also demonstrate that M13CC-RB enhances generation and intracellular accumulation of reactive oxygen species (ROS) triggering CC cell death. To further investigate the anticancer potential of M13CC-RB, we performed PDT experiments on 3D CC spheroids, proving, for the first time, the ability of engineered M13 phage conjugates to deeply penetrate multicellular spheroids. Moreover, significant photodynamic effects, including spheroid disruption and cytotoxicity, were readily triggered at picomolar concentrations of the phage vector. Taken together, our results promote engineered M13 phages as promising nanovector platform for targeted photosensitization, paving the way to novel adjuvant approaches to fight CC malignancies.
Collapse
Affiliation(s)
- Eleonora Turrini
- Dipartimento di Scienze per la Qualità della Vita (QUVI), Alma Mater Studiorum, Università Di Bologna, C.So D'Augusto, 237, 47921, Rimini, Italy
| | - Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 3, 40126, Bologna, Italy
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 3, 40126, Bologna, Italy
| | - Roberto Saporetti
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy
| | - Michela Nigro
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 3, 40126, Bologna, Italy
| | - Annapaola Petrosino
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 3, 40126, Bologna, Italy
| | - Lucia Pappagallo
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 3, 40126, Bologna, Italy
| | - Alena Kaltenbrunner
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 3, 40126, Bologna, Italy
| | - Andrea Cantelli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Bologna, Italy
| | - Valentina Pellicioni
- Dipartimento di Scienze per la Qualità della Vita (QUVI), Alma Mater Studiorum, Università Di Bologna, C.So D'Augusto, 237, 47921, Rimini, Italy
| | - Elena Catanzaro
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita (QUVI), Alma Mater Studiorum, Università Di Bologna, C.So D'Augusto, 237, 47921, Rimini, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy.
- Interdepartmental Center for Industrial Research (CIRI-SDV), Health Sciences and Technologies, University of Bologna, Bologna, Italy.
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 3, 40126, Bologna, Italy.
- Interdepartmental Center for Industrial Research (CIRI-SDV), Health Sciences and Technologies, University of Bologna, Bologna, Italy.
| |
Collapse
|
3
|
Kim TE, Chang JE. Recent Studies in Photodynamic Therapy for Cancer Treatment: From Basic Research to Clinical Trials. Pharmaceutics 2023; 15:2257. [PMID: 37765226 PMCID: PMC10535460 DOI: 10.3390/pharmaceutics15092257] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Photodynamic therapy (PDT) is an emerging and less invasive treatment modality for various types of cancer. This review provides an overview of recent trends in PDT research, ranging from basic research to ongoing clinical trials, focusing on different cancer types. Lung cancer, head and neck cancer, non-melanoma skin cancer, prostate cancer, and breast cancer are discussed in this context. In lung cancer, porfimer sodium, chlorin e6, and verteporfin have shown promising results in preclinical studies and clinical trials. For head and neck cancer, PDT has demonstrated effectiveness as an adjuvant treatment after surgery. PDT with temoporfin, redaporfin, photochlor, and IR700 shows potential in early stage larynx cancer and recurrent head and neck carcinoma. Non-melanoma skin cancer has been effectively treated with PDT using methyl aminolevulinate and 5-aminolevulinic acid. In prostate cancer and breast cancer, PDT research is focused on developing targeted photosensitizers to improve tumor-specific uptake and treatment response. In conclusion, PDT continues to evolve as a promising cancer treatment strategy, with ongoing research spanning from fundamental investigations to clinical trials, exploring various photosensitizers and treatment combinations. This review sheds light on the recent advancements in PDT for cancer therapy and highlights its potential for personalized and targeted treatments.
