1
|
DiPasquale M, Marquardt D. Perceiving the functions of vitamin E through neutron and X-ray scattering. Adv Colloid Interface Sci 2024; 330:103189. [PMID: 38824717 DOI: 10.1016/j.cis.2024.103189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024]
Abstract
Take your vitamins, or don't? Vitamin E is one of the few lipophilic vitamins in the human diet and is considered an essential nutrient. Over the years it has proven to be a powerful antioxidant and is commercially used as such, but this association is far from linear in physiology. It is increasingly more likely that vitamin E has multiple legitimate biological roles. Here, we review past and current work using neutron and X-ray scattering to elucidate the influence of vitamin E on key features of model membranes that can translate to the biological function(s) of vitamin E. Although progress is being made, the hundred year-old mystery remains unsolved.
Collapse
Affiliation(s)
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada; Department of Physics, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
2
|
Lachmayr KK, Sita LR. Small‐Molecule Modulation of Soft‐Matter Frank–Kasper Phases: A Method for Adding Function to Form. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kätchen K. Lachmayr
- Department of Chemistry and BiochemistryUniversity of Maryland College Park MD 20742 USA
| | - Lawrence R. Sita
- Department of Chemistry and BiochemistryUniversity of Maryland College Park MD 20742 USA
| |
Collapse
|
3
|
Lachmayr KK, Sita LR. Small‐Molecule Modulation of Soft‐Matter Frank–Kasper Phases: A Method for Adding Function to Form. Angew Chem Int Ed Engl 2020; 59:3563-3567. [DOI: 10.1002/anie.201915416] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Kätchen K. Lachmayr
- Department of Chemistry and BiochemistryUniversity of Maryland College Park MD 20742 USA
| | - Lawrence R. Sita
- Department of Chemistry and BiochemistryUniversity of Maryland College Park MD 20742 USA
| |
Collapse
|
4
|
Gálvez-Valdivieso G, Cardeñosa R, Pineda M, Aguilar M. Homogentisate phytyltransferase from the unicellular green alga Chlamydomonas reinhardtii. JOURNAL OF PLANT PHYSIOLOGY 2015; 188:80-88. [PMID: 26454640 DOI: 10.1016/j.jplph.2015.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/30/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Homogentisate phytyltransferase (HPT) (EC 2.5.1.-) catalyzes the first committed step of tocopherol biosynthesis in all photosynthetic organisms. This paper presents the molecular characterization and expression analysis of HPT1 gene, and a study on the accumulation of tocopherols under different environmental conditions in the unicellular green alga Chlamydomonas reinhardtii. The Chlamydomonas HPT1 protein conserves all the prenylphosphate- and divalent cation-binding sites that are found in polyprenyltransferases and all the amino acids that are essential for its catalytic activity. Its hydrophobicity profile confirms that HPT is a membrane-bound protein. Chlamydomonas genomic DNA analysis suggests that HPT is encoded by a single gene, HPT1, whose promoter region contains multiple motifs related to regulation by jasmonate, abscisic acid, low temperature and light, and an ATCTA motif presents in genes involved in tocopherol biosynthesis and some photosynthesis-related genes. Expression analysis revealed that HPT1 is strongly regulated by dark and low-temperature. Under the same treatments, α-tocopherol increased in cultures exposed to darkness or heat, whereas γ-tocopherol did it in low temperature. The regulatory expression pattern of HPT1 and the changes of tocopherol abundance support the idea that different tocopherols play specific functions, and suggest a role for γ-tocopherol in the adaptation to growth under low-temperature.
