1
|
Davis AE, Kennelley GE, Amaye-Obu T, Jowdy PF, Ghadersohi S, Nasir-Moin M, Paragh G, Berman HA, Huss WJ. The phenomenon of phototoxicity and long-term risks of commonly prescribed and structurally diverse drugs. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2024; 19:100221. [PMID: 38389933 PMCID: PMC10883358 DOI: 10.1016/j.jpap.2023.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Photosensitivity to structurally diverse drugs is a common but under-reported adverse cutaneous reaction and can be classified as phototoxic or photoallergic. Phototoxic reactions occur when the skin is exposed to sunlight after administering topical or systemic medications that exhibit photosensitizing activity. These reactions depend on the dose of medication, degree of exposure to ultraviolet light, type of ultraviolet light, and sufficient skin distribution volume. Accurate prediction of the incidence and phototoxic response severity is challenging due to a paucity of literature, suggesting that phototoxicity may be more frequent than reported. This paper reports an extensive literature review on phototoxic drugs; the review employed pre-determined search criteria that included meta-analyses, systematic reviews, literature reviews, and case reports freely available in full text. Additional reports were identified from reference sections that contributed to the understanding of phototoxicity. The following drugs and/or drug classes are discussed: amiodarone, voriconazole, chlorpromazine, doxycycline, fluoroquinolones, hydrochlorothiazide, nonsteroidal anti-inflammatory drugs, and vemurafenib. In reviewing phototoxic skin reactions, this review highlights drug molecular structures, their reactive pathways, and, as there is a growing association between photosensitizing drugs and the increasing incidence of skin cancer, the consequential long-term implications of photocarcinogenesis.
Collapse
Affiliation(s)
- Anna E Davis
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Gabrielle E Kennelley
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- College of Medicine, Central Michigan University, Mt. Pleasant, MI 48858, USA
| | - Tatiana Amaye-Obu
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Peter F Jowdy
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sarah Ghadersohi
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mehr Nasir-Moin
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Gyorgy Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Harvey A Berman
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Romanell Center for the Philosophy of Medicine and Bioethics, Park Hall University at Buffalo, Buffalo, NY 14260, USA
| | - Wendy J Huss
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
2
|
Gelincik A, Demir S. Hypersensitivity Reactions to Non-Beta Lactam Antibiotics. CURRENT TREATMENT OPTIONS IN ALLERGY 2021. [DOI: 10.1007/s40521-021-00293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Kowalska J, Rok J, Rzepka Z, Wrześniok D. Drug-Induced Photosensitivity-From Light and Chemistry to Biological Reactions and Clinical Symptoms. Pharmaceuticals (Basel) 2021; 14:723. [PMID: 34451820 PMCID: PMC8401619 DOI: 10.3390/ph14080723] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 02/07/2023] Open
Abstract
Photosensitivity is one of the most common cutaneous adverse drug reactions. There are two types of drug-induced photosensitivity: photoallergy and phototoxicity. Currently, the number of photosensitization cases is constantly increasing due to excessive exposure to sunlight, the aesthetic value of a tan, and the increasing number of photosensitizing substances in food, dietary supplements, and pharmaceutical and cosmetic products. The risk of photosensitivity reactions relates to several hundred externally and systemically administered drugs, including nonsteroidal anti-inflammatory, cardiovascular, psychotropic, antimicrobial, antihyperlipidemic, and antineoplastic drugs. Photosensitivity reactions often lead to hospitalization, additional treatment, medical management, decrease in patient's comfort, and the limitations of drug usage. Mechanisms of drug-induced photosensitivity are complex and are observed at a cellular, molecular, and biochemical level. Photoexcitation and photoconversion of drugs trigger multidirectional biological reactions, including oxidative stress, inflammation, and changes in melanin synthesis. These effects contribute to the appearance of the following symptoms: erythema, swelling, blisters, exudation, peeling, burning, itching, and hyperpigmentation of the skin. This article reviews in detail the chemical and biological basis of drug-induced photosensitivity. The following factors are considered: the chemical properties, the influence of individual ranges of sunlight, the presence of melanin biopolymers, and the defense mechanisms of particular types of tested cells.
