1
|
Tani K, Kanno R, Ji XC, Hall M, Yu LJ, Kimura Y, Madigan MT, Mizoguchi A, Humbel BM, Wang-Otomo ZY. Cryo-EM Structure of the Photosynthetic LH1-RC Complex from Rhodospirillum rubrum. Biochemistry 2021; 60:2483-2491. [PMID: 34323477 DOI: 10.1021/acs.biochem.1c00360] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodospirillum (Rsp.) rubrum is one of the most widely used model organisms in bacterial photosynthesis. This purple phototroph is characterized by the presence of both rhodoquinone (RQ) and ubiquinone as electron carriers and bacteriochlorophyll (BChl) a esterified at the propionic acid side chain by geranylgeraniol (BChl aG) instead of phytol. Despite intensive efforts, the structure of the light-harvesting-reaction center (LH1-RC) core complex from Rsp. rubrum remains at low resolutions. Using cryo-EM, here we present a robust new view of the Rsp. rubrum LH1-RC at 2.76 Å resolution. The LH1 complex forms a closed, slightly elliptical ring structure with 16 αβ-polypeptides surrounding the RC. Our biochemical analysis detected RQ molecules in the purified LH1-RC, and the cryo-EM density map specifically positions RQ at the QA site in the RC. The geranylgeraniol side chains of BChl aG coordinated by LH1 β-polypeptides exhibit a highly homologous tail-up conformation that allows for interactions with the bacteriochlorin rings of nearby LH1 α-associated BChls aG. The structure also revealed key protein-protein interactions in both N- and C-terminal regions of the LH1 αβ-polypeptides, mainly within a face-to-face structural subunit. Our high-resolution Rsp. rubrum LH1-RC structure provides new insight for evaluating past experimental and computational results obtained with this old organism over many decades and lays the foundation for more detailed exploration of light-energy conversion, quinone transport, and structure-function relationships in this pigment-protein complex.
Collapse
Affiliation(s)
- Kazutoshi Tani
- Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan
| | - Ryo Kanno
- Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Xuan-Cheng Ji
- Faculty of Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| | - Malgorzata Hall
- Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, Hyogo 657-8501, Japan
| | - Michael T Madigan
- School of Biological Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Akira Mizoguchi
- Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan
| | - Bruno M Humbel
- Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | | |
Collapse
|
2
|
Charge Recombination Kinetics of Bacterial Photosynthetic Reaction Centres Reconstituted in Liposomes: Deterministic Versus Stochastic Approach. DATA 2020. [DOI: 10.3390/data5020053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this theoretical work, we analyse the kinetics of charge recombination reaction after a light excitation of the Reaction Centres extracted from the photosynthetic bacterium Rhodobacter sphaeroides and reconstituted in small unilamellar phospholipid vesicles. Due to the compartmentalized nature of liposomes, vesicles may exhibit a random distribution of both ubiquinone molecules and the Reaction Centre protein complexes that can produce significant differences on the local concentrations from the average expected values. Moreover, since the amount of reacting species is very low in compartmentalized lipid systems the stochastic approach is more suitable to unveil deviations of the average time behaviour of vesicles from the deterministic time evolution.
Collapse
|
3
|
Ragni R, Leone G, la Gatta S, Rizzo G, Lo Presti M, De Leo V, Milano F, Trotta M, Farinola GM. A heptamethine cyanine dye suitable as antenna in biohybrids based on bacterial photosynthetic reaction center. ACTA ACUST UNITED AC 2018. [DOI: 10.1557/adv.2018.640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Semiquinone oscillations as a tool for investigating the ubiquinone binding to photosynthetic reaction centers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:183-92. [DOI: 10.1007/s00249-015-1013-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 01/04/2023]
|
5
|
Tangorra RR, Operamolla A, Milano F, Omar OH, Henrard J, Comparelli R, Italiano F, Agostiano A, De Leo V, Marotta R, Falqui A, Farinola GM, Trotta M. Assembly of a photosynthetic reaction center with ABA tri-block polymersomes: highlights on protein localization. Photochem Photobiol Sci 2015. [DOI: 10.1039/c5pp00189g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The micelle-to-vesicle transition technique was used to reconstitute the integral membrane protein photosynthetic reaction center (RC) and the position of the RC in the polymersome vesicle was investigated.
