1
|
Thitiprasert S, Jaiaue P, Amornbunchai N, Thammakes J, Piluk J, Srimongkol P, Tanasupawat S, Thongchul N. Association between organic nitrogen substrates and the optical purity of D-lactic acid during the fermentation by Sporolactobacillus terrae SBT-1. Sci Rep 2024; 14:10522. [PMID: 38719898 PMCID: PMC11079031 DOI: 10.1038/s41598-024-61247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
The development of biotechnological lactic acid production has attracted attention to the potential production of an optically pure isomer of lactic acid, although the relationship between fermentation and the biosynthesis of highly optically pure D-lactic acid remains poorly understood. Sporolactobacillus terrae SBT-1 is an excellent D-lactic acid producer that depends on cultivation conditions. Herein, three enzymes responsible for synthesizing optically pure D-lactic acid, including D-lactate dehydrogenase (D-LDH; encoded by ldhDs), L-lactate dehydrogenase (L-LDH; encoded by ldhLs), and lactate racemase (Lar; encoded by larA), were quantified under different organic nitrogen sources and concentration to study the relationship between fermentation conditions and synthesis pathway of optically pure lactic acid. Different organic nitrogen sources and concentrations significantly affected the quantity and quality of D-lactic acid produced by strain SBT-1 as well as the synthetic optically pure lactic acid pathway. Yeast extract is a preferred organic nitrogen source for achieving high catalytic efficiency of D-lactate dehydrogenase and increasing the transcription level of ldhA2, indicating that this enzyme plays a major role in D-lactic acid formation in S. terrae SBT-1. Furthermore, lactate racemization activity could be regulated by the presence of D-lactic acid. The results of this study suggest that specific nutrient requirements are necessary to achieve a stable and highly productive fermentation process for the D-lactic acid of an individual strain.
Collapse
Affiliation(s)
- Sitanan Thitiprasert
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| | - Phetcharat Jaiaue
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Nichakorn Amornbunchai
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Jesnipit Thammakes
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Jirabhorn Piluk
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Somboon Tanasupawat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Nuttha Thongchul
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Sun Y, Gao G, Cai T. Enzymatic characterization of D-lactate dehydrogenase and application in alanine aminotransferase activity assay kit. Bioengineered 2021; 12:6459-6471. [PMID: 34516347 PMCID: PMC8806867 DOI: 10.1080/21655979.2021.1972781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
D-lactate dehydrogenase (D-LDH) is widely used for the clinical detection of alanine aminotransferase (ALT) activity. It is a key enzyme in ALT detection kits, and its enzymatic properties directly determine sensitivity and accuracy of such kits. In this study, D-lactate dehydrogenase (WP_011543503, ldLDH) coding sequence derived from Lactobacillus delbrueckii was obtained from the NCBI database by gene mining. LdLDH was expressed and purified in Escherichia coli, and its enzyme activity, kinetic parameters, optimum temperature, and pH were characterized. Furthermore, stabilizers, including sugars, polyols, amino acids, certain salts, proteins, and polymers, were screened to improve stability of ldLDH during freeze-drying and storage. Finally, a kit based on ldLDH was tested to determine whether the enzyme had potential clinical applications. The results showed that ldLDH had a specific activity of 1,864 U/mg, Km value of 1.34 mM, optimal reaction temperature of 55°C, and an optimal pH between 7.0 and 7.5. When sucrose or asparagine was used as a stabilizer, freeze-dried ldLDH remained stable at 37°C for > 2 months without significant loss of enzymatic activity. These results indicated that ldLDH possesses high activity and stability. Test results using the ALT assay kit prepared with ldLDH were consistent with those of commercial kits, with a relative deviation <5%. These results indicated that ldLDH met the primary requirements for ALT assays, laying a foundation for the development of new ALT kits with potential clinical applications.