Collapse
Affiliation(s)
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
4
|
Oxidative stress in the neurodegenerative brain following lifetime exposure to lead in rats: Changes in lifespan profiles. Toxicology 2019; 411:101-109. [DOI: 10.1016/j.tox.2018.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022]
|
5
|
Post-illumination cellular effects of photodynamic treatment. PLoS One 2017; 12:e0188535. [PMID: 29200431 PMCID: PMC5714340 DOI: 10.1371/journal.pone.0188535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 11/08/2017] [Indexed: 12/15/2022] Open
Abstract
Increased interest in clinical application of photodynamic therapy (PDT) in various medical fields poses a demand for better understanding of processes triggered by photo-treatment. Most of the work on PDT performed so far has focused on the immediate effects of photo-treatment. It is generally accepted that cellular damage occurs during light exposure and within a short period thereafter. If cells are not killed during the PDT, they might recover, depending on the extent of the photo-induced damage. Little is known, however, about the relationship between the properties of photosensitizers (PSs) and the delayed consequences of PDT. The aim of this work was to investigate cellular responses to sub-lethal photodynamic treatment and how toxicogenic potency may be affected by molecular features of the PS. Results demonstrated that for cationic porphyrin-based PSs, lipophilicity is the main factor determining the fate of the cells in the 24-hour post-illumination period. PSs with amphiphilic properties initiated oxidative reactions that continued in the dark, long after light exposure, and caused suppression of metabolism and loss of cell viability with concomitant changes in electrophoretic mobility of proteins, including caspases. Apoptotic activity was not stimulated in the post-illumination period. This study demonstrated that in PDT mediated by amphiphilic cationic metalloporphyrin PSs, even when immediate photo-damage is relatively mild, destructive oxidative processes initiated during PDT continue in the absence of light to substantially impair metabolism, and that post-illumination protein modification may modify utilization of cell death pathways.
Collapse
|
6
|
Kamperman T, Henke S, Zoetebier B, Ruiterkamp N, Wang R, Pouran B, Weinans H, Karperien M, Leijten J. Nanoemulsion-induced enzymatic crosslinking of tyramine-functionalized polymer droplets. J Mater Chem B 2017; 5:4835-4844. [PMID: 32263999 DOI: 10.1039/c7tb00686a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In situ gelation of water-in-oil polymer emulsions is a key method to produce hydrogel particles. Although this approach is in principle ideal for encapsulating bioactive components such as cells, the oil phase can interfere with straightforward presentation of crosslinker molecules. Several approaches have been developed to induce in-emulsion gelation by exploiting the triggered generation or release of crosslinker molecules. However, these methods typically rely on photo- or acid-based reactions that are detrimental to cell survival and functioning. In this work, we demonstrate the diffusion-based supplementation of small molecules for the in-emulsion gelation of multiple tyramine-functionalized polymers via enzymatic crosslinking using a H2O2/oil nanoemulsion. This strategy is compatible with various emulsification techniques, thereby readily supporting the formation of monodisperse hydrogel particles spanning multiple length scales ranging from the nano- to the millimeter. As proof of principle, we leveraged droplet microfluidics in combination with the cytocompatible nature of enzymatic crosslinking to engineer hollow cell-laden hydrogel microcapsules that support the formation of viable and functional 3D microtissues. The straightforward, universal, and cytocompatible nature of nanoemulsion-induced enzymatic crosslinking facilitates its rapid and widespread use in numerous food, pharma, and life science applications.
Collapse
Affiliation(s)
- Tom Kamperman
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yin Y, Zhu WW, Guo LP, Yang R, Li XS, Jiang Y. RGDC Functionalized Titanium Dioxide Nanoparticles Induce Less Damage to Plasmid DNA but Higher Cytotoxicity to HeLa Cells. J Phys Chem B 2012; 117:125-31. [DOI: 10.1021/jp3092804] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuan Yin
- School of Chemistry
and Chemical Engineering and ‡School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing,
Jiangsu, 211189, People's Republic of China
| | - Wei-Wei Zhu
- School of Chemistry
and Chemical Engineering and ‡School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing,