Collapse
|
6
|
The binding of quinone to the photosynthetic reaction centers: kinetics and thermodynamics of reactions occurring at the QB-site in zwitterionic and anionic liposomes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:301-15. [PMID: 24824111 DOI: 10.1007/s00249-014-0963-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/07/2014] [Accepted: 04/25/2014] [Indexed: 12/29/2022]
Abstract
Liposomes represent a versatile biomimetic environment for studying the interaction between integral membrane proteins and hydrophobic ligands. In this paper, the quinone binding to the QB-site of the photosynthetic reaction centers (RC) from Rhodobacter sphaeroides has been investigated in liposomes prepared with either the zwitterionic phosphatidylcholine (PC) or the negatively charged phosphatidylglycerol (PG) to highlight the role of the different phospholipid polar heads. Quinone binding (K Q) and interquinone electron transfer (L AB) equilibrium constants in the two type of liposomes were obtained by charge recombination reaction of QB-depleted RC in the presence of increasing amounts of ubiquinone-10 over the temperature interval 6-35 °C. The kinetic of the charge recombination reactions has been fitted by numerically solving the ordinary differential equations set associated with a detailed kinetic scheme involving electron transfer reactions coupled with quinone release and uptake. The entire set of traces at each temperature was accurately fitted using the sole quinone release constants (both in a neutral and a charge separated state) as adjustable parameters. The temperature dependence of the quinone exchange rate at the QB-site was, hence, obtained. It was found that the quinone exchange regime was always fast for PC while it switched from slow to fast in PG as the temperature rose above 20 °C. A new method was introduced in this paper for the evaluation of constant K Q using the area underneath the charge recombination traces as the indicator of the amount of quinone bound to the QB-site.
Collapse
|
7
|
De Leo V, Catucci L, Falqui A, Marotta R, Striccoli M, Agostiano A, Comparelli R, Milano F. Hybrid assemblies of fluorescent nanocrystals and membrane proteins in liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1599-1608. [PMID: 24460372 DOI: 10.1021/la404160b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Because of the growing potential of nanoparticles in biological and medical applications, tuning and directing their properties toward a high compatibility with the aqueous biological milieu is of remarkable relevance. Moreover, the capability to combine nanocrystals (NCs) with biomolecules, such as proteins, offers great opportunities to design hybrid systems for both nanobiotechnology and biomedical technology. Here we report on the application of the micelle-to-vesicle transition (MVT) method for incorporation of hydrophobic, red-emitting CdSe@ZnS NCs into the bilayer of liposomes. This method enabled the construction of a novel hybrid proteo-NC-liposome containing, as model membrane protein, the photosynthetic reaction center (RC) of Rhodobacter sphaeroides. Electron microscopy confirmed the insertion of NCs within the lipid bilayer without significantly altering the structure of the unilamellar vesicles. The resulting aqueous NC-liposome suspensions showed low turbidity and kept unaltered the wavelengths of absorbance and emission peaks of the native NCs. A relative NC fluorescence quantum yield up to 8% was preserved after their incorporation in liposomes. Interestingly, in proteo-NC-liposomes, RC is not denatured by Cd-based NCs, retaining its structural and functional integrity as shown by absorption spectra and flash-induced charge recombination kinetics. The outlined strategy can be extended in principle to any suitably sized hydrophobic NC with similar surface chemistry and to any integral protein complex. Furthermore, the proposed approach could be used in nanomedicine for the realization of theranostic systems and provides new, interesting perspectives for understanding the interactions between integral membrane proteins and nanoparticles, i.e., in nanotoxicology studies.
