1
|
Ashwood B, Jones MS, Radakovic A, Khanna S, Lee Y, Sachleben JR, Szostak JW, Ferguson AL, Tokmakoff A. Thermodynamics and kinetics of DNA and RNA dinucleotide hybridization to gaps and overhangs. Biophys J 2023; 122:3323-3339. [PMID: 37469144 PMCID: PMC10465710 DOI: 10.1016/j.bpj.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023] Open
Abstract
Hybridization of short nucleic acid segments (<4 nt) to single-strand templates occurs as a critical intermediate in processes such as nonenzymatic nucleic acid replication and toehold-mediated strand displacement. These templates often contain adjacent duplex segments that stabilize base pairing with single-strand gaps or overhangs, but the thermodynamics and kinetics of hybridization in such contexts are poorly understood because of the experimental challenges of probing weak binding and rapid structural dynamics. Here we develop an approach to directly measure the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization using steady-state and temperature-jump infrared spectroscopy. Our results suggest that dinucleotide binding is stabilized through coaxial stacking interactions with the adjacent duplex segments as well as from potential noncanonical base-pairing configurations and structural dynamics of gap and overhang templates revealed using molecular dynamics simulations. We measure timescales for dissociation ranging from 0.2-40 μs depending on the template and temperature. Dinucleotide hybridization and dehybridization involve a significant free energy barrier with characteristics resembling that of canonical oligonucleotides. Together, our work provides an initial step for predicting the stability and kinetics of hybridization between short nucleic acid segments and various templates.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, The University of Chicago, Chicago, Illinois; The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Michael S Jones
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | | | - Smayan Khanna
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | - Yumin Lee
- Department of Chemistry, The University of Chicago, Chicago, Illinois; The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Joseph R Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, Illinois
| | - Jack W Szostak
- Department of Chemistry, The University of Chicago, Chicago, Illinois
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | - Andrei Tokmakoff
- Department of Chemistry, The University of Chicago, Chicago, Illinois; The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
2
|
Harris PD, Hamdan SM, Habuchi S. Relative Contributions of Base Stacking and Electrostatic Repulsion on DNA Nicks and Gaps. J Phys Chem B 2020; 124:10663-10672. [PMID: 33179916 DOI: 10.1021/acs.jpcb.0c06941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In duplex DNA, the continuous sugar phosphate backbones prevent the double helix from significant bending, but breaks in the duplex such as nicks, gaps, and flaps present points at which significant bending is possible. The conformational dynamics of these aberrant structures remains poorly understood. Two factors can maintain the duplexlike conformation of these aberrant structures, these being the hydrophobic and aromatic stacking interactions of the nucleobases, and the electrostatic repulsion of the negatively charged backbones. Using confocal single-molecule Förster resonance energy transfer on nicked and gapped DNA structures, we compare the relative contributions of these two factors by modulating the electrostatic repulsion through mono- and divalent cation concentrations. Base stacking interactions dominate the dynamics of nicked DNA, making it behave essentially like duplex DNA. Gapped structures have weaker base stacking and thus backbone electrostatic repulsion becomes important, and shielding from cations results in an average increase in bending around the gap. This bending of gapped structures could be interpreted by increased flexibility of unstacked structures, transient unstacking events, or a combination of the two. Burst variance analysis (BVA) and analysis by photon-by-photon hidden Markov modeling (H2MM), methods capable of detecting submillisecond dynamics of single molecules in solution, only revealed a single state, indicating that dynamics are occurring at time scales shorter than microseconds.
