1
|
Ye P, Duan W, Leng YQ, Wang YK, Tan X, Wang WZ. DPP3: From biomarker to therapeutic target of cardiovascular diseases. Front Cardiovasc Med 2022; 9:974035. [PMID: 36312232 PMCID: PMC9605584 DOI: 10.3389/fcvm.2022.974035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease is the leading cause of death globally among non-communicable diseases, which imposes a serious socioeconomic burden on patients and the healthcare system. Therefore, finding new strategies for preventing and treating cardiovascular diseases is of great significance in reducing the number of deaths and disabilities worldwide. Dipeptidyl peptidase 3 (DPP3) is the first zinc-dependent peptidase found among DPPs, mainly distributes within the cytoplasm. With the unique HEXXGH catalytic sequence, it is associated with the degradation of oligopeptides with 4 to 10 amino acids residues. Accumulating evidences have demonstrated that DPP3 plays a significant role in almost all cellular activities and pathophysiological mechanisms. Regarding the role of DPP3 in cardiovascular diseases, it is currently mainly used as a biomarker for poor prognosis in patients with cardiovascular diseases, suggesting that the level of DPP3 concentration in plasma is closely linked to the mortality of diseases such as cardiogenic shock and heart failure. Interestingly, it has been reported recently that DPP3 regulates blood pressure by interacting with the renin-angiotensin system. In addition, DPP3 also participates in the processes of pain signaling, inflammation, and oxidative stress. But the exact mechanism by which DPP3 affects cardiovascular function is not clear. Hence, this review summarizes the recent advances in the structure and catalytic activity of DPP3 and its extensive biological functions, especially its role as a therapeutic target in cardiovascular diseases. It will provide a theoretical basis for exploring the potential value of DPP3 as a therapeutic target for cardiovascular diseases.
Collapse
Affiliation(s)
- Peng Ye
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei Duan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China,Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yue-Qi Leng
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang-Kai Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xing Tan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China,Xing Tan
| | - Wei-Zhong Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China,*Correspondence: Wei-Zhong Wang
| |
Collapse
|
2
|
Malovan G, Hierzberger B, Suraci S, Schaefer M, Santos K, Jha S, Macheroux P. The emerging role of dipeptidyl peptidase 3 in pathophysiology. FEBS J 2022; 290:2246-2262. [PMID: 35278345 DOI: 10.1111/febs.16429] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 12/17/2022]
Abstract
Dipeptidyl peptidase 3 (DPP3), a zinc-dependent aminopeptidase, is a highly conserved enzyme among higher animals. The enzyme cleaves dipeptides from the N-terminus of tetra- to decapeptides, thereby taking part in activation as well as degradation of signalling peptides critical in physiological and pathological processes such as blood pressure regulation, nociception, inflammation and cancer. Besides its catalytic activity, DPP3 moonlights as a regulator of the cellular oxidative stress response pathway, e.g., the Keap1-Nrf2 mediated antioxidative response. The enzyme is also recognized as a key modulator of the renin-angiotensin system. Recently, DPP3 has been attracting growing attention within the scientific community, which has significantly augmented our knowledge of its physiological relevance. Herein, we review recent advances in our understanding of the structure and catalytic activity of DPP3, with a focus on attributing its molecular architecture and catalytic mechanism to its wide-ranging biological functions. We further highlight recent intriguing reports that implicate a broader role for DPP3 as a valuable biomarker in cardiovascular and renal pathologies and furthermore discuss its potential as a promising drug target.