Collapse
Affiliation(s)
- Yi Sun
- Department of Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Department of Research, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Guosheng Gao
- Department of Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Department of Research, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Ting Cai
- Department of Research, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China.,Department of Emergency, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
3
|
Niu C, Wan X. Engineering a Trypsin-Resistant Thermophilic α-Galactosidase to Enhance Pepsin Resistance, Acidic Tolerance, Catalytic Performance, and Potential in the Food and Feed Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10560-10573. [PMID: 32829638 DOI: 10.1021/acs.jafc.0c02175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
α-Galactosidase has potential applications, and attempts to improve proteolytic resistance of enzymes have important values. We use a novel strategy for genetic manipulation of a pepsin-sensitive region specific for a pepsin-sensitive but trypsin-resistant high-temperature-active Gal27B from Neosartorya fischeri to screen mutants with enhanced pepsin resistance. All enzymes were produced in Pichia pastoris to identify the roles of loop 4 (Gal27B-A23) and its key residue at position 156 (Gly156Arg/Pro/His) in pepsin resistance. Gal27B-A23 and Gly156Arg/Pro/His elevated pepsin resistance, thermostability, stability at low pH, activity toward raffinose (5.3-6.9-fold) and stachyose (about 1.3-fold), and catalytic efficiencies (up to 4.9-fold). Replacing the pepsin cleavage site Glu155 with Gly improved pepsin resistance but had no effect on pepsin resistance when Arg/Pro/His was at position 156. Thus, pepsin resistance could appear to occur through steric hindrance between the residue at the altered site and neighboring pepsin active site. In the presence of pepsin or trypsin, all mutations increased the ability of Gal27B to hydrolyze galactosaccharides in soybean flour (up to 9.6- and 4.3-fold, respectively) and promoted apparent metabolizable energy and nutrient digestibility in soybean meal for broilers (1.3-1.8-fold). The high activity and tolerance to heat, low pH, and protease benefit food and feed industry in a cost-effective way.
Collapse
Affiliation(s)
- Canfang Niu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| |
Collapse
|
4
|
Furukawa N, Miyanaga A, Nakajima M, Taguchi H. Structural Basis of Sequential Allosteric Transitions in Tetrameric d-Lactate Dehydrogenases from Three Gram-Negative Bacteria. Biochemistry 2018; 57:5388-5406. [PMID: 30149697 DOI: 10.1021/acs.biochem.8b00557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
d-Lactate dehydrogenases (d-LDHs) from Fusobacterium nucleatum (FnLDH) and Escherichia coli (EcLDH) exhibit positive cooperativity in substrate binding, and the Pseudomonas aeruginosa enzyme (PaLDH) shows negatively cooperative substrate binding. The apo and ternary complex structures of FnLDH and PaLDH have been determined together with the apo-EcLDH structure. The three enzymes consistently form homotetrameric structures with three symmetric axes, the P-, Q-, and R-axes, unlike Lactobacillus d-LDHs, P-axis-related dimeric enzymes, although apo-FnLDH and EcLDH form asymmetric and distorted quaternary structures. The tetrameric structure allows apo-FnLDH and EcLDH to form wide intersubunit contact surfaces between the opened catalytic domains of the two Q-axis-related subunits in coordination with their asymmetric and distorted quaternary structures. These contact surfaces comprise intersubunit hydrogen bonds and hydrophobic interactions and likely prevent the domain closure motion during initial substrate binding. In contrast, apo-PaLDH possesses a highly symmetrical quaternary structure and partially closed catalytic domains that are favorable for initial substrate binding and forms virtually no intersubunit contact surface between the catalytic domains, which present their negatively charged surfaces to each other at the subunit interface. Complex FnLDH and PaLDH possess highly symmetrical quaternary structures with closed forms of the catalytic domains, which are separate from each other at the subunit interface. Structure-based mutations successfully converted the three enzymes to their dimeric forms, which exhibited no significant cooperativity in substrate binding. These observations indicate that the three enzymes undergo typical sequential allosteric transitions to exhibit their distinctive allosteric functions through the tetrameric structures.