Collapse
Affiliation(s)
| | | | | | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.K.); (J.R.); (Z.R.)
| |
Collapse
|
4
|
Blakely KM, Drucker AM, Rosen CF. Drug-Induced Photosensitivity-An Update: Culprit Drugs, Prevention and Management. Drug Saf 2020; 42:827-847. [PMID: 30888626 DOI: 10.1007/s40264-019-00806-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Photosensitive drug eruptions are cutaneous adverse events due to exposure to a medication and either ultraviolet or visible radiation. In this review, the diagnosis, prevention and management of drug-induced photosensitivity is discussed. Diagnosis is based largely on the history of drug intake and the appearance of the eruption primarily affecting sun-exposed areas of the skin. This diagnosis can also be aided by tools such as phototesting, photopatch testing and rechallenge testing. The mainstay of management is prevention, including informing patients of the possibility of increased photosensitivity as well as the use of appropriate sun protective measures. Once a photosensitivity reaction has occurred, it may be necessary to discontinue the culprit medication and treat the reaction with corticosteroids. For certain medications, long-term surveillance may be indicated because of a higher risk of developing melanoma or squamous cell carcinoma at sites of earlier photosensitivity reactions. A large number of medications have been implicated as causes of photosensitivity, many with convincing clinical and scientific supporting evidence. We review the medical literature regarding the evidence for the culpability of each drug, including the results of phototesting, photopatch testing and rechallenge testing. Amiodarone, chlorpromazine, doxycycline, hydrochlorothiazide, nalidixic acid, naproxen, piroxicam, tetracycline, thioridazine, vemurafenib and voriconazole are among the most consistently implicated and warrant the most precaution by both the physician and patient.
Collapse
Affiliation(s)
- Kim M Blakely
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aaron M Drucker
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Dermatology, Department of Medicine, Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
| | - Cheryl F Rosen
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada. .,Division of Dermatology, Toronto Western Hospital, Toronto, ON, Canada.
| |
Collapse
|
5
|
Hamilton LA, Guarascio AJ. Tetracycline Allergy. PHARMACY 2019; 7:E104. [PMID: 31382572 PMCID: PMC6789857 DOI: 10.3390/pharmacy7030104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 01/23/2023] Open
Abstract
Despite the widespread use of tetracycline antibiotics since the late 1940s, tetracycline hypersensitivity reactions have rarely been described in the literature. A comprehensive PubMed search was performed, including allergic and serious adverse reactions attributed to the tetracyclines class of antibiotics. Of the evaluated tetracycline analogs, minocycline was attributed to the greatest overall number and severity of serious adverse events reported in the literature, with notable reactions primarily reported as respiratory and dermatologic in nature. Reactions to tetracycline have also been well described in the literature, and although dermatologic reactions are typically less severe in comparison with minocycline and doxycycline, various reports of anaphylactic reactions exist. Although doxycycline has been noted to have had the fewest reports of severe allergic reactions, rare descriptions of life-threatening reactions are still reported in the literature. Allergic reactions regarding tetracyclines are rare; however, adverse reaction type, severity, and frequency among different tetracycline analogs is somewhat variable. A consideration of hypersensitivity and adverse reaction incidence should be performed prior to the selection of individual tetracycline entities.
Collapse
Affiliation(s)
- Leslie A Hamilton
- Department of Clinical Pharmacy and Translational Science, the University of Tennessee Health Science Center College of Pharmacy, Knoxville, TN 37909, USA
| | - Anthony J Guarascio
- Division of Pharmacy Practice, Duquesne University School of Pharmacy, 600 Forbes Avenue, Pittsburgh, PA 15282, USA.
| |
Collapse
|
6
|
Nahhas AF, Oberlin DM, Braunberger TL, Lim HW. Recent Developments in the Diagnosis and Management of Photosensitive Disorders. Am J Clin Dermatol 2018; 19:707-731. [PMID: 29959757 DOI: 10.1007/s40257-018-0365-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photodermatoses occur in males and females of all races and ages. Onset can be variable in timing and influenced by genetic and environmental factors. Photodermatoses are broadly classified as immunologically mediated, chemical- and drug-induced, photoaggravated, and genetic (defective DNA repair or chromosomal instability) diseases. Advances in the field have led to improved recognition and treatment of many photodermatoses. The purpose of this focused review is to provide an update on the diagnosis and management of a variety of photodermatoses, both common and less common, with review of recent updates in the literature pertaining to their diagnosis and management.
Collapse
Affiliation(s)
- Amanda F Nahhas
- Department of Dermatology, Henry Ford Hospital, 3031 West Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - David M Oberlin
- Department of Dermatology, Henry Ford Hospital, 3031 West Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Taylor L Braunberger
- Department of Dermatology, Henry Ford Hospital, 3031 West Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Henry W Lim
- Department of Dermatology, Henry Ford Hospital, 3031 West Grand Blvd, Suite 800, Detroit, MI, 48202, USA.