Collapse
Affiliation(s)
- Grazia Malovan
- Institute of Biochemistry, Graz University of Technology, Austria
| | | | - Samuele Suraci
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Maximilian Schaefer
- Institute of Pharmacy, Freie Universität Berlin, Germany.,4TEEN4 Pharmaceuticals GmbH, Hennigsdorf, Germany.,Department of Biology, ETH Zurich, Switzerland
| | | | - Shalinee Jha
- Institute of Biochemistry, Graz University of Technology, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Austria
| |
Collapse
|
3
|
Kaufmann P, Muenzner M, Kästorf M, Santos K, Hartmann T, Dienelt A, Rehfeld L, Bergmann A. A novel and highly efficient purification procedure for native human dipeptidyl peptidase 3 from human blood cell lysate. PLoS One 2019; 14:e0220866. [PMID: 31390378 PMCID: PMC6685676 DOI: 10.1371/journal.pone.0220866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/24/2019] [Indexed: 11/18/2022] Open
Abstract
Dipeptidyl amino-peptidase 3 (DPP3) is an aminopeptidase involved in peptide degradation, including hormone peptides as angiotensin II and enkephalins. DPP3 plasma activity increases in septic patients and correlates with mortality risk. However, the exact physiological role of DPP3 remains unclear and animal studies are necessary to reveal the function of DPP3 in vivo. To this demand, we developed a two-step purification procedure for isolation of native human DPP3 from blood cell lysate (BCL) that is suitable for in vivo applications. With the use of monoclonal antibodies coupled to beads in combination with an ion-exchange chromatography, we recovered 68% of human DPP3 activity from BCL with a purity of ≥ 95%. Purified human DPP3 was assayed for activity and protein concentration using recently published DPP3-activity- and immunoassays. Additionally, protein stability and storage in relevant buffers were tested. Our results provide a promising strategy for fast and efficient isolation of human DPP3. The purified human DPP3 represents the native state of DPP3, suitable for future in vivo applications to investigate the physiological role of DPP3 and its involvement in pathophysiological conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Anke Dienelt
- Sphingotec Therapeutics GmbH, Hennigsdorf, Germany
| | | | | |
Collapse
|
4
|
Purification, kinetic and functional characterization of membrane bound dipeptidyl peptidase-III from NCDC 252: a probiotic lactic acid bacteria. Mol Biol Rep 2018; 45:973-986. [PMID: 30039431 DOI: 10.1007/s11033-018-4245-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/08/2018] [Indexed: 01/14/2023]
Abstract
Pediococcus acidilactici is a probiotic lactic acid bacteria possessing studied in-vitro probiotic properties. Study of membrane proteins is crucial in developing technological and health applications of probiotic bacteria. Genome analysis of Pediococcus acidilactici revealed about more than 60 proteases/peptidases which need characterization. Dipeptidyl peptidase-III (DPP-III) is studied for first time in prokaryotes and it is a membrane protein in P. acidilactici that has been purified to apparent homogeneity. The enzyme was purified 81.66 fold with 36.75% yield. The specific activity of purified DPP-III was 202.67 U/mg. The protein moved as single band on native PAGE. The purity was also confirmed by in-situ gel assay. However SDS-PAGE analysis revealed it as high molecular weight heterotetramer with molecular weight of 108 kDa. The enzyme was maximally active at pH 8.5 and at 37 C. Purified DPP-III specifically hydrolyzed Arg-Arg-4-βNA with micromolar affinity (Km = 9.0 µM) and none of studied endopeptidase and monopeptidase substrate was hydrolyzed. Inhibition study revealed purified DPP-III to be a serine protease with involvement of metal ion at active site. The significance of this enzyme as membrane protein is yet to be studied.