Collapse
Affiliation(s)
- Nayuta Furukawa
- Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , 2641 Yamazaki , Noda , Chiba 278-8510 , Japan.,Department of Applied Life Sciences , Niigata University of Pharmacy and Applied Life Sciences , 265-1 Higashijima , Akiha-ku, Niigata 956-8603 , Japan
| | - Akimasa Miyanaga
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1 O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , 2641 Yamazaki , Noda , Chiba 278-8510 , Japan
| | - Hayao Taguchi
- Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , 2641 Yamazaki , Noda , Chiba 278-8510 , Japan
| |
Collapse
|
5
|
Jia B, Pu ZJ, Tang K, Jia X, Kim KH, Liu X, Jeon CO. Catalytic, Computational, and Evolutionary Analysis of the d-Lactate Dehydrogenases Responsible for d-Lactic Acid Production in Lactic Acid Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8371-8381. [PMID: 30008205 DOI: 10.1021/acs.jafc.8b02454] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
d-Lactate dehydrogenase (d-LDH) catalyzes the reversible reaction pyruvate + NADH + H+ ↔ lactate + NAD+, which is a principal step in the production of d-lactate in lactic acid bacteria. In this study, we identified and characterized the major d-LDH (d-LDH1) from three d-LDHs in Leuconostoc mesenteroides, which has been extensively used in food processing. A molecular simulation study of d-LDH1 showed that the conformation changes during substrate binding. During catalysis, Tyr101 and Arg235 bind the substrates by hydrogen bonds and His296 acts as a general acid/base for proton transfer. These residues are also highly conserved and have coevolved. Point mutations proved that the substrate binding sites and catalytic site are crucial for enzyme activity. Network and phylogenetic analyses indicated that d-LDH1 and the homologues are widely distributed but are most abundant in bacteria and fungi. This study expands the understanding of the functions, catalytic mechanism, and evolution of d-LDH.
Collapse
Affiliation(s)
- Baolei Jia
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
- Department of Life Science , Chung-Ang University , Seoul 06974 , Republic of Korea
| | - Zhong Ji Pu
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
| | - Ke Tang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Xiaomeng Jia
- Department of Life Science , Chung-Ang University , Seoul 06974 , Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science , Chung-Ang University , Seoul 06974 , Republic of Korea
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Che Ok Jeon
- Department of Life Science , Chung-Ang University , Seoul 06974 , Republic of Korea
| |
Collapse
|
6
|
Akita H, Nakashima N, Hoshino T. Production of d-lactate using a pyruvate-producing Escherichia coli strain. Biosci Biotechnol Biochem 2017; 81:1452-1455. [PMID: 28463593 DOI: 10.1080/09168451.2017.1318697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To generate an organism capable of producing d-lactate, NAD+-dependent d-lactate dehydrogenase was expressed in our pyruvate-producing strain, Escherichia coli strain LAFCPCPt-accBC-aceE. After determining the optimal culture conditions for d-lactate production, 18.4 mM d-lactate was produced from biomass-based medium without supplemental mineral or nitrogen sources. Our results show that d-lactate can be produced in simple batch fermentation processes.
Collapse
Affiliation(s)
- Hironaga Akita
- a Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science Technology (AIST) , Higashi-Hiroshima , Japan
| | - Nobutaka Nakashima
- b Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Sapporo , Japan.,c Department of Biological Information, Graduate School of Bioscience and Biotechnology , Tokyo Institute of Technology , Ookayama , Japan
| | - Tamotsu Hoshino
- a Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science Technology (AIST) , Higashi-Hiroshima , Japan.,b Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Sapporo , Japan
| |
Collapse
|
7
|
Zhu L, Xu X, Wang L, Dong H, Yu B. The D-Lactate Dehydrogenase from Sporolactobacillus inulinus Also Possessing Reversible Deamination Activity. PLoS One 2015; 10:e0139066. [PMID: 26398356 PMCID: PMC4580590 DOI: 10.1371/journal.pone.0139066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/07/2015] [Indexed: 11/18/2022] Open
Abstract
Hydroxyacid dehydrogenases are responsible for the conversion of 2-keto acids to 2-hydroxyacids and have a wide range of biotechnological applications. In this study, a D-lactate dehydrogenase (D-LDH) from a Sporolactobacillus inulinus strain was experimentally verified to have both the D-LDH and glutamate dehydrogenase (GDH) activities (reversible deamination). The catalytic mechanism was demonstrated by identification of key residues from the crystal structure analysis and site-directed mutagenesis. The Arg234 and Gly79 residues of this enzyme play a significant role in both D-LDH and GDH activities. His295 and Phe298 in DLDH744 were identified to be key residues for lactate dehydrogenase (LDH) activity only whereas Tyr101 is a unique residue that is critical for GDH activity. Characterization of the biochemical properties contributes to understanding of the catalytic mechanism of this novel D-lactate dehydrogenase enzyme.