Jiangsu, 211189, People's Republic of China
| | - Li-Ping Guo
- School of Chemistry
and Chemical Engineering and ‡School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing,
Jiangsu, 211189, People's Republic of China
| | - Ran Yang
- School of Chemistry
and Chemical Engineering and ‡School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing,
Jiangsu, 211189, People's Republic of China
| | - Xin-Song Li
- School of Chemistry
and Chemical Engineering and ‡School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing,
Jiangsu, 211189, People's Republic of China
| | - Yong Jiang
- School of Chemistry
and Chemical Engineering and ‡School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing,
Jiangsu, 211189, People's Republic of China
| |
Collapse
|
8
|
Ion RM, Daicoviciu D, Filip AG, Clichici S, Muresan A. Oxidative stress effects of fullerene-porphyrin derivatives in photodynamic therapy. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424612500939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Due to their special and growing medical recent interest, the fullerenes started to be a very studied class of chemical compounds. In order to improve their water solubility and to reduce their cytotoxic characteristics, the fullerenes have been coupled in a system fullerene/PVP/porphyrin (C60/PVP/TPP) and its application in photodynamic therapy will be evaluated in this paper. The oxidative stress effects on photodynamic therapy with systems fullerene/poly-N-vinylpirrolidone/5,10,15,20-tetrakis(4-phenyl)porphyrin (C60/PVP/TPP) were tested on Wistar rats sub-cutaneously inoculated with Walker 256 carcinoma. The animals were irradiated with red light (λ = 685 nm; D = 50 J/cm2; 15 minutes) 24 h after intra-peritoneal administration of 10 mg/kg body weight of the system C60/PVP/TPP. After photodynamic therapy, the free radicals in tumors have been indirectly evaluated by lipid peroxides level (measured as thiobarbituric reactive substances) and protein carbonyls (indices of oxidative effects produced on susceptible biomolecules), both of them increasing in tumor tissues of animals 24 h after treatment. The levels of thiol groups and total antioxidant capacity have been determined in tumors, too, their decreasing values being the effect of the strong tumoral oxidative process.
Collapse
Affiliation(s)
- Rodica Mariana Ion
- National Institute of R&D for Chemistry and Petrochemistry, ICECHIM, 202 Splaiul Independentei, Bucharest 060021, Romania
- Valahia University of Târgovişte, Department of Materials Engineering, 18-20 Unirii Blvd., Targoviste 013200, Romania
| | - Doina Daicoviciu
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Department of Physiology, 1-3 Clinicilor Street, Cluj-Napoca, Romania
| | - Adriana Gabriela Filip
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Department of Physiology, 1-3 Clinicilor Street, Cluj-Napoca, Romania
| | - Simona Clichici
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Department of Physiology, 1-3 Clinicilor Street, Cluj-Napoca, Romania
| | - Adriana Muresan
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Department of Physiology, 1-3 Clinicilor Street, Cluj-Napoca, Romania
| |
Collapse
|
9
|
Gao Q, Wang F, Guo S, Li J, Zhu B, Cheng J, Jin Y, Li B, Wang H, Shi S, Gao Q, Zhang Z, Cao W, Tian Y. Sonodynamic effect of an anti-inflammatory agent--emodin on macrophages. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1478-1485. [PMID: 21767904 DOI: 10.1016/j.ultrasmedbio.2011.05.846] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 05/19/2011] [Accepted: 05/31/2011] [Indexed: 05/31/2023]
Abstract
Emodin has been used as an anti-inflammatory agent and inflammation is a crucial feature of atherosclerosis. Here, we investigated the sonodynamic effect of emodin on macrophages, the pivotal inflammatory cells in atherosclerotic plaque. THP-1 derived macrophages were cultured with emodin and exposed to ultrasound. Six hours later, unlike the cells treated for 5 and 10 min, the viability of cells treated for 15 min decreased significantly and the cells showed typical apoptotic chromatin fragmentation. The percentage of apoptotic and necrotic cells in the sonodynamic therapy (SDT) group was higher than that in the ultrasound group. Two hours after treatment for 15 min, the cytoskeleton lost its original features as the filaments dispersed and the cytoskeletal proteins aggregated. The percentage of cells with disturbed cytoskeletal filaments in the SDT group was higher than that in the ultrasound group. These results suggest emodin has a sonodynamic effect on macrophages and might be used as a novel sonosensitizer for SDT for atherosclerosis.