Collapse
Affiliation(s)
- Vincenzo De Leo
- Department of Chemistry, Università degli Studi di Bari , Via Orabona 4, 70126 Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Manzo AJ, Goushcha AO, Berezetska NM, Kharkyanen VN, Scott GW. Charge Recombination Time Distributions in Photosynthetic Reaction Centers Exposed to Alternating Intervals of Photoexcitation and Dark Relaxation. J Phys Chem B 2011; 115:8534-44. [DOI: 10.1021/jp1115383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anthony J. Manzo
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
- Department of Physics, University of California, Riverside, Riverside, California 92521, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Alexander O. Goushcha
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
- Institute of Physics, National Acadamy of Science of Ukraine, Kyiv, Ukraine
| | | | | | - Gary W. Scott
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
9
|
Italiano F, D’Amici GM, Rinalducci S, De Leo F, Zolla L, Gallerani R, Trotta M, Ceci LR. The photosynthetic membrane proteome of Rhodobacter sphaeroides R-26.1 exposed to cobalt. Res Microbiol 2011; 162:520-7. [DOI: 10.1016/j.resmic.2011.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
|
10
|
Milano F, Italiano F, Agostiano A, Trotta M. Characterisation of RC-proteoliposomes at different RC/lipid ratios. PHOTOSYNTHESIS RESEARCH 2009; 100:107-112. [PMID: 19387862 DOI: 10.1007/s11120-009-9423-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/06/2009] [Indexed: 05/27/2023]
Abstract
Reconstitution of membrane proteins in phospholipid vesicles allows the investigation of such macromolecules in a biomimetic simplified environment. The often employed micelle-to-vesicle-transition method for proteoliposome preparation is a fast and reproducible technique. In this, communication is shown that the lipid/protein ratio influences the size of the proteoliposomes and the actual protein reconstitution. The results indicate that for photosynthetic reaction centres, the best conditions for ligand-interaction experiments are achieved with a lipid/protein value of 1000:1, while for complete protein incorporation, the 2000:1 ratio should be chosen.
Collapse
Affiliation(s)
- Francesco Milano
- CNR, Istituto per i Processi Chimico-Fisici, Sezione di Bari, c/o Dipartimento di Chimica, Via Orabona, 4 I-70124, Bari, Italy
| | | | | | | |
Collapse
|
11
|
De Leo V, Catucci L, Ventrella A, Milano F, Agostiano A, Corcelli A. Cardiolipin increases in chromatophores isolated from Rhodobacter sphaeroides after osmotic stress: structural and functional roles. J Lipid Res 2009; 50:256-64. [DOI: 10.1194/jlr.m800312-jlr200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Milano F, Gerencsér L, Agostiano A, Nagy L, Trotta M, Maróti P. Mechanism of Quinol Oxidation by Ferricenium Produced by Light Excitation in Reaction Centers of Photosynthetic Bacteria. J Phys Chem B 2007; 111:4261-70. [PMID: 17394306 DOI: 10.1021/jp067834+] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetics and thermodynamics of cyclic electron transfer through the isolated reaction center protein of photosynthetic bacterium Rhodobacter sphaeroides were determined in detergent (Triton X-100) solution. The redox reactions between the reducing (ubiquinol-0 or ubiquinol-10) and oxidizing species (ferricenium, ferricytochrome, or ferricyanide) produced chemically or by light excitation of the protein were monitored by absorption changes of the reactants and by acidification of the solution accompanied with the disappearance of the quinol. The bimolecular rate constants of reactions of anionic ubiquinol-0 with different oxidizing agents showed large variation: 5 x 10(8) M(-1) s(-1) for ferricenium, 3.5 x 10(5) M(-1) s(-1) for ferricyanide, and 1.5 x 10(5) M(-1) s(-1) for ferricytochrome. Although the redox partners were created in pairs by the same protein promptly after light excitation, their bimolecular redox reaction was not observed even in the case of the fastest reacting partners of ferricenium and ubiquinol-0. Instead, they equilibrate with the corresponding (donor and acceptor) pools before the electron is transferred. The (logarithms of the) observed rate constants of quinol oxidation showed steep pH-dependence for water soluble ubiquinol-0 (slope +1) and mild pH-dependence for hydrophobic ubiquinol-10 (slope approximately 0.25). Combined with studies of the ionic strength dependence of the rate, it was concluded that the electron-transfer pathways of ubiquinol-0 and ubiquinol-10 oxidation started from their anionic and neutral forms, respectively. The mild pH-dependence of the rate of ubiquinol-10 oxidation came from the electrostatic interactions between ferricenium and the pH-dependent surface charges of the reaction center. The results help to understand, monitor, and design (cyclic) electron flow in bioenergetic proteins.