Collapse
|
5
|
Agić D, Brkić H, Tomić S, Karačić Z, Špoljarević M, Lisjak M, Bešlo D, Abramić M. Validation of flavonoids as potential dipeptidyl peptidase III inhibitors: Experimental and computational approach. Chem Biol Drug Des 2016; 89:619-627. [DOI: 10.1111/cbdd.12887] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/05/2016] [Accepted: 10/08/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Dejan Agić
- Faculty of Agriculture in Osijek; Josip Juraj Strossmayer University of Osijek; Osijek Croatia
| | - Hrvoje Brkić
- Faculty of Medicine; Josip Juraj Strossmayer University of Osijek; Osijek Croatia
| | | | | | - Marija Špoljarević
- Faculty of Agriculture in Osijek; Josip Juraj Strossmayer University of Osijek; Osijek Croatia
| | - Miroslav Lisjak
- Faculty of Agriculture in Osijek; Josip Juraj Strossmayer University of Osijek; Osijek Croatia
| | - Drago Bešlo
- Faculty of Agriculture in Osijek; Josip Juraj Strossmayer University of Osijek; Osijek Croatia
| | | |
Collapse
|
6
|
Next Generation Sequencing Identifies Five Major Classes of Potentially Therapeutic Enzymes Secreted by Lucilia sericata Medical Maggots. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8285428. [PMID: 27119084 PMCID: PMC4826915 DOI: 10.1155/2016/8285428] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/07/2016] [Indexed: 01/01/2023]
Abstract
Lucilia sericata larvae are used as an alternative treatment for recalcitrant and chronic wounds. Their excretions/secretions contain molecules that facilitate tissue debridement, disinfect, or accelerate wound healing and have therefore been recognized as a potential source of novel therapeutic compounds. Among the substances present in excretions/secretions various peptidase activities promoting the wound healing processes have been detected but the peptidases responsible for these activities remain mostly unidentified. To explore these enzymes we applied next generation sequencing to analyze the transcriptomes of different maggot tissues (salivary glands, gut, and crop) associated with the production of excretions/secretions and/or with digestion as well as the rest of the larval body. As a result we obtained more than 123.8 million paired-end reads, which were assembled de novo using Trinity and Oases assemblers, yielding 41,421 contigs with an N50 contig length of 2.22 kb and a total length of 67.79 Mb. BLASTp analysis against the MEROPS database identified 1729 contigs in 577 clusters encoding five peptidase classes (serine, cysteine, aspartic, threonine, and metallopeptidases), which were assigned to 26 clans, 48 families, and 185 peptidase species. The individual enzymes were differentially expressed among maggot tissues and included peptidase activities related to the therapeutic effects of maggot excretions/secretions.
Collapse
|
7
|
Prajapati SC, Chauhan SS. Dipeptidyl peptidase III: a multifaceted oligopeptide N-end cutter. FEBS J 2011; 278:3256-76. [DOI: 10.1111/j.1742-4658.2011.08275.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Fukasawa KM, Hata T, Ono Y, Hirose J. Metal preferences of zinc-binding motif on metalloproteases. JOURNAL OF AMINO ACIDS 2011; 2011:574816. [PMID: 22312463 PMCID: PMC3268031 DOI: 10.4061/2011/574816] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/25/2011] [Accepted: 03/07/2011] [Indexed: 11/25/2022]
Abstract
Almost all naturally occurring metalloproteases are monozinc enzymes. The zinc in any number of zinc metalloproteases has been substituted by some other divalent cation. Almost all Co(II)- or Mn(II)-substituted enzymes maintain the catalytic activity of their zinc counterparts. However, in the case of Cu(II) substitution of zinc proteases, a great number of enzymes are not active, for example, thermolysin, carboxypeptidase A, endopeptidase from Lactococcus lactis, or aminopeptidase B, while some do have catalytic activity, for example, astacin (37%) and DPP III (100%). Based on structural studies of various metal-substituted enzymes, for example, thermolysin, astacin, aminopeptidase B, dipeptidyl peptidase (DPP) III, and del-DPP III, the metal coordination geometries of both active and inactive Cu(II)-substituted enzymes are shown to be the same as those of the wild-type Zn(II) enzymes. Therefore, the enzyme activity of a copper-ion-substituted zinc metalloprotease may depend on the flexibility of catalytic domain.