Collapse
Affiliation(s)
- Gregorio Gálvez-Valdivieso
- Departamento de Botánica, Ecología y Fisiología Vegetal, Instituto Andaluz de Biotecnología and Campus Agroalimentario de Excelencia Internacional ceiA3, Campus de Rabanales, Edif. C-4, 3ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Rosa Cardeñosa
- Departamento de Botánica, Ecología y Fisiología Vegetal, Instituto Andaluz de Biotecnología and Campus Agroalimentario de Excelencia Internacional ceiA3, Campus de Rabanales, Edif. C-4, 3ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Manuel Pineda
- Departamento de Botánica, Ecología y Fisiología Vegetal, Instituto Andaluz de Biotecnología and Campus Agroalimentario de Excelencia Internacional ceiA3, Campus de Rabanales, Edif. C-4, 3ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Miguel Aguilar
- Departamento de Botánica, Ecología y Fisiología Vegetal, Instituto Andaluz de Biotecnología and Campus Agroalimentario de Excelencia Internacional ceiA3, Campus de Rabanales, Edif. C-4, 3ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
5
|
|
6
|
Kamal MA, Raghunathan VA. Modulated phases of phospholipid bilayers induced by tocopherols. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2486-93. [PMID: 22750222 DOI: 10.1016/j.bbamem.2012.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/13/2012] [Accepted: 06/22/2012] [Indexed: 11/30/2022]
Abstract
The influence of α-, γ- and δ-tocopherols on the structure and phase behavior of dipalmitoyl phosphatidylcholine (DPPC) bilayers has been determined from X-ray diffraction studies on oriented multilayers. In all the three cases the main-transition temperature (T(m)) of DPPC was found to decrease with increasing tocopherol concentration up to around 25 mol%. Beyond this the main transition is suppressed in the case of γ-tocopherol, whereas T(m) becomes insensitive to composition in the other two cases. The pre-transition is found to be suppressed over a narrow tocopherol concentration range between 7.5 and 10 mol% in DPPC-γ-tocopherol and DPPC-δ-tocopherol bilayers, and the ripple phase occurs down to the lowest temperature studied. In all the three cases a modulated phase is observed above a tocopherol concentration of about 10 mol%, which is similar to the P(β) phase reported in DPPC-cholesterol bilayers. This phase is found to occur even in excess water conditions at lower tocopherol concentrations, and consists of bilayers with periodic height modulation. These results indicate the ability of tocopherols to induce local curvature in membranes, which could be important for some of their biological functions.
Collapse
|
7
|
Orledge JM, Blount JD, Hoodless AN, Royle NJ. Antioxidant supplementation during early development reduces parasite load but does not affect sexual ornament expression in adult ring-necked pheasants. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.01977.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Tassanakajon A, Amparyup P, Somboonwiwat K, Supungul P. Cationic antimicrobial peptides in penaeid shrimp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:639-657. [PMID: 21533916 DOI: 10.1007/s10126-011-9381-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 03/16/2010] [Indexed: 05/30/2023]
Abstract
Penaeid shrimp aquaculture has been consistently affected worldwide by devastating diseases that cause a severe loss in production. To fight a variety of harmful microbes in the surrounding environment, particularly at high densities (of which intensive farming represents an extreme example), shrimps have evolved and use a diverse array of antimicrobial peptides (AMPs) as part of an important first-line response of the host defense system. Cationic AMPs in penaeid shrimps composed of penaeidins, crustins, and anti-lipopolysaccharide factors are comprised of multiple classes or isoforms and possess antibacterial and antifungal activities against different strains of bacteria and fungi. Shrimp AMPs are primarily expressed in circulating hemocytes, which is the main site of the immune response, and hemocytes expressing AMPs probably migrate to infection sites to fight against pathogen invasion. Indeed, most AMPs are produced as early as the nauplii developmental stage to protect shrimp larvae from infections. In this review, we discuss the sequence diversity, expression, gene structure, and antimicrobial activities of cationic AMPs in penaeid shrimps. The information available on antimicrobial activities indicates that these shrimp AMPs have potential therapeutic applications in the control of disease problems in aquaculture.