Collapse
Affiliation(s)
- Francesco Milano
- Instituto per i Processi Chimico-Fisici, Sede di Bari, Via Orabona 4, I-70126, Bari, CNR Via Orabona, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Forti G, Agostiano A, Barbato R, Bassi R, Brugnoli E, Finazzi G, Garlaschi FM, Jennings RC, Melandri BA, Trotta M, Venturoli G, Zanetti G, Zannoni D, Zucchelli G. Photosynthesis research in Italy: a review. PHOTOSYNTHESIS RESEARCH 2006; 88:211-40. [PMID: 16755326 DOI: 10.1007/s11120-006-9054-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 02/24/2006] [Indexed: 05/10/2023]
Abstract
This historical review was compiled and edited by Giorgio Forti, whereas the other authors of the different sections are listed alphabetically after his name, below the title of the paper; they are also listed in the individual sections. This review deals with the research on photosynthesis performed in several Italian laboratories during the last 50 years; it includes research done, in collaboration, at several international laboratories, particularly USA, UK, Switzerland, Hungary, Germany, France, Finland, Denmark, and Austria. Wherever pertinent, references are provided, especially to other historical papers in Govindjee et al. [Govindjee, Beatty JT, Gest H, Allen JF (eds) (2005) Discoveries in Photosynthesis. Springer, Dordrecht]. This paper covers the physical and chemical events starting with the absorption of a quantum of light by a pigment molecule to the conversion of the radiation energy into the stable chemical forms of the reducing power and of ATP. It describes the work done on the structure, function and regulation of the photosynthetic apparatus in higher plants, unicellular algae and in photosynthetic bacteria. Phenomena such as photoinhibition and the protection from it are also included. Research in biophysics of photosynthesis in Padova (Italy) is discussed by G.M. Giacometti and G. Giacometti (2006).
Collapse
Affiliation(s)
- Giorgio Forti
- Istituto di Biofisica del CNR, Sezione di Milano e Dipartimento di Biologia dell'Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mezzetti A, Leibl W. Investigation of ubiquinol formation in isolated photosynthetic reaction centers by rapid-scan Fourier transform IR spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 34:921-36. [PMID: 15909199 DOI: 10.1007/s00249-005-0469-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 01/27/2005] [Accepted: 01/30/2005] [Indexed: 10/25/2022]
Abstract
Light-induced formation of ubiquinol-10 in Rhodobacter sphaeroides reaction centers was followed by rapid-scan Fourier transform IR difference spectroscopy, a technique that allows the course of the reaction to be monitored, providing simultaneously information on the redox states of cofactors and on protein response. The spectrum recorded between 4 and 29 ms after the second flash showed bands at 1,470 and 1,707 cm(-1), possibly due to a QH(-) intermediate state. Spectra recorded at longer delay times showed a different shape, with bands at 1,388 (+) and 1,433 (+) cm(-1) characteristic of ubiquinol. These spectra reflect the location of the ubiquinol molecule outside the Q(B) binding site. This was confirmed by Fourier transform IR difference spectra recorded during and after continuous illumination in the presence of an excess of exogenous ubiquinone molecules, which revealed the process of ubiquinol formation, of ubiquinone/ubiquinol exchange at the Q(B) site and between detergent micelles, and of Q(B)(-) and QH(2) reoxidation by external redox mediators. Kinetics analysis of the IR bands allowed us to estimate the ubiquinone/ubiquinol exchange rate between detergent micelles to approximately 1 s. The reoxidation rate of Q(B)(-) by external donors was found to be much lower than that of QH(2), most probably reflecting a stabilizing/protecting effect of the protein for the semiquinone form. A transient band at 1,707 cm(-1) observed in the first scan (4-29 ms) after both the first and the second flash possibly reflects transient protonation of the side chain of a carboxylic amino acid involved in proton transfer from the cytoplasm towards the Q(B) site.