| |
Collapse
|
7
|
Rok J, Buszman E, Delijewski M, Otręba M, Beberok A, Wrześniok D. Effect of tetracycline and UV radiation on melanization and antioxidant status of melanocytes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 148:168-173. [PMID: 25935746 DOI: 10.1016/j.jphotobiol.2015.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/13/2015] [Accepted: 04/20/2015] [Indexed: 11/28/2022]
Abstract
Tetracycline is a semisynthetic antibiotic and is used in several types of infections against both gram-positive and gram-negative bacteria. This therapy is often associated with phototoxic reactions that occur after exposure to UV radiation and lead to photo-onycholysis, pseudoporphyria, solar urticaria and the fixed drug eruption in the skin. The phototoxic reactions may be related to the melanin content which, on one side may bind drugs - leading to their accumulation, and on the other side, they have photoprotective and antioxidant properties. In this study the effect of tetracycline and UVA irradiation on cell viability, biosynthesis of melanin and antioxidant defense system in cultured normal human epidermal melanocytes (HEMn-DP) was analyzed. The viability of the cells treated with tetracycline and exposed to UVA radiation decreased in a drug concentration-dependent manner. At the same time, the induction of the melanization process was observed. The significant alterations in antioxidant defense system, on the basis of changes in SOD, CAT and GPx activities, were stated. The obtained results may give explanation for the phototoxic effects of tetracycline therapy observed in skin cells exposed to UVA radiation.
Collapse
Affiliation(s)
- Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Ewa Buszman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland.
| | - Marcin Delijewski
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Michał Otręba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| |
Collapse
|
8
|
Abstract
CONTEXT Antibiotics are the mainstay of treatment for bacterial infections in patients of all ages. Athletes who maximally train are at risk for illness and various infections. Routinely used antibiotics have been linked to tendon injuries, cardiac arrhythmias, diarrhea, photosensitivity, cartilage issues, and decreased performance. EVIDENCE ACQUISITION Relevant articles published from 1989 to 2012 obtained through searching MEDLINE and OVID. Also, the Food and Drug Administration website was utilized. STUDY DESIGN Clinical review. LEVEL OF EVIDENCE Level 3. RESULTS The team physician should consider alternative medications in place of the "drug of choice" when adverse drug effects are a concern for an athlete's health or performance. If alternative medications cannot be selected, secondary preventative measures, including sunscreen or probiotics, may be needed. CONCLUSION Physicians choose medications based on a variety of factors to help ensure infection resolution while limiting potential side effects. Extra precautions are indicated when treating athletes with certain antibiotics.
Collapse
Affiliation(s)
| | - Matthew Voltz
- Delaware Orthopedic Specialists, Wilmington, Delaware
| | | | - Jeremy Close
- Thomas Jefferson University Hospital, Philadelphia, PA
| | | | - Joshua Okon
- Christiana Care Health System, Wilmington, Delaware
| |
Collapse
|
9
|
|
10
|
Abstract
Photo-induced drug eruptions are cutaneous adverse events due to exposure to a drug and either ultraviolet or visible radiation. Based on their pathogenesis, they can be classified as phototoxic or photoallergic drug eruptions, although in many cases it is not possible to determine whether a particular eruption is due to a phototoxic or photoallergic mechanism. In this review, the diagnosis, prevention and management of drug-induced photosensitivity are discussed. Diagnosis is based primarily on the history of drug intake and the clinical appearance of the eruption, primarily affecting sun-exposed areas of the skin. Phototesting and photopatch testing can be useful adjuncts in making a diagnosis. The mainstay of management is prevention, including informing patients of the possibility of increased sun sensitivity and the use of sun protective measures. However, once the eruption has occurred, it may be necessary to discontinue the culprit medication and treat the eruption with a potent topical corticosteroid. Drugs that have been implicated in causing photosensitive eruptions are reviewed. Tetracycline, doxycycline, nalidixic acid, voriconazole, amiodarone, hydrochlorothiazide, naproxen, piroxicam, chlorpromazine and thioridazine are among the most commonly implicated medications. We review the medical literature regarding evidence for the culpability of each drug, including the results of phototesting, photopatch testing and rechallenge testing.
Collapse
|
11
|
Botto NC, Warshaw EM. Solar urticaria. J Am Acad Dermatol 2008; 59:909-20; quiz 921-2. [DOI: 10.1016/j.jaad.2008.08.020] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/18/2008] [Accepted: 08/13/2008] [Indexed: 12/01/2022]
|
12
|
Crickx B. Faut-il arrêter de traiter les acnéiques l’été ? Ann Dermatol Venereol 2005; 132:404-6. [PMID: 15886581 DOI: 10.1016/s0151-9638(05)79299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Beattie PE, Dawe RS, Ibbotson SH, Ferguson J. Co-existence of chronic actinic dermatitis and solar urticaria in three patients. Br J Dermatol 2004; 151:513-5. [PMID: 15327570 DOI: 10.1111/j.1365-2133.2004.06097.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Affiliation(s)
- J L Bourrain
- Allergologie - Photobiologie, Département Pluridisciplinaire de Médecine