Collapse
Affiliation(s)
- Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | | | | |
Collapse
|
9
|
Tassanakajon A, Amparyup P, Somboonwiwat K, Supungul P. Cationic antimicrobial peptides in penaeid shrimp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:487-505. [PMID: 20379756 DOI: 10.1007/s10126-010-9288-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 03/16/2010] [Indexed: 05/29/2023]
Abstract
Penaeid shrimp aquaculture has been consistently affected worldwide by devastating diseases that cause a severe loss in production. To fight a variety of harmful microbes in the surrounding environment, particularly at high densities (of which intensive farming represents an extreme example), shrimps have evolved and use a diverse array of antimicrobial peptides (AMPs) as part of an important first-line response of the host defense system. Cationic AMPs in penaeid shrimps composed of penaeidins, crustins, and anti-lipopolysaccharide factors are comprised of multiple classes or isoforms and possess antibacterial and antifungal activities against different strains of bacteria and fungi. Shrimp AMPs are primarily expressed in circulating hemocytes, which is the main site of the immune response, and hemocytes expressing AMPs probably migrate to infection sites to fight against pathogen invasion. Indeed, most AMPs are produced as early as the nauplii developmental stage to protect shrimp larvae from infections. In this review, we discuss the sequence diversity, expression, gene structure, and antimicrobial activities of cationic AMPs in penaeid shrimps. The information available on antimicrobial activities indicates that these shrimp AMPs have potential therapeutic applications in the control of disease problems in aquaculture.
Collapse
Affiliation(s)
- Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | | | | | | |
Collapse
|
10
|
Qin SS, Yu ZW, Yu YX. Structural and Kinetic Properties of α-Tocopherol in Phospholipid Bilayers, a Molecular Dynamics Simulation Study. J Phys Chem B 2009; 113:16537-46. [DOI: 10.1021/jp9074306] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shan-Shan Qin
- Key Lab of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi-Wu Yu
- Key Lab of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yang-Xin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
11
|
Impedance spectroscopic investigation of the interactions between phosphatidylethanolamine and α-tocopherol in bilayer membranes. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2008.08.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Atkinson J, Epand RF, Epand RM. Tocopherols and tocotrienols in membranes: a critical review. Free Radic Biol Med 2008; 44:739-64. [PMID: 18160049 DOI: 10.1016/j.freeradbiomed.2007.11.010] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/09/2007] [Accepted: 11/12/2007] [Indexed: 12/14/2022]
Abstract
The familiar role of tocols (tocopherols and tocotrienols) as lipid-soluble chain-terminating inhibitors of lipid peroxidation is currently in the midst of a reinterpretation. New biological activities have been described for tocols that apparently are not dependent on their well-established antioxidant behaviour. These activities could well be real, but there remain large gaps in our understanding of the behaviour of tocols in membranes, especially when it comes to the alpha-, beta-, gamma-, delta-chroman methylation patterns and the seemingly special nature of tocotrienols. It is inappropriate to make conclusions and develop models based on in vivo (or cell culture) results with reference to in vitro measurements of antioxidant activity. When present in biological membranes, tocols will experience a large variation in the local composition of phospholipids and the presence of neutral lipids such as cholesterol, both of which would be expected to change the efficiency of antioxidant action. It is likely that tocols are not homogeneously dispersed in a membrane, but it is still not known whether any specific combination of lipid head group and acyl chains are conferred special protection from peroxidation, nor do we currently appreciate the structural role that tocols play in membranes. Tocols may enhance curvature stress or counteract similar stresses generated by other lipids such as lysolipids. This review will outline what is known about the location and behaviour of tocols in phospholipid bilayers. We will draw mainly from the biophysical literature, but will attempt to extend the discussion to biologically relevant phenomena when appropriate. We hope that it will assist researchers when designing new experiments and when critically assessing the results, in turn providing a more thorough understanding of the biochemistry of tocols.
Collapse
Affiliation(s)
- Jeffrey Atkinson
- Department of Chemistry and Centre for Biotechnology, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada.
| | | | | |
Collapse
|
13
|
Abstract
To understand how vitamin E fulfills its functions in membranes and lipoproteins, it is necessary to know how it associates with the lipid components of these structures and the effects its presence has on their structure and stability. Studies of model membrane systems containing vitamin E have proved to be an informative approach to address these questions. A review of the way vitamin E interacts with phospholipid bilayers, how it distributes within the structure, its motional diffusion characteristics, and orientation has been undertaken. The effect of vitamin E on membrane stability and permeability has been described. The tendency of vitamin E to form complexes with certain phospholipids is examined as is the way modulation of protein functions takes place. Finally, recent evidence relevant to the putative role of vitamin E in protecting membranes from free radical attack and the consequences of lipid oxidation in lipoproteins and membranes is examined.