Collapse
Affiliation(s)
- Qianping Gao
- Department of Pathophysiology, Harbin Medical University, Harbin, P R China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cheng J, Liang H, Li Q, Peng C, Li Z, Shi S, Yang L, Tian Z, Tian Y, Zhang Z, Cao W. Hematoporphyrin monomethyl ether-mediated photodynamic effects on THP-1 cell-derived macrophages. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 101:9-15. [DOI: 10.1016/j.jphotobiol.2010.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 06/13/2010] [Accepted: 06/19/2010] [Indexed: 01/07/2023]
|
11
|
Olivier D, Douillard S, Lhommeau I, Patrice T. Photodynamic Treatment of Culture Medium Containing Serum Induces Long-Lasting ToxicityIn Vitro. Radiat Res 2009; 172:451-62. [DOI: 10.1667/rr1646.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
A zebrafish retinal graded photochemical stress model. J Pharmacol Toxicol Methods 2009; 59:121-7. [PMID: 19269339 DOI: 10.1016/j.vascn.2009.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 02/10/2009] [Indexed: 11/22/2022]
Abstract
INTRODUCTION In order to develop a model for investigating the genes that contribute to retinal degeneration, we examined the early graded photochemical stress response in the adult zebrafish (Danio rerio) retina and investigated the role of an NMDA inhibitor, thiokynurenate. METHODS Following intravitreal injection of rose bengal (6 or 12 mg/mL), light (37x10(3) or 83x10(3) lx) was directed onto the central retina with and without 400 nM thiokynurenate. Histologic and electron microscopic analysis was performed at 2 and 4 h and gene expression analysis was carried out at 2, 4 and 6 h. RESULTS Light and electron microscopy demonstrated a graded photochemical response in photoreceptor, nuclear, and ganglion cell layer thickness. Increased vacuolation of the inner plexiform layer was also observed. The inhibitor produced a distinct lesion pattern. Cellular stress genes were elevated in low and high lesions, while some homeobox gene expression was reduced with thiokynurenate. DISCUSSION The phenotypic and genetic changes observed from this model can serve as a basis for understanding the pathology of retinal oxidative and cellular stress. These changes may aid our understanding of aging and macular degeneration.
Collapse
|
13
|
Tsaytler PA, C. O’Flaherty M, Sakharov DV, Krijgsveld J, Egmond MR. Immediate Protein Targets of Photodynamic Treatment in Carcinoma Cells. J Proteome Res 2008; 7:3868-78. [PMID: 18652502 DOI: 10.1021/pr800189q] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pavel A. Tsaytler
- Department of Membrane Enzymology, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands, and Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, Utrecht 3584 CA, The Netherlands
| | - Martina C. O’Flaherty
- Department of Membrane Enzymology, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands, and Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, Utrecht 3584 CA, The Netherlands
| | - Dmitri V. Sakharov
- Department of Membrane Enzymology, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands, and Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, Utrecht 3584 CA, The Netherlands
| | - Jeroen Krijgsveld
- Department of Membrane Enzymology, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands, and Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, Utrecht 3584 CA, The Netherlands
| | - Maarten R. Egmond
- Department of Membrane Enzymology, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands, and Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, Utrecht 3584 CA, The Netherlands
| |
Collapse
|
14
|
Hofman JW, van Zeeland F, Turker S, Talsma H, Lambrechts SAG, Sakharov DV, Hennink WE, van Nostrum CF. Peripheral and axial substitution of phthalocyanines with solketal groups: synthesis and in vitro evaluation for photodynamic therapy. J Med Chem 2007; 50:1485-94. [PMID: 17348640 DOI: 10.1021/jm061136w] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phthalocyanines (Pcs) are a class of photosensitizers (PSs) with a strong tendency to aggregate in aqueous environment, which has a negative influence on their photosensitizing ability in photodynamic therapy. Pcs with either peripheral or axial solketal substituents, that is, ZnPc(sol)8 and Si(sol)2Pc, respectively, were synthesized and their tendency to aggregate as well as their photodynamic properties in 14C and B16F10 cell lines were evaluated. The results were compared to more hydrophilic silicon Pcs, that is, Si(PEG750)2Pc and Pc4. The order of cellular uptake was Pc4 > ZnPc(sol)8 > Si(PEG750)2Pc > Si(sol2)Pc. In contrast, Si(sol2)Pc showed the highest photocytotoxicity, while ZnPc(sol)8 did not show any photocytotoxicity up to a concentration of 10 microM in both cell types. UV/vis spectroscopy showed that Si(sol)2Pc is less prone to aggregation than ZnPc(sol)8, which can explain the lack of photoactivity of the latter. Si(sol)2Pc was predominantly located in lipid droplets, whereas Si(PEG750)2Pc was homogeneously distributed in the cytosol, which is probably the main cause of their difference in photoactivity. The very high photodynamic efficacy of Si(sol)2Pc makes this PS an interesting candidate for future studies.