Collapse
Affiliation(s)
- Lingfeng Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaoling Xu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Limin Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Hui Dong
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
- * E-mail: (BY) (HD)
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- * E-mail: (BY) (HD)
| |
Collapse
|
8
|
Singh RK, Raj I, Pujari R, Gourinath S. Crystal structures and kinetics of Type III 3-phosphoglycerate dehydrogenase reveal catalysis by lysine. FEBS J 2014; 281:5498-512. [PMID: 25294608 DOI: 10.1111/febs.13091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/11/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022]
Abstract
D-Phosphoglycerate dehydrogenase (PGDH) catalyzes the first committed step of the phosphorylated serine biosynthesis pathway. Here, we report for the first time, the crystal structures of Type IIIK PGDH from Entamoeba histolytica in the apo form, as well as in complexes with substrate (3-phosphoglyceric acid) and cofactor (NAD(+) ) to 2.45, 1.8 and 2.2 Å resolution, respectively. Comparison of the apo structure with the substrate-bound structure shows that the substrate-binding domain is rotated by ~ 20° to close the active-site cleft. The cofactor-bound structure also shows a closed-cleft conformation, in which NAD(+) is bound to the nucleotide-binding domain and a formate ion occupies the substrate-binding site. Superposition of the substrate- and cofactor-bound structures represents a snapshot of the enzyme in the active form, where C2 of the substrate and C4N of the cofactor are 2.2 Å apart, and the amino group of Lys263 is close enough to the substrate to remove the proton from the hydroxyl group of PGA, indicating the role of Lys in the catalysis. Mutation of Lys263 to Ala yields just 0.8% of the specific activity of the wild-type enzyme, revealing that Lys263 indeed plays an integral role in the catalytic activity. The detectable activity of the mutant, however, indicates that after 20° rotation of the substrate-binding domain, the resulting positions of the substrate and cofactor are sufficiently close to make a productive reaction.
Collapse
Affiliation(s)
- Rohit K Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | |
Collapse
|
9
|
Kim S, Kim YH, Kim KJ. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of D-lactate dehydrogenase from Lactobacillus jensenii. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:1046-8. [PMID: 25084378 DOI: 10.1107/s2053230x14012606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/30/2014] [Indexed: 11/11/2022]
Abstract
The thermostable D-lactate dehydrogenase from Lactobacillus jensenii (LjD-LDH) is a key enzyme for the production of the D-form of lactic acid from pyruvate concomitant with the oxidation of NADH to NAD(+). The polymers of lactic acid are used as biodegradable bioplastics. The LjD-LDH protein was crystallized using the hanging-drop vapour-diffusion method in the presence of 28%(w/v) polyethylene glycol 400, 100 mM Tris-HCl pH 9, 200 mM magnesium sulfate at 295 K. X-ray diffraction data were collected to a maximum resolution of 2.1 Å. The crystal belonged to space group P3121, with unit-cell parameters a = b = 90.5, c = 157.8 Å. With two molecules per asymmetric unit, the crystal volume per unit protein weight (VM) is 2.58 Å(3) Da(-1), which corresponds to a solvent content of approximately 52.3%. The structure was solved by single-wavelength anomalous dispersion using a selenomethionine derivative.