Collapse
Affiliation(s)
- Paul D Harris
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, P.O. Box 4700, Thuwal 23955-6900, Saudi Arabia
| | - Samir M Hamdan
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, P.O. Box 4700, Thuwal 23955-6900, Saudi Arabia
| | - Satoshi Habuchi
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, P.O. Box 4700, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Suresh G, Padhi S, Patil I, Priyakumar UD. Urea Mimics Nucleobases by Preserving the Helical Integrity of B-DNA Duplexes via Hydrogen Bonding and Stacking Interactions. Biochemistry 2016; 55:5653-5664. [DOI: 10.1021/acs.biochem.6b00309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gorle Suresh
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Siladitya Padhi
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Indrajit Patil
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - U. Deva Priyakumar
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| |
Collapse
|
4
|
Patnaik S, Cho BP. Structures of 2-acetylaminofluorene modified DNA revisited: insight into conformational heterogeneity. Chem Res Toxicol 2010; 23:1650-2. [PMID: 20954689 DOI: 10.1021/tx100341u] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the extensive data on dG-AAF, the major DNA adduct derived from the model carcinogen 2-acetylaminofluorene, little is known with respect to its solution structures. Here, we provide NMR/CD evidence for three conformers of dG-AAF in duplex DNA: major groove B-type (B), base-displaced stacked (S), and minor groove wedge (W). The S/B/W-conformational heterogeneities were found to be sensitive to the nature of the flanking DNA sequence contexts and pH.
Collapse
Affiliation(s)
- Satyakam Patnaik
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | |
Collapse
|
5
|
Ndlebe T, Panyutin I, Neumann R. Analysis of the contribution of charge transport in iodine-125-induced DNA damage. Radiat Res 2010; 173:98-109. [PMID: 20041764 DOI: 10.1667/rr1865.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Auger electron emitters like (125)I are the radionuclides of choice for gene-targeted radiotherapy. The highly localized damage they induce in DNA is produced by three mechanisms: direct damage by the emitted Auger electrons, indirect damage by diffusible free radicals produced by Auger electrons traveling in water, and charge neutralization of the residual, highly positively charged tellurium daughter atom by stripping electrons from covalent bonds of neighboring residues. The purpose of our work was to determine whether these mechanisms proceed through an intermediate energy transfer step along DNA. It was proposed that this intermediate step proceeds through the charge transport mechanism in DNA. Conventional charge transport has been described as either a hopping mechanism initiated by charge injection into DNA and propagated by charge migration along the DNA or a tunneling mechanism in which charge moves directly from a donor to an acceptor within DNA. Well-known barriers for the hopping mechanism were used to probe the role of charge transport in (125)I-induced DNA damage. We studied their effect on the distribution of DNA breaks produced by the decay of (125)I in samples frozen at -80 degrees C. We found that these barriers had no measurable effect on the distribution of (125)I-induced breaks.
Collapse
Affiliation(s)
- Thabisile Ndlebe
- Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
6
|
Zhao C, Peng Y, Song Y, Ren J, Qu X. Self-assembly of single-stranded RNA on carbon nanotube: polyadenylic acid to form a duplex structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2008; 4:656-661. [PMID: 18446797 DOI: 10.1002/smll.200701054] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
All messenger-RNA (mRNA) molecules in eukaryotic cells have a polyadenylic acid [poly(rA)] tail at the 3'-end and human poly(rA) polymerase (PAP) has been considered as a tumor-specific target. A ligand that is capable of recognizing and binding to the poly(rA) tail of mRNA might interfere with the full processing of mRNA by PAP and can be a potential therapeutic agent. We report here for the first time that single-walled carbon nanotubes (SWNTs) can cause single-stranded poly(rA) to self-structure and form a duplex structure, which is studied by UV melting, atomic force microscopy, circular dichroism spectroscopy, and NMR spectrometry. SWNTs have shown potential applications that range from nanodevices, gene therapy, and drug delivery to membrane separations. Our studies may provide new insights into the application of SWNTs under physiological conditions, possibly being used as probes that target specific gene sequences.