Collapse
Affiliation(s)
- Kayoko M Fukasawa
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| | | | | | | |
Collapse
|
9
|
In rat dipeptidyl peptidase III, His568 is essential for catalysis, and Glu507 or Glu512 stabilizes the coordination bond between His455 or His450 and zinc ion. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:2063-9. [DOI: 10.1016/j.bbapap.2010.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 11/20/2022]
|
10
|
Isaac RE, Bland ND, Shirras AD. Neuropeptidases and the metabolic inactivation of insect neuropeptides. Gen Comp Endocrinol 2009; 162:8-17. [PMID: 19135055 DOI: 10.1016/j.ygcen.2008.12.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 11/24/2008] [Accepted: 12/10/2008] [Indexed: 11/26/2022]
Abstract
Neuropeptidases play a key role in regulating neuropeptide signalling activity in the central nervous system of animals. They are oligopeptidases that are generally found on the surface of neuronal cells facing the synaptic and peri-synaptic space and therefore are ideally placed for the metabolic inactivation of neuropeptide transmitters/modulators. This review discusses the structure of insect neuropeptides in relation to their susceptibility to hydrolysis by peptidases and the need for specialist enzymes to degrade many neuropeptides. It focuses on five neuropeptidase families (neprilysin, dipeptidyl-peptidase IV, angiotensin-converting enzyme, aminopeptidase and dipeptidyl aminopeptidase III) that have been implicated in the metabolic inactivation of neuropeptides in the central nervous system of insects. Experimental evidence for the involvement of these peptidases in neuropeptide metabolism is reviewed and their properties are compared to similar neuropeptide inactivating peptidases of the mammalian brain. We also discuss how the sequencing of insect genomes has led to the molecular identification of candidate neuropeptidase genes.
Collapse
Affiliation(s)
- R Elwyn Isaac
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | | | |
Collapse
|
11
|
Mazzocco C, Gillibert-Duplantier J, Neaud V, Fukasawa KM, Claverol S, Bonneu M, Puiroux J. Identification and characterization of two dipeptidyl-peptidase III isoforms in Drosophila melanogaster. FEBS J 2006; 273:1056-64. [PMID: 16478478 DOI: 10.1111/j.1742-4658.2006.05132.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dipeptidyl-peptidase III (DPP III) hydrolyses small peptides with a broad substrate specificity. It is thought to be involved in a major degradation pathway of the insect neuropeptide proctolin. We report the purification and characterization of a soluble DPP III from 40 g Drosophila melanogaster. Western blot analysis with anti-(DPP III) serum revealed the purification of two proteins of molecular mass 89 and 82 kDa. MS/MS analysis of these proteins resulted in the sequencing of 45 and 41 peptide fragments, respectively, confirming approximately 60% of both annotated D. melanogaster DPP III isoforms (CG7415-PC and CG7415-PB) predicted at 89 and 82 kDa. Sequencing also revealed the specific catalytic domain HELLGH in both isoforms, indicating that they are both effective in degrading small peptides. In addition, with a probe specific for D. melanogaster DPP III, northern blot analysis of fruit fly total RNA showed two transcripts at approximately 2.6 and 2.3 kb, consistent with the translation of 89-kDa and 82-kDa DPP III proteins. Moreover, the purified enzyme hydrolyzed the insect neuropeptide proctolin (Km approximately 4 microm) at the second N-terminal peptide bound, and was inhibited by the specific DPP III inhibitor tynorphin. Finally, anti-(DPP III) immunoreactivity was observed in the central nervous system of D. melanogaster larva, supporting a functional role for DPP III in proctolin degradation. This study shows that DPP III is in actuality synthesized in D. melanogaster as 89-kDa and 82-kDa isoforms, representing two native proteins translated from two alternative mRNA transcripts.
Collapse
Affiliation(s)
- Claire Mazzocco
- Laboratoire de Neurobiologie des Réseaux, CNRS-UMR 5816, Université Bordeaux I, Talence, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Isaac RE, Taylor CA, Hamasaka Y, Nässel DR, Shirras AD. Proctolin in the post-genomic era: new insights and challenges. INVERTEBRATE NEUROSCIENCE 2004; 5:51-64. [PMID: 15378391 DOI: 10.1007/s10158-004-0029-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2004] [Indexed: 12/27/2022]
Abstract
Complete understanding of how neuropeptides operate as neuromodulators and neurohormones requires integration of knowledge obtained at different levels of biology, including molecular, biochemical, physiological and whole organism studies. Major advances have recently been made in the understanding of the molecular basis of neuropeptide action in invertebrates by analysis of data generated from sequencing the genomes of several insect species, especially that of Drosophila melanogaster. This approach has quickly led to the identification of genes encoding: (1) novel neuropeptide sequences, (2) neuropeptide receptors and (3) peptidases that might be responsible for the processing and inactivation of neuropeptides. In this article, we review our current knowledge of the biosynthesis, receptor interaction and metabolic inactivation of the arthropod neuropeptide, proctolin, and how the analysis and exploitation of genome sequencing projects has provided new insights.