Collapse
Affiliation(s)
- Sangwoo Kim
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu 702-701, Republic of Korea
| | - Yong Hwan Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Kyung-Jin Kim
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu 702-701, Republic of Korea
| |
Collapse
|
10
|
Kim S, Gu SA, Kim YH, Kim KJ. Crystal structure and thermodynamic properties of d-lactate dehydrogenase from Lactobacillus jensenii. Int J Biol Macromol 2014; 68:151-7. [PMID: 24794195 DOI: 10.1016/j.ijbiomac.2014.04.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 11/28/2022]
Abstract
The thermostable d-lactate dehydrogenase from Lactobacillus jensenii (Ljd-LDH) is a key enzyme in the production of the d-form of lactic acid from pyruvate concomitant with the oxidation of NADH to NAD(+). The polymers of d-lactic acid are used as biodegradable bioplastics. The crystal structures of Ljd-LDH and in complex with NAD(+) were determined at 2.13 and 2.60Å resolutions, respectively. The Ljd-LDH monomer consists of the N-terminal substrate-binding domain and the C-terminal NAD-binding domain. The Ljd-LDH forms a homodimeric structure, and the C-terminal NAD-binding domain mostly enables the dimerization of the enzyme. The NAD cofactor is bound to the GxGxxG NAD-binding motif located between the two domains. Structural comparisons of Ljd-LDH with other d-LDHs reveal that Ljd-LDH has unique amino acid residues at the linker region, which indicates that the open-close dynamics of Ljd-LDH might be different from that of other d-LDHs. Moreover, thermostability experiments showed that the T50(10) value of Ljd-LDH (54.5°C) was much higher than the commercially available d-lactate dehydrogenase (42.7°C). In addition, Ljd-LDH has at least a 7°C higher denaturation temperature compared to commercially available d-LDHs.
Collapse
Affiliation(s)
- Sangwoo Kim
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program), Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea; School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea
| | - Sol-A Gu
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Yong Hwan Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea.
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program), Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea.
| |
Collapse
|
11
|
Fauvart M, Braeken K, Daniels R, Vos K, Ndayizeye M, Noben JP, Robben J, Vanderleyden J, Michiels J. Identification of a novel glyoxylate reductase supports phylogeny-based enzymatic substrate specificity prediction. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1092-8. [PMID: 17693143 DOI: 10.1016/j.bbapap.2007.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 06/12/2007] [Accepted: 06/25/2007] [Indexed: 11/26/2022]
Abstract
Phylogenetic analysis of the superfamily of D-2-hydroxyacid dehydrogenases identified the previously unrecognized cluster of glyoxylate/hydroxypyruvate reductases (GHPR). Based on the genome sequence of Rhizobium etli, the nodulating endosymbiont of the common bean plant, we predicted a putative 3-phosphoglycerate dehydrogenase to exhibit GHPR activity instead. The protein was overexpressed and purified. The enzyme is homodimeric under native conditions and is indeed capable of reducing both glyoxylate and hydroxypyruvate. Other substrates are phenylpyruvate and ketobutyrate. The highest activity was observed with glyoxylate and phenylpyruvate, both having approximately the same kcat/Km ratio. This kind of substrate specificity has not been reported previously for a GHPR. The optimal pH for the reduction of phenylpyruvate to phenyllactate is pH 7. These data lend support to the idea of predicting enzymatic substrate specificity based on phylogenetic clustering.