Collapse
Affiliation(s)
- Peter J Quinn
- Department of Biochemistry, King's College London, London SE2 9NH, United Kingdom
| |
Collapse
|
14
|
Gueguen Y, Herpin A, Aumelas A, Garnier J, Fievet J, Escoubas JM, Bulet P, Gonzalez M, Lelong C, Favrel P, Bachère E. Characterization of a defensin from the oyster Crassostrea gigas. Recombinant production, folding, solution structure, antimicrobial activities, and gene expression. J Biol Chem 2005; 281:313-23. [PMID: 16246846 DOI: 10.1074/jbc.m510850200] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In invertebrates, defensins were found in arthropods and in the mussels. Here, we report for the first time the identification and characterization of a defensin (Cg-Def) from an oyster. Cg-def mRNA was isolated from Crassostrea gigas mantle using an expressed sequence tag approach. To gain insight into potential roles of Cg-Def in oyster immunity, we produced the recombinant peptide in Escherichia coli, characterized its antimicrobial activities, determined its solution structure by NMR spectroscopy, and quantified its gene expression in vivo following bacterial challenge of oysters. Recombinant Cg-Def was active in vitro against Gram-positive bacteria but showed no or limited activities against Gram-negative bacteria and fungi. The activity of Cg-Def was retained in vitro at a salt concentration similar to that of seawater. The Cg-Def structure shares the so-called cystine-stabilized alpha-beta motif (CS-alphabeta) with arthropod defensins but is characterized by the presence of an additional disulfide bond, as previously observed in the mussel defensin (MGD-1). Nevertheless, despite a similar global fold, the Cg-Def and MGD-1 structures mainly differ by the size of their loops and by the presence of two aspartic residues in Cg-Def. Distribution of Cg-def mRNA in various oyster tissues revealed that Cg-def is mainly expressed in mantle edge where it was detected by mass spectrometry analyses. Furthermore, we observed that the Cg-def messenger concentration was unchanged after bacterial challenge. Our results suggest that Cg-def gene is continuously expressed in the mantle and would play a key role in oyster by providing a first line of defense against pathogen colonization.
Collapse
Affiliation(s)
- Yannick Gueguen
- Ifremer, CNRS, Université de Montpellier II, UMR 5171, Génome Populations Interactions Adaptation, 2 Place E. Bataillon, CC80, F-34095 Montpellier cedex 5, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Naumowicz M, Figaszewski ZA. Impedance Analysis of Phosphatidylcholine/α-Tocopherol System in Bilayer Lipid Membranes. J Membr Biol 2005; 205:29-36. [PMID: 16245040 DOI: 10.1007/s00232-005-0760-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 02/24/2005] [Indexed: 11/30/2022]
Abstract
The effect of alpha-tocopherol on the electrochemical features of the phosphatidylcholine membrane was investigated by impedance spectroscopy. Phosphatidylcholine and alpha-tocopherol were chosen for the study because they are present in biological membranes and they fulfill essential functions in living organisms. The experimental impedance values obtained in the presence of different amounts of alpha-tocopherol showed evidence of domain structures within the bilayer containing less than 0.048 molar fraction of alpha-tocopherol. Based on derived mathematical equations, the surface area of phospholipid/alpha-tocopherol domain was calculated; it amounts to 832 A(2). This value is consistent, taking into consideration ordering and condensation effects of alpha-tocopherol, with the acknowledged, well documented, stoichiometry of such a domain of 10:1. The result of the investigation is the proposal of a new method for the determination of the surface area and description of the stoichiometry of domains formed in any two-component system.