Collapse
Affiliation(s)
- R Elwyn Isaac
- Molecular and Cellular Biology Research Group, Faculty of Biological Sciences, L.C. Miall Building, University of Leeds, LS2 9JT, Leeds, UK.
| | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Paul H Taghert
- Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | |
Collapse
|
14
|
Mazzocco C, Fukasawa KM, Auguste P, Puiroux J. Characterization of a functionally expressed dipeptidyl aminopeptidase III from Drosophila melanogaster. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3074-82. [PMID: 12846841 DOI: 10.1046/j.1432-1033.2003.03689.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A Drosophila melanogaster cDNA clone (GH01916) encoding a putative 723-residue long (82 kDa) protein (CG 7415) and displaying 50% identity with mammalian cytosolic dipeptidyl aminopeptidase (DPP) III was functionally expressed in Schneider S2 cells. Immunocytochemical studies using anti-(rat liver DPP III) Ig indicated the expression of this putative DPP III at the outer cell membrane and into the cytosol of transfected cells. Two protein bands (82 and 86 kDa) were immunologically detected after PAGE and Western blot of cytosol or membrane prepared from transfected cells. Western blot analysis of partially purified D. melanogaster DPP III confirmed the overexpression of these two protein bands into the cytosol and on the membranes of transfected cells. Despite the identification of six potential glycosylation sites, PAGE showed that these protein bands were not shifted after deglycosylation experiments. The partially purified enzyme hydrolysed the insect myotropic neuropeptide proctolin (Arg-Tyr-Leu-Pro-Thr) at the Tyr-Leu bond (Km approximately 4 micro m). In addition, low concentration of the specific DPP III inhibitor tynorphin prevented proctolin degradation (IC50 = 0.62 +/- 0.15 micro m). These results constitute the first characterization of an evolutionarily conserved insect DPP III that is expressed as a cytosolic and a membrane peptidase involved in proctolin degradation.
Collapse
Affiliation(s)
- Claire Mazzocco
- Laboratoire des Régulations Neuroendocriniennes, Université Bordeaux I, Talence, France
| | | | | | | |
Collapse
|
15
|
Zhang H, Tan J, Reynolds E, Kuebler D, Faulhaber S, Tanouye M. The Drosophila slamdance gene: a mutation in an aminopeptidase can cause seizure, paralysis and neuronal failure. Genetics 2002; 162:1283-99. [PMID: 12454073 PMCID: PMC1462322 DOI: 10.1093/genetics/162.3.1283] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report here the characterization of slamdance (sda), a Drosophila melanogaster "bang-sensitive" (BS) paralytic mutant. This mutant exhibits hyperactive behavior and paralysis following a mechanical "bang" or electrical shock. Electrophysiological analyses have shown that this mutant is much more prone to seizure episodes than normal flies because it has a drastically lowered seizure threshold. Through genetic mapping, molecular cloning, and RNA interference, we have demonstrated that the sda phenotype can be attributed to a mutation in the Drosophila homolog of the human aminopeptidase N (APN) gene. Furthermore, using mRNA in situ hybridization and LacZ staining, we have found that the sda gene is expressed specifically in the central nervous system at particular developmental stages. Together, these results suggest that the bang sensitivity in sda mutants is caused by a defective APN gene that somehow increases seizure susceptibility. Finally, by using the sda mutation as a sensitized background, we have been able to identify a rich variety of sda enhancers and other independent BS mutations.
Collapse
Affiliation(s)
- HaiGuang Zhang
- Department of Molecular and Cell Biology, Division of Neurobiology, University of California, Berkeley 94720, USA
| | | | | | | | | | | |
Collapse
|