Collapse
Affiliation(s)
- Maarten Fauvart
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Relyea HA, Vrtis JM, Woodyer R, Rimkus SA, van der Donk WA. Inhibition and pH dependence of phosphite dehydrogenase. Biochemistry 2005; 44:6640-9. [PMID: 15850397 DOI: 10.1021/bi047640p] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphite dehydrogenase (PTDH) catalyzes the NAD-dependent oxidation of phosphite to phosphate, a reaction that is 15 kcal/mol exergonic. The enzyme belongs to the family of D-hydroxy acid dehydrogenases. Five other family members that were analyzed do not catalyze the oxidation of phosphite, ruling out the possibility that this is a ubiquitous activity of these proteins. PTDH does not accept any alternative substrates such as thiophosphite, hydrated aldehydes, and methylphosphinate, and potential small nucleophiles such as hydroxylamine, fluoride, methanol, and trifluoromethanol do not compete with water in the displacement of the hydride from phosphite. The pH dependence of k(cat)/K(m,phosphite) is bell-shaped with a pK(a) of 6.8 for the acidic limb and a pK(a) of 7.8 for the basic limb. The pK(a) of 6.8 is assigned to the second deprotonation of phosphite. However, whether the dianionic form of phosphite is the true substrate is not clear since a reverse protonation mechanism is also consistent with the available data. Unlike k(cat)/K(m,phosphite), k(cat) and k(cat)/K(m,NAD) are pH-independent. Sulfite is a strong inhibitor of PTDH that is competitive with respect to phosphite and uncompetitive with respect to NAD(+). Incubation of the enzyme with NAD(+) and low concentrations of sulfite results in a covalent adduct between NAD(+) and sulfite in the active site of the enzyme that binds very tightly. Fluorescent titration studies provided the apparent dissociation constants for NAD(+), NADH, sulfite, and the sulfite-NAD(+) adduct. Substrate isotope effect studies with deuterium-labeled phosphite resulted in small normal isotope effects (1.4-2.1) on both k(cat) and k(cat)/K(m,phosphite) at pH 7.25 and 8.0. Solvent isotope effects (SIEs) on k(cat) are similar in size; however, the SIE of k(cat)/K(m,phosphite) at pH 7.25 is significantly larger (4.4), whereas at pH 8.0, it is the inverse (0.6). The pH-rate profile of k(cat)/K(m,phosphite), which predicts that the observed SIEs will have a significant thermodynamic origin, can account for these effects.
Collapse
Affiliation(s)
- Heather A Relyea
- Department of Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
13
|
Woodyer R, Wheatley JL, Relyea HA, Rimkus S, van der Donk WA. Site-directed mutagenesis of active site residues of phosphite dehydrogenase. Biochemistry 2005; 44:4765-74. [PMID: 15779903 DOI: 10.1021/bi047868c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphite dehydrogenase (PTDH) catalyzes the unusual oxidation of phosphite to phosphate with the concomitant reduction of NAD(+) to NADH. PTDH shares significant amino acid sequence similarity with D-hydroxy acid dehydrogenases (DHs), including strongly conserved catalytic residues His292, Glu266, and Arg237. Site-directed mutagenesis studies corroborate the essential role of His292 as all mutants of this residue were completely inactive. Histidine-selective inactivation studies with diethyl pyrocarbonate provide further evidence regarding the importance of His292. This residue is most likely the active site base that deprotonates the water nucleophile. Kinetic analysis of mutants in which Arg237 was changed to Leu, Lys, His, and Gln revealed that Arg237 is involved in substrate binding. These results agree with the typical role of this residue in D-hydroxy acid DHs. However, Glu266 does not play the typical role of increasing the pK(a) of His292 to enhance substrate binding and catalysis as the Glu266Gln mutant displayed an increased k(cat) and unchanged pH-rate profile compared to those of wild-type PTDH. The role of Glu266 is likely the positioning of His292 and Arg237 with which it forms hydrogen bonds in a homology model. Homology modeling suggests that Lys76 may also be involved in substrate binding, and this postulate is supported by mutagenesis studies. All mutants of Lys76 display reduced activity with large effects on the K(m) for phosphite, and Lys76Cys could be chemically rescued by alkylation with 2-bromoethylamine. Whereas a positively charged residue is absolutely essential for activity at the position of Arg237, Lys76 mutants that lacked a positively charged side chain still had activity, indicating that it is less important for binding and catalysis. These results highlight the versatility of nature's catalytic scaffolds, as a common framework with modest changes allows PTDH to catalyze its unusual nucleophilic displacement reaction and d-hydroxy acid DHs to oxidize alcohols to ketones.