Collapse
Affiliation(s)
- M Naumowicz
- Institute of Chemistry, University of Bialystok, Al. J. Pilsudskiego 11/4, 15-443 Bialystok, Poland
| | | |
Collapse
|
16
|
Gutiérrez ME, García AF, Africa de Madariaga M, Sagrista ML, Casadó FJ, Mora M. Interaction of tocopherols and phenolic compounds with membrane lipid components: evaluation of their antioxidant activity in a liposomal model system. Life Sci 2003; 72:2337-60. [PMID: 12639700 DOI: 10.1016/s0024-3205(03)00120-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This paper describes the use of complex liposomes as real membrane models to evaluate the potential benefits of several antioxidants in relation to lipid peroxidation. The xanthine oxidase/Fe(3+)-ADP-EDTA and the Fe(2+)/H2O2 systems have been used to generate hydroxyl radicals and the water soluble azo-compound 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) to generate carbon centered radicals (A*) by thermal decomposition. The antioxidant behavior of the rosemary and citrus plant extracts and vitamin-E and vitamin-E acetate alpha-tocopherols have been analyzed. The order of effectiveness in avoiding radical chain reactions has been established by using the colorimetric thiobarbituric acid reaction and the fluorescent probe DPH-PA. ESR spectroscopy has been used to carry out the pursuit of the oxidation processes on the basis of the identification of the radical species resulting from the oxidant system and the ability of the antioxidants to act as scavengers for hydroxyl and AAPH-derived radicals. The modification of the main transition temperature for the lipid mixture and the splitting of the calorimetric peak in the presence of the antioxidants were demonstrated by differential scanning calorimetry. The results obtained showed that the phenols-containing plant extracts and alpha-tocopherols perturb the phase behavior of the BBE lipid bilayer and have a fluidifying effect that could favor the known antioxidant capability and scavenging characteristics of these compounds. 31P-NMR results could be interpreted as, after the incorporation of these antioxidants, those lipid molecules interacting with antioxidants give rise to lamellar phase spectral components with resonance position at lower fields or to isotropic signals in accordance with a higher motion of their phosphate groups.
Collapse
Affiliation(s)
- M Elena Gutiérrez
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Barcelona, Martí i Franqués 1, 08028-, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Egger T, Schuligoi R, Wintersperger A, Amann R, Malle E, Sattler W. Vitamin E (alpha-tocopherol) attenuates cyclo-oxygenase 2 transcription and synthesis in immortalized murine BV-2 microglia. Biochem J 2003; 370:459-67. [PMID: 12429020 PMCID: PMC1223182 DOI: 10.1042/bj20021358] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2002] [Revised: 11/08/2002] [Accepted: 11/13/2002] [Indexed: 01/20/2023]
Abstract
One of the immediate early microglial genes that are up-regulated in response to proinflammatory stimuli is cyclo-oxygenase 2 (COX-2). In the present study, we have investigated the effects of alpha-tocopherol (alpha TocH), an essential constituent of the nervous system, on the activation of COX-2 in lipopolysaccharide (LPS)-stimulated mouse BV-2 microglia. In unstimulated BV-2 cells, COX-2 mRNA and protein were almost undetectable but were strongly up-regulated in response to LPS. Activation of COX-2 protein synthesis in LPS-stimulated BV-2 cells involved activation of the extracellular-signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) pathway and was sensitive to the protein kinase C (PKC) inhibitors staurosporine and chelerythrine, and the MAP kinase/ERK kinase 1/2 inhibitors PD98059 and U0126. Supplementation of BV-2 cells with alpha TocH before LPS stimulation resulted in pronounced up-regulation of protein phosphatase 2A (PP2A) activity, down-regulation of PKC activity, ERK1/2 phosphorylation and nuclear factor kappa B (NF kappa B) activation. As a result, COX-2 protein levels and prostaglandin E(2) production were significantly lower in alpha TocH-supplemented cells. The effects of alpha TocH on PKC activity could be reverted by calyculin A and okadaic acid, two PP inhibitors. In summary, our results suggest that alpha TocH activates microglial PP2A activity and thereby silences an LPS-activated PKC/ERK/NF kappa B signalling cascade resulting in significantly attenuated COX-2 protein synthesis. These in vitro results imply that alpha TocH could induce quiescence to pathways that are associated with acute or chronic inflammatory conditions in the central nervous system.