Collapse
Affiliation(s)
- Chao Zhao
- Division of Biological Inorganic Chemistry Key Laboratory of Rare Earth Chemistry and Physics Graduate School of the Chinese Academy of Sciences Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin 130022, PR China
| | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- Mark Lukin
- Department of Pharmacological Sciences, State University of New York at Stony Brook, School of Medicine, 11794-8651, USA
| | | |
Collapse
|
8
|
Nishizawa S, Sankaran NB, Seino T, Cui YY, Dai Q, Xu CY, Yoshimoto K, Teramae N. Use of vitamin B2 for fluorescence detection of thymidine-related single-nucleotide polymorphisms. Anal Chim Acta 2005; 556:133-9. [PMID: 17723339 DOI: 10.1016/j.aca.2005.05.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 05/21/2005] [Accepted: 05/25/2005] [Indexed: 11/19/2022]
Abstract
In combination with abasic site (AP site)-containing DNAs, potential use of a biotic fluorescence compound, Vitamin B2 (riboflavin), is demonstrated for the fluorescence detection of the thymine (T)-related single-nucleotide polymorphisms. Our method is based on construction of the AP site in DNA duplexes, which allows small ligands to bind to target nucleotides accompanied by fluorescence signaling: an AP site-containing probe DNA is hybridized with a target DNA so as to place the AP site toward a target nucleobase, by which hydrophobic microenvironments are provided for ligands to recognize target nucleotides through stacking and hydrogen-bonding interactions. In 10 mM sodium cacodylate buffer solutions (pH 7.0) containing 100 mM NaCl and 1.0 mM EDTA, Vitamin B2 is found to selectively bind to T (K11=1.8x10(6) M(-1) at 5 degrees C) over other nucleobases, and this is accompanied by significant quenching of its fluorescence. While the sensing functions depend on the flanking sequences to the AP site, Vitamin B2 is applicable to the detection of T/C (cytosine), T/G (guanine) and T/A (adenine) mutation sequences of the CYP2A6 gene, where the flanking nucleobases are guanines in both positions (-GXG-, X=AP site).
Collapse
Affiliation(s)
- Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Maufrais C, Fazakerley GV, Cadet J, Boulard Y. Structural study of DNA duplex containing an N-(2-deoxy-beta-D-erythro-pentofuranosyl) formamide frameshift by NMR and restrained molecular dynamics. Nucleic Acids Res 2003; 31:5930-40. [PMID: 14530441 PMCID: PMC219481 DOI: 10.1093/nar/gkg803] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The presence of an N-(2-deoxy-beta-D-erythro-pentofuranosyl) formamide (F) residue, a ring fragmentation product of thymine, in a frameshift context in the sequence 5'-d-(AGGACCACG)*d(CGTGGFTCCT) has been studied by 1H and 31P nuclear magnetic resonance (NMR) and molecular dynamics. Two-dimensional NMR studies show that the formamide residue, whether the cis or trans isomer, is rotated out of the helix and that the bases on either side of the formamide residue in the sequence, G14 and T16, are stacked over each other in a way similar to normal B-DNA. The cis and trans isomers were observed in the ratio 3:2 in solution. Information extracted from 31P NMR data reveal a modification of the phosphodiester backbone conformation at the extrahelical site, which is also observed during the molecular dynamics simulations.
Collapse
Affiliation(s)
- C Maufrais
- CEA, Département de Biologie Joliot Curie, Service de Biochimie et de Génétique Moléculaire, Bat 144, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
10
|
Junker HD, Hoehn ST, Bunt RC, Marathius V, Chen J, Turner CJ, Stubbe J. Synthesis, characterization and solution structure of tethered oligonucleotides containing an internal 3'-phosphoglycolate, 5'-phosphate gapped lesion. Nucleic Acids Res 2002; 30:5497-508. [PMID: 12490718 PMCID: PMC140059 DOI: 10.1093/nar/gkf681] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bleomycins (BLMs) are antitumor antibiotics that in the presence of iron and oxygen mediate DNA damage by 4'-hydrogen atom abstraction of pyrimidines 3' to guanines. The resulting 4'-deoxyribose radicals can be trapped by O2 and ultimately result in the formation of base-propenal and gapped DNA with 3'-phosphoglycolate (3'-PG) and 5'-phosphate (5'-P) ends. The role of this lesion in triggering double-strand cleavage of duplex DNA by a single BLM molecule and the mechanism by which this lesion is repaired in vivo remain unsolved problems. The structure of these lesions is an essential step in addressing both of these problems. Duplex DNAs (13mers containing tethered hexaethylene glycol linkers) with GTAC and GGCC cleavage sites have been synthesized in which gaps containing 3'-PG and 5'-P ends at the sites of BLM cleavage have been inserted. The former sequence represents a hot spot for double-strand cleavage, while the latter is a hot spot for single-strand cleavage. Analytical methods to characterize the lesioned products have been developed. These oligonucleotides have been examined using 2D NMR methods and molecular modeling. The studies reveal that the lesioned DNAs are B-form and the 3'-PG and 5'-P are extrahelical. The base opposite the gap and the base pairs adjacent to the gap remain well stacked in the DNA duplex. Titrations of the lesioned GGCC oligomer with HOO-CoBLM leads to a mixture of complexes, in contrast to results of a similar titration with the lesioned GTAC oligomer.