Collapse
Affiliation(s)
- Ryan Woodyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
14
|
Relyea HA, van der Donk WA. Mechanism and applications of phosphite dehydrogenase. Bioorg Chem 2005; 33:171-89. [PMID: 15888310 DOI: 10.1016/j.bioorg.2005.01.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2004] [Revised: 01/17/2005] [Accepted: 01/18/2005] [Indexed: 11/18/2022]
Abstract
Phosphite dehydrogenase catalyzes the NAD+-dependent oxidation of hydrogen phosphonate (common name phosphite) to phosphate in what amounts to a formal phosphoryl transfer reaction from hydride to hydroxide. This review places the enzyme in the context of phosphorus redox metabolism in nature and discusses the results of mechanistic investigations into its reaction mechanism. The potential of the enzyme as a NAD(P)H cofactor regeneration system is discussed as well as efforts to engineer the cofactor specificity of the protein.
Collapse
Affiliation(s)
- Heather A Relyea
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Matthews Ave., Urbana, IL 61801, USA
| | | |
Collapse
|
15
|
Woodyer R, van der Donk WA, Zhao H. Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design. Biochemistry 2004; 42:11604-14. [PMID: 14529270 DOI: 10.1021/bi035018b] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Homology modeling was used to identify two particular residues, Glu175 and Ala176, in Pseudomonas stutzeri phosphite dehydrogenase (PTDH) as the principal determinants of nicotinamide cofactor (NAD(+) and NADP(+)) specificity. Replacement of these two residues by site-directed mutagenesis with Ala175 and Arg176 both separately and in combination resulted in PTDH mutants with relaxed cofactor specificity. All three mutants exhibited significantly better catalytic efficiency for both cofactors, with the best kinetic parameters displayed by the double mutant, which had a 3.6-fold higher catalytic efficiency for NAD(+) and a 1000-fold higher efficiency for NADP(+). The cofactor specificity was changed from 100-fold in favor of NAD(+) for the wild-type enzyme to 3-fold in favor of NADP(+) for the double mutant. Isoelectric focusing of the proteins in a nondenaturing gel showed that the replacement with more basic residues indeed changed the effective pI of the protein. HPLC analysis of the enzymatic products of the double mutant verified that the reaction proceeded to completion using either substrate and produced only the corresponding reduced cofactor and phosphate. Thermal inactivation studies showed that the double mutant was protected from thermal inactivation by both cofactors, while the wild-type enzyme was protected by only NAD(+). The combined results provide clear evidence that Glu175 and Ala176 are both critical for nicotinamide cofactor specificity. The rationally designed double mutant might be useful for the development of an efficient in vitro NAD(P)H regeneration system for reductive biocatalysis.
Collapse
Affiliation(s)
- Ryan Woodyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
16
|
Tokuda C, Ishikura Y, Shigematsu M, Mutoh H, Tsuzuki S, Nakahira Y, Tamura Y, Shinoda T, Arai K, Takahashi O, Taguchi H. Conversion of Lactobacillus pentosus D-lactate dehydrogenase to a D-hydroxyisocaproate dehydrogenase through a single amino acid replacement. J Bacteriol 2003; 185:5023-6. [PMID: 12897026 PMCID: PMC166478 DOI: 10.1128/jb.185.16.5023-5026.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single amino acid replacement of Tyr52 with Leu drastically increased the activity of Lactobacillus pentosus NAD-dependent D-lactate dehydrogenase toward larger aliphatic or aromatic 2-ketoacid substrates by 3 or 4 orders of magnitude and decreased the activity toward pyruvate by about 30-fold, converting the enzyme into a highly active D-2-hydroxyisocaproate dehydrogenase.