Collapse
Affiliation(s)
- Tamara Egger
- Institute of Medical Biochemistry and Molecular Biology, University Graz, Harrachgasse 21, 8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
18
|
Wang X, Quinn PJ. The interaction of alpha-tocopherol with bilayers of 1-palmitoyl-2-oleoyl-phosphatidylcholine. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1567:6-12. [PMID: 12488032 DOI: 10.1016/s0005-2736(02)00636-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effect of alpha-tocopherol on the structure and phase behaviour of 1-palmitoyl-2-oleoyl-phosphatidylcholine was examined by real-time synchrotron X-ray diffraction and freeze-fracture electron microscopic methods. X-ray scattering intensity was recorded from mixed aqueous dispersions of phospholipid with 2.5, 5, 10 and 20 mol% alpha-tocopherol during temperature scans at 3 degrees /min between -25 and 10 degrees C. A ripple structure is induced by the presence of alpha-tocopherol that coexists with the ripple phase characteristic of the pure phospholipid in mixtures containing 2.5 mol% alpha-tocopherol but completely replaces it in mixtures containing greater proportions of alpha-tocopherol. Freeze-fracture replicas of dispersions containing 5 mol% alpha-tocopherol indicate a ripple phase with a periodicity of about 9 nm. Increasing amounts of alpha-tocopherol result in a progressive reduction in temperature of the gel to liquid-crystal phase transition and broadening of the transition. Two lamellar phases coexist in the liquid-crystal state, one with a spacing of 6.4 nm assigned to an alpha-tocopherol-enriched lamellar structure and the other with a lamellar repeat of 6.1 nm corresponding to bilayers of pure phospholipid.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Division of Life Sciences, King's College London, 150 Stamford Street, London SE1 9NN, United Kingdom
| | | |
Collapse
|
19
|
Abstract
The identification of a majority of the polypeptides in mitochondria would be invaluable because they play crucial and diverse roles in many cellular processes and diseases. The endogenous production of reactive oxygen species (ROS) is a major limiter of life as illustrated by studies in which the transgenic overexpression in invertebrates of catalytic antioxidant enzymes results in increased lifespans. Mitochondria have received considerable attention as a principal source---and target---of ROS. Mitochondrial oxidative stress has been implicated in heart disease including myocardial preconditioning, ischemia/reperfusion, and other pathologies. In addition, oxidative stress in the mitochondria is associated with the pathogenesis of Alzheimer's disease, Parkinson's disease, prion diseases, and amyotrophic lateral sclerosis (ALS) as well as aging itself. The rapidly emerging field of proteomics can provide powerful strategies for the characterization of mitochondrial proteins. Current approaches to mitochondrial proteomics include the creation of detailed catalogues of the protein components in a single sample or the identification of differentially expressed proteins in diseased or physiologically altered samples versus a reference control. It is clear that for any proteomics approach prefractionation of complex protein mixtures is essential to facilitate the identification of low-abundance proteins because the dynamic range of protein abundance within cells has been estimated to be as high as 10(7). The opportunities for identification of proteins directly involved in diseases associated with or caused by mitochondrial dysfunction are compelling. Future efforts will focus on linking genomic array information to actual protein levels in mitochondria.
Collapse
|
20
|
Wang X, Quinn PJ. Phase separations of alpha-tocopherol in aqueous dispersions of distearoylphosphatidylethanolamine. Chem Phys Lipids 2002; 114:1-9. [PMID: 11841821 DOI: 10.1016/s0009-3084(01)00194-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of alpha-tocopherol on the structure and thermotropic phase behaviour of distearoylphosphatidylethanolamine was examined by using synchrotron X-ray diffraction methods. There was evidence that alpha-tocopherol does not distribute randomly in the dispersed phospholipid but instead phospholipid phases enriched in alpha-tocopherol are formed. Heating codispersions from lamellar gel phase induced formation of hexagonal-II phase at temperatures below the main transition of the pure phospholipid and which were enriched in alpha-tocopherol. Codispersions containing 5 or 10 mol% alpha-tocopherol were induced to form a cubic phase at temperatures above the lamellar to hexagonal-II phase transition. Such phases were not observed in