Collapse
Affiliation(s)
- Jan-Willem Hofman
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Post Office Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Gianazza E, Crawford J, Miller I. Detecting oxidative post-translational modifications in proteins. Amino Acids 2006; 33:51-6. [PMID: 17021655 DOI: 10.1007/s00726-006-0410-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 08/30/2006] [Indexed: 10/24/2022]
Abstract
Oxidative stress induces various post-translational modifications (PTM); some are reversible in vivo via enzymatic catalysis. The present paper reviews specific procedures for the detection of oxidative PTM in proteins, most of them including electrophoresis. Main topics are carbonylated and glutathionylated proteins as well as modification of selected amino acids (Cys, Tyr, Met, Trp, Lys).
Collapse
Affiliation(s)
- E Gianazza
- Gruppo di Studio per la Proteomica e la Struttura delle Proteine, Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, Milano, Italy.
| | | | | |
Collapse
|
16
|
Gilaberte Y, Serra-Guillén C, de las Heras ME, Ruiz-Rodríguez R, Fernández-Lorente M, Benvenuto-Andrade C, González-Rodríguez S, Guillén-Barona C. Terapia fotodinámica en dermatología. ACTAS DERMO-SIFILIOGRAFICAS 2006; 97:83-102. [PMID: 16595110 DOI: 10.1016/s0001-7310(06)73359-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photodynamic therapy (PDT) is a therapeutic modality based on the photooxidation of biological materials induced by a photosensitizer, which selectively locates itself in certain tumorous cells or tissues, so that when illuminated by a light of the right length and at a sufficient dose, these cells are destroyed. In dermatology, PDT with topical 5-aminolevulinic acid or 5-methyl aminolevulinate is very effective in the treatment of actinic keratoses, basal cell carcinomas and Bowen's disease. In addition, very promising results have been obtained in inflammatory pathologies like morphea or sarcoidosis, infections like warts, and cosmetic processes such as photoaging, among others. This article reviews the most significant aspects of PDT in dermatology. First of all, we will review the basic fundamentals of photodynamic treatment. Next, we will outline its clinical applications in dermatology, both in oncological applications and all those dermatological processes in which PDT may play a role in their management. We will also discuss its promising cosmetic application in the treatment of photoaging. We will complete the review with photodiagnosis and the different non-invasive ways to monitor the effectiveness of PDT.
Collapse
|
17
|
Tsourkas A, Newton G, Perez JM, Basilion JP, Weissleder R. Detection of Peroxidase/H2O2-Mediated Oxidation with Enhanced Yellow Fluorescent Protein. Anal Chem 2005; 77:2862-7. [PMID: 15859603 DOI: 10.1021/ac0480747] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ability to sense oxidative stress in live cells and organisms would have far-reaching implications for biotechnology, drug discovery, and potentially medical imaging. We hypothesized that tyrosine-containing fluorescent proteins could be used as switches for sensing oxidative stress, based on their sensitivity to environmental and structural variations. We therefore tested purified EGFP, EYFP, ECFP, and DsRed proteins against the heme-peroxidase/H(2)O(2) reaction. We found that peroxidase-mediated oxidation resulted in up to 99.5% quenching of EYFP fluorescence (but not that of other fluorescent proteins) in a dose-dependent manner. Western blotting revealed inter- and intramolecular cross-linking. The observed detection limit for hydrogen peroxide was approximately 100 nM, well below the extracellular levels previously reported to occur in mammalian tissue during signaling. Combined expression of EYFP (quenchable) and ECFP or EGFP (nonquenchable) is expected to allow sensitive monitoring of oxidative stress.