Collapse
Affiliation(s)
- Alberto Mezzetti
- Service de Bioénergétique, CEA-Saclay, 91191, Gif-sur-Yvette, France.
| | | |
Collapse
|
15
|
Nagy L, Milano F, Dorogi M, Agostiano A, Laczkó G, Szebényi K, Váró G, Trotta M, Maróti P. Protein/Lipid Interaction in the Bacterial Photosynthetic Reaction Center: Phosphatidylcholine and Phosphatidylglycerol Modify the Free Energy Levels of the Quinones. Biochemistry 2004; 43:12913-23. [PMID: 15461464 DOI: 10.1021/bi0489356] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of characteristic phospholipids of native membranes, phosphatidylcholine (PC), phosphatidylglycerol (PG), and cardiolipin (CL), was studied in the energetics of the acceptor quinone side in photosynthetic reaction centers of Rhodobacter sphaeroides. The rates of the first, k(AB)(1), and the second, k(AB)(2), electron transfer and that of the charge recombination, k(BP), the free energy levels of Q(A)(-)Q(B) and Q(A)Q(B)(-) states, and the changes of charge compensating protein relaxation were determined in RCs incorporated into artificial lipid bilayer membranes. In RCs embedded in the PC vesicle, k(AB)(1) and k(AB)(2) increased (from 3100 to 4100 s(-1) and from 740 to 3300 s(-1), respectively) and k(BP) decreased (from 0.77 to 0.39 s(-1)) compared to those measured in detergent at pH 7. In PG, k(AB)(1) and k(BP) decreased (to values of 710 and 0.26 s(-1), respectively), while k(AB)(2) increased to 1506 s(-1) at pH 7. The free energy between the Q(A)(-)Q(B) and Q(A)Q(B)(-) states decreased in PC and PG (DeltaG degrees (Q)A-(Q)B(-->)(Q)A(Q)B- = -76.9 and -88.5 meV, respectively) compared to that measured in detergent (-61.8 meV). The changes of the Q(A)/Q(A)(-) redox potential measured by delayed luminescence showed (1) a differential effect of lipids whether RC incorporated in micelles or vesicles, (2) an altered binding interaction between anionic lipids and RC, (3) a direct influence of PC and PG on the free energy levels of the primary and secondary quinones probably through the intraprotein hydrogen-bonding network, and (4) a larger increase of the Q(A)/Q(A)(-) free energy in PG than in PC both in detergent micelles and in single-component vesicles. On the basis of recent structural data, implications of the binding properties of phospholipids to RC and possible interactions between lipids and electron transfer components will be discussed.