Collapse
Affiliation(s)
- Chizuka Tokuda
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Razeto A, Kochhar S, Hottinger H, Dauter M, Wilson KS, Lamzin VS. Domain closure, substrate specificity and catalysis of D-lactate dehydrogenase from Lactobacillus bulgaricus. J Mol Biol 2002; 318:109-19. [PMID: 12054772 DOI: 10.1016/s0022-2836(02)00086-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NAD-dependent Lactobacillus bulgaricus D-Lactate dehydrogenase (D-LDHb) catalyses the reversible conversion of pyruvate into D-lactate. Crystals of D-LDHb complexed with NADH were grown and X-ray data collected to 2.2 A. The structure of D-LDHb was solved by molecular replacement using the dimeric Lactobacillus helveticus D-LDH as a model and was refined to an R-factor of 20.7%. The two subunits of the enzyme display strong asymmetry due to different crystal environments. The opening angles of the two catalytic domains with respect to the core coenzyme binding domains differ by 16 degrees. Subunit A is in an "open" conformation typical for a dehydrogenase apo enzyme and subunit B is "closed". The NADH-binding site in subunit A is only 30% occupied, while in subunit B it is fully occupied and there is a sulphate ion in the substrate-binding pocket. A pyruvate molecule has been modelled in the active site and its orientation is in agreement with existing kinetic and structural data. On domain closure, a cluster of hydrophobic residues packs tightly around the methyl group of the modelled pyruvate molecule. At least three residues from this cluster govern the substrate specificity. Substrate binding itself contributes to the stabilisation of domain closure and activation of the enzyme. In pyruvate reduction, D-LDH can adapt another protonated residue, a lysine residue, to accomplish the role of the acid catalyst His296. Required lowering of the lysine pK(a) value is explained on the basis of the H296K mutant structure.
Collapse
Affiliation(s)
- Adelia Razeto
- European Molecular Biology Laboratory Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Vrtis JM, White AK, Metcalf WW, van der Donk WA. Phosphite dehydrogenase: an unusual phosphoryl transfer reaction. J Am Chem Soc 2001; 123:2672-3. [PMID: 11456941 DOI: 10.1021/ja004301k] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Ouzzine M, Antonio L, Burchell B, Netter P, Fournel-Gigleux S, Magdalou J. Importance of histidine residues for the function of the human liver UDP-glucuronosyltransferase UGT1A6: evidence for the catalytic role of histidine 370. Mol Pharmacol 2000; 58:1609-15. [PMID: 11093802 DOI: 10.1124/mol.58.6.1609] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human UDP-glucuronosyltransferase isoform UGT1A6 catalyzes the nucleophilic attack of phenolic xenobiotics on glucuronic acid, leading to the formation of water-soluble glucuronides. Based on the irreversible inhibition of the enzyme activity by the histidyl-selective reagent diethyl pyrocarbonate (DEPC), histidine was suggested to play a key role in the glucuronidation reaction. Therefore, the role of four strictly conserved histidine residues (His38, His361, His370, and His485) in the glucuronidation of 4-methylumbelliferone, as reporter substrate, was examined using site-directed mutagenesis. For this purpose, stable heterologous expression of wild-type and mutant UGT1A6 was achieved in the yeast Pichia pastoris. Replacement of histidine residues by alanine or glutamine led to fully inactive H38A, H38Q, and H485A mutants. Substitution of His361 by alanine affected the interaction of the enzyme with the cosubstrate, as indicated by a 4-fold increase in the K(m) value toward UDP-glucuronic acid. Interestingly, H370A mutant presented a severely impaired catalytic efficiency (with a V(max) value approximately 5% that of the wild-type), whereas conservative substitution of His370 by glutamine (H370Q) led to a significant restoration of activity. Whereas H361A was inactivated by DEPC as the wild-type enzyme, this chemical reagent only produced a minor effect on either H370Q or H370A mutant, providing evidence that His370 is probably the reactive histidine residue targeted by DEPC. The dramatic changes in catalytic efficiency on substitution of His370 by alanine and the ability of glutamine to function in place of histidine along with a weak sensitivity of these mutants to DEPC strongly suggest that His370 plays a catalytic role in the glucuronidation reaction.
Collapse
Affiliation(s)
- M Ouzzine
- Unité Mixte de Recherche 7561 Centre National de la Recherche Scientifique-Université Henri Poincaré Nancy 1, Vandouvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|