Collapse
Affiliation(s)
- Hans-Dieter Junker
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Maufrais C, Boulard Y. Solution structure of a DNA duplex containing a formamide-adenine base pair. Can J Physiol Pharmacol 2002; 80:609-17. [PMID: 12182318 DOI: 10.1139/y02-068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The N-(2-deoxy-beta3-D-erythro-pentofuranosyl) formamide residue results from a ring fragmentation product of thymine or cytosine. The presence of a formamide-adenine base pair in the sequence 5'd(AGGAACCACG).d(CGTGGFTCCT) has been studied by 1H and 31P nuclear magnetic resonance (NMR) and molecular dynamics. There are two possible isomers for the formamide side chain, either cis or trans. For each isomer, we observed an equilibrium in solution between two forms. First, a species where the formamide is intrahelical and paired with the facing adenine. For the cis isomer, the formamide is in a syn conformation and two hydrogen bonds with adenine are formed. The trans isomer is in an anti conformation and a single hydrogen bond is observed. In the second form, whatever the isomer, the formamide is rejected outside the helix, whereas the adenine remains inside.
Collapse
Affiliation(s)
- Corinne Maufrais
- CEA Saclay, Service de Biochimie et de Génétique Moléculaire, Gif-sur-Yvette, France
| | | |
Collapse
|
12
|
Foloppe N, Hartmann B, Nilsson L, MacKerell AD. Intrinsic conformational energetics associated with the glycosyl torsion in DNA: a quantum mechanical study. Biophys J 2002; 82:1554-69. [PMID: 11867468 PMCID: PMC1301954 DOI: 10.1016/s0006-3495(02)75507-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The glycosyl torsion (chi) in nucleic acids has long been recognized to be a major determinant of their conformational properties. chi torsional energetics were systematically mapped in deoxyribonucleosides using high-level quantum mechanical methods, for north and south sugar puckers and with gamma in the g(+) and trans conformations. In all cases, the syn conformation is found higher in energy than the anti. When gamma is changed from g(+) to trans, the anti orientation of the base is strongly destabilized, and the energy difference and barrier between anti and syn are significantly decreased. The barrier between anti and syn in deoxyribonucleosides is found to be less than 10 kcal/mol and tends to be lower with purines than with pyrimidines. With gamma = g(+)/chi = anti, a south sugar yields a significantly broader energy well than a north sugar with no energy barrier between chi values typical of A or B DNA. Contrary to the prevailing view, the syn orientation is not more stable with south puckers than with north puckers. The syn conformation is significantly more energetically accessible with guanine than with adenine in 5-nucleotides but not in nucleosides. Analysis of nucleic acid crystal structures shows that gamma = trans/chi = anti is a minor but not negligible conformation. Overall, chi appears to be a very malleable structural parameter with the experimental chi distributions reflecting, to a large extent, the associated intrinsic torsional energetics.
Collapse
Affiliation(s)
- Nicolas Foloppe
- Center for Structural Biology, Department of Bioscience, Karolinska Institutet, S-141 57, Huddinge, Sweden
| | | | | | | |
Collapse
|