Collapse
Affiliation(s)
- Andrew Tsourkas
- Center for Molecular Imaging Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
18
|
Sakharov DV, Elstak EDR, Chernyak B, Wirtz KWA. Prolonged lipid oxidation after photodynamic treatment. Study with oxidation-sensitive probe C11-BODIPY581/591. FEBS Lett 2005; 579:1255-60. [PMID: 15710422 DOI: 10.1016/j.febslet.2005.01.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 12/26/2004] [Accepted: 01/08/2005] [Indexed: 11/16/2022]
Abstract
Photodynamic treatment (PDT) is an emerging procedure for the therapy of cancer, based on photosensitizers, compounds that generate highly reactive oxygen species on illumination with visible light. Photodynamic peroxidation of cellular lipids is a consequence of PDT associated with cytolethality. We used chloromethyl dichlorodihydrofluorescein diacetate and a novel fluorescent ratiometric oxidation-sensitive probe, C11-BODIPY581/591 (C11-BO), which reports on lipid peroxidation, for visualizing oxidative stress in cells subjected to PDT with a phthalocyanine photosensitizer Pc4. With C11-BO loaded into the cells before or immediately after PDT, we observed a prolonged oxidation, which continued up to 30 min after illumination. In contrast, H2O2 caused oxidation of C11-BO only when the cells were in direct contact with H2O2. PDT-induced oxidative stress was most pronounced in vesicular perinuclear organelles, most likely photodamaged lysosomes. We hypothesize that the lysosomal localization of the prolonged oxidative stress is a consequence of the presence of redox-active iron in lysosomes. In conclusion, we have found that oxidative stress induced in cells by PDT differs from one induced by H2O2 in respect of induction of prolonged oxidation of lipids.
Collapse
Affiliation(s)
- D V Sakharov
- Department of Biochemistry of Lipids, CBLE, Utrecht University, PO Box 80 054, 3508 TB Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
19
|
Liu W, Oseroff AR, Baumann H. Photodynamic therapy causes cross-linking of signal transducer and activator of transcription proteins and attenuation of interleukin-6 cytokine responsiveness in epithelial cells. Cancer Res 2004; 64:6579-87. [PMID: 15374971 DOI: 10.1158/0008-5472.can-04-1580] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photodynamic therapy (PDT) is a local treatment of cancers. The principle of PDT is the production of reactive oxygen species, in particular singlet oxygen, by light activation of a photosensitizer introduced into the target cells. The direct photochemical and subsequent redox reactions can lead to cell death. This study sought to identify effects occurring during PDT and some of their consequences in surviving cells. Using epithelial cells in tissue culture and in tumors, several distinct PDT-mediated reactions were found, including global dephosphorylation of proteins, induced phosphorylation of a 71-kDa protein, initiation of cellular stress responses, structural modification and loss of epidermal growth factor receptor, and cross-linking of proteins. Specific covalent cross-linking of nonactivated signal transducer and activator of transcription (STAT)-3, and to a lesser extent of STAT1 and STAT4, correlated with PDT dose. Cross-linked STAT3 was primarily localized to the cytoplasm and failed to bind to DNA. The combination of STAT cross-linking and inactivation of receptor functions rendered PDT-treated cells refractory for at least 24 hours to interleukin-6 and oncostatin M, cytokines known to be elevated at site of tissue damage and inflammation. It is suggested that the loss of responsiveness to these inflammatory cytokines in the PDT-treated field assists tumor cells in evading the growth-suppressive activity of these mediators expected to be present at tissue sites after PDT.
Collapse
Affiliation(s)
- Weiguo Liu
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
20
|
Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 2004; 142:231-55. [PMID: 15155533 PMCID: PMC1574951 DOI: 10.1038/sj.bjp.0705776] [Citation(s) in RCA: 1536] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 03/08/2004] [Accepted: 03/08/2004] [Indexed: 02/06/2023] Open
Abstract
Free radicals and other reactive species (RS) are thought to play an important role in many human diseases. Establishing their precise role requires the ability to measure them and the oxidative damage that they cause. This article first reviews what is meant by the terms free radical, RS, antioxidant, oxidative damage and oxidative stress. It then critically examines methods used to trap RS, including spin trapping and aromatic hydroxylation, with a particular emphasis on those methods applicable to human studies. Methods used to measure oxidative damage to DNA, lipids and proteins and methods used to detect RS in cell culture, especially the various fluorescent "probes" of RS, are also critically reviewed. The emphasis throughout is on the caution that is needed in applying these methods in view of possible errors and artifacts in interpreting the results.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, MD 7 #03-08, 8 Medical Drive, Singapore 117597, Singapore.
| | | |
Collapse
|