codispersions containing 2.5 or 20 mol% alpha-tocopherol in which only lamellar and hexagonal-II phases were formed. The space group of the cubic phases were tentatively assigned as Pn3m. Equilibration of codispersions at 4 degrees C results in the formation of lamellar crystalline phases enriched in alpha-tocopherol and phase separated domains of pure phospholipid. Two lamellar crystalline phases were characterized on the basis of their particular wide-angle X-ray scattering patterns. The lamellar crystalline phases were also distinguished from other lamellar phases of the pure phospholipid by the lamellar repeat. Partitioning of alpha-tocopherol into phosphatidylethanolamine domains in membranes may introduce instability into the structure.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Division of Life Sciences, King's College London, 150 Stamford Street, SE1 9NN, London, UK
| | | |
Collapse
|
21
|
Massey JB. Interfacial properties of phosphatidylcholine bilayers containing vitamin E derivatives. Chem Phys Lipids 2001; 109:157-74. [PMID: 11269935 DOI: 10.1016/s0009-3084(00)00216-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
alpha-Tocopherol and alpha-tocopheryl succinate are biologically active lipids. The activity of these lipids may be related to how they affect membrane physical-chemical properties. Utilizing fluorescence methods, we have investigated the effect of alpha-tocopherol, alpha-tocopheryl succinate, and alpha-tocopheryl acetate on the properties of model membranes consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. In liquid-crystalline phase phospholipid bilayers, alpha-tocopherol decreased acyl chain mobility and decreased the interfacial polarity, but had no effect on the interfacial surface charge. In contrast, alpha-tocopheryl succinate had little effect on acyl chain motion or interfacial hydration, but increased the interfacial surface charge. alpha-Tocopheryl acetate had very little effect on any of the measurements of these bilayer properties. In a gel phase bilayer, alpha-tocopherol decreased acyl chain order, whereas alpha-tocopheryl succinate and alpha-tocopheryl acetate did not. Each alpha-tocopheryl derivative had a different effect on interfacial polarity, however, only alpha-tocopheryl succinate increased the interfacial surface charge. The acylation of alpha-tocopherol abolishes its antioxidant activity and generates molecules with different membrane physical properties. The non-polar acetate group of alpha-tocopheryl acetate locates this compound in a region of the bilayer where it has little effect on bilayer interfacial properties. The free carboxyl group of alpha-tocopheryl succinate is located in the interfacial region of the bilayer where it increases the membrane surface charge.
Collapse
Affiliation(s)
- J B Massey
- Department of Medicine, Baylor College of Medicine, 6565 Fannin Street, M.S.A.-601, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Wang X, Quinn PJ. The distribution of alpha-tocopherol in mixed aqueous dispersions of phosphatidylcholine and phosphatidylethanolamine. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1509:361-72. [PMID: 11118546 DOI: 10.1016/s0005-2736(00)00319-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of alpha-tocopherol on the structure and phase behaviour of mixed aqueous dispersions of phosphatidylcholine and phosphatidylethanolamine has been examined by synchrotron X-ray diffraction. Equimolar mixtures of dioleoylphosphatidylethanolamine:dioleoylphosphatidylcholine and dimyristoylphosphatidylcholine:dioleoylphosphatidylethanolamine did not show evidence of phase separation of an inverted hexagonal structure typical of alpha-tocopherol and phosphatidylethanolamine from lamellar phase. Mixed dispersions of dioleoyl derivatives of phosphatidylethanolamine:phosphatidylcholine (3:1) form a typical miscible gel phase at low temperatures but which phase separates into lamellar liquid-crystal and inverted hexagonal phases at temperatures greater than 65 degrees C. The presence of 1, 2 or 5 mol% alpha-tocopherol caused a decrease in the temperature at which the inverted hexagonal phase appears. Phase separation of non-lamellar phase from lamellar gel phase can be detected in the presence of 7.5 and 10 mol% alpha-tocopherol, indicating a limited capacity of the phosphatidylcholine to incorporate alpha-tocopherol into the lamellar domain. A partial phase diagram of the ternary mixture has been constructed from the X-ray scattering data. It was concluded that there is no preferential interaction of alpha-tocopherol with phosphatidylethanolamine in mixed aqueous dispersions containing phosphatidylcholines.