Collapse
Affiliation(s)
- László Nagy
- Department of Biophysics, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Milano F, Agostiano A, Mavelli F, Trotta M. Kinetics of the quinone binding reaction at the QB site of reaction centers from the purple bacteria Rhodobacter sphaeroides reconstituted in liposomes. ACTA ACUST UNITED AC 2003; 270:4595-605. [PMID: 14622246 DOI: 10.1046/j.1432-1033.2003.03845.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transmembrane proton translocation in the photosynthetic membranes of the purple bacterium Rhodobacter sphaeroides is driven by light and performed by two transmembrane complexes; the photosynthetic reaction center and the ubiquinol-cytochrome c oxidoreductase complex, coupled by two mobile electron carriers; the cytochrome and the quinone. This paper focuses on the kinetics and thermodynamics of the interaction between the lipophylic electron carrier ubiquinone-10 and the photosynthetic enzyme reconstituted in liposomes. The collected data were simulated with an existing recognized kinetic scheme and the kinetic constants of the uptake (7.2 x 107 M(-1) x s(-1)) and release (40 s(-1)) processes of the ligand were inferred. The results obtained for the quinone release kinetic constant are comparable to the rate of the charge recombination reaction from the state D(+)QA(-). Values for the kinetic constants are discussed as part of the overall photocycle, suggesting that its bottleneck may not be the quinone uptake reaction in agreement with a previous report.
Collapse
Affiliation(s)
- Francesco Milano
- CNR, Istituto per i Processi Chimico-Fisici - Sezione di Bari Dipartimento di Chimica, Universitá di Bari, Italy
| | | | | | | |
Collapse
|
17
|
Goushcha AO, Manzo AJ, Scott GW, Christophorov LN, Knox PP, Barabash YM, Kapoustina MT, Berezetska NM, Kharkyanen VN. Self-regulation phenomena applied to bacterial reaction centers: 2. Nonequilibrium adiabatic potential: dark and light conformations revisited. Biophys J 2003; 84:1146-60. [PMID: 12547795 PMCID: PMC1302691 DOI: 10.1016/s0006-3495(03)74930-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Experimental and theoretical results in support of nonlinear dynamic behavior of photosynthetic reaction centers under light-activated conditions are presented. Different conditions of light adaptation allow for preparation of reaction centers in either of two different conformational states. These states were detected both by short actinic flashes and by the switching of the actinic illumination level between different stationary state values. In the second method, the equilibration kinetics of reaction centers isolated from Rhodobacter sphaeroides were shown to be inherently biphasic. The fast and slow equilibration kinetics are shown to correspond to electron transfer (charge separation) at a fixed structure and to combined electron-conformational transitions governed by the bounded diffusion along the potential surface, respectively. The primary donor recovery kinetics after an actinic flash revealed a pronounced dependence on the time interval (deltat) between cessation of a lengthy preillumination of a sample and the actinic flash. A pronounced slow relaxation component with a decay half time of more than 50 s was measured for deltat > 10 s. This component corresponds to charge recombination in reaction centers for which light-induced structural changes have not relaxed completely before the flash. The amplitude of this component depended on the conditions of the sample preparation, specifically on the type of detergent used in the preparation. The redox potential parameters as well as the structural diffusion constants were estimated for samples prepared in different ways.
Collapse
Affiliation(s)
- Alexander O Goushcha
- Department of Chemistry, University of California/Riverside, Riverside, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Response of membrane protein to the environment: the case of photosynthetic Reaction Centre. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2002. [DOI: 10.1016/s0928-4931(02)00178-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Transfer of coenzyme Q0 from water to aqueous surfactant solutions: the case of Triton X-100. Colloids Surf B Biointerfaces 2001; 20:27-35. [PMID: 11084306 DOI: 10.1016/s0927-7765(00)00152-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of UQ0 on the micellization equilibrium of Triton X-100 has been studied by the analysis of the UV absorption spectra of Triton X-100. In the range of the UQ0 concentration investigated, the critical micelle concentration (CMC) increases at increasing of the solute concentration. The dependence of the CMC on UQ0 concentration has been used to calculate the generalized Setchenov constant. Mixing and dilution enthalpies of aqueous solutions of UQ0 and Triton X-100 were measured and used to calculate the enthalpies of transfer of UQ0 from water to Triton X-100 aqueous solutions. From the dependence of the enthalpy of transfer on surfactant concentration, the distribution constant between aqueous and micellar phase and the standard enthalpy of transfer from water to Triton X-100 micelles were evaluated along with the standard transfer free energy and entropy. All measurements were carried out at 298 K.
Collapse
|