Collapse
Affiliation(s)
- X Wang
- Division of Life Sciences, King's College London, 150 Stamford Street, SE1 8WA, London, UK
| | | |
Collapse
|
23
|
Wang X, Quinn PJ. Preferential interaction of alpha-tocopherol with phosphatidylcholines in mixed aqueous dispersions of phosphatidylcholine and phosphatidylethanolamine. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6362-8. [PMID: 11029578 DOI: 10.1046/j.1432-1327.2000.01720.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of alpha-tocopherol on the structure and phase behaviour of mixed aqueous dispersions of phosphatidylcholine and phosphatidylethanolamine has been examined by synchrotron X-ray diffraction and freeze-fracture electron microscopy. Equimolar mixtures of fully saturated derivatives of phospholipids that show gel phase immiscibility were examined including dimyristoylglycerophosphocholine/dipalmitoylglycerophosphoethanolamin e and distearoylglycerophosphocholine/dilauroylglycerophosphoethanolamine++ +. Analysis of the X-ray scattering intensities recorded at wide angles during heating scans of mixed aqueous dispersions containing 2.5 or 5 mol% alpha-tocopherol showed that alpha-tocopherol disordered the acyl chain packing of the phosphatidylcholine to a greater extent than the phosphatidylethanolamine component of the mixture. This suggested that alpha-tocopherol preferentially interacts with phosphatidylcholine rather than phosphatidylethanolamine, irrespective of whether this was the high or low melting point component of the mixture. The presence of 20 mol% alpha-tocopherol in either phospholipid mixture prevented gel phase separation during the prior cooling scan and no conclusions could be drawn as to the distribution of alpha-tocopherol in these mixtures.
Collapse
Affiliation(s)
- X Wang
- Division of Life Sciences, King's College London, UK
| | | |
Collapse
|
24
|
Abstract
Vitamin E is a fat-soluble vitamin that consists of a group of tocols and tocotrienols with hydrophobic character, but possessing a hydroxyl substituent that confers an amphipathic character on them. The isomers of biological importance are the tocopherols, of which alpha-tocopherol is the most potent vitamin. Vitamin E partitions into lipoproteins and cell membranes, where it represents a minor constituent of most membranes. It has a major function in its action as a lipid antioxidant to protect the polyunsaturated membrane lipids against free radical attack. Other functions are believed to be to act as membrane stabilizers by forming complexes with the products of membrane lipid hydrolysis, such as lysophospholipids and free fatty acids. The main experimental approach to explain the functions of vitamin E in membranes has been to study its effects on the structure and stability of model phospholipid membranes. This review describes the function of vitamin E in membranes and reviews the current state of knowledge of the effect of vitamin E on the structure and phase behaviour of phospholipid model membranes.
Collapse
Affiliation(s)
- X Wang
- Division of Life Sciences, King's College London, 150 Stamford Street, London SE1 8WA, UK
| | | |
Collapse
|
25
|
Wang X, Semmler K, Richter W, Quinn PJ. Ripple phases induced by alpha-tocopherol in saturated diacylphosphatidylcholines. Arch Biochem Biophys 2000; 377:304-14. [PMID: 10845708 DOI: 10.1006/abbi.2000.1767] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of alpha-tocopherol on the structure and phase behavior of dilauroyl-, dimyristoyl-, dipalmitoyl-, and distearoyl-phosphatidylcholines was examined using X-ray diffraction and freeze-fracture electron microscopic methods. A ripple phase was observed in all of the mixtures at temperatures well below the pretransition temperature of the corresponding pure phospholipid. Freeze-fracture studies indicated that with proportion of alpha-tocopherol less than 5 mol% a ripple phase with large periodicity (50-150 nm) predominated and with about 10 mol% alpha-tocopherol a ripple phase of periodicity about 16 nm was formed. With more than 10 mol% alpha-tocopherol planar bilayers tended to be formed. Partial phase diagrams of mixed aqueous dispersions of saturated phosphatidylcholines and alpha-tocopherol over temperature ranges about the gel to liquid-crystal phase boundary have been constructed. Alpha-tocopherol-enriched domains form ripple phases that coexist with regions of lamellar gel phase of the pure phospholipid in mixtures containing less than 10 mol% alpha-tocopherol. The presence of increasing amounts of alpha-tocopherol in the phospholipid causes an increase in the proportion of ripple phase at the expense of pure phospholipid bilayer indicating that the alpha-tocopherol-enriched domains might possess a defined stoichiometry of the two constituents.
Collapse
Affiliation(s)
- X Wang
- Division of Life Sciences, King's College London, United Kingdom
| | | | | | | |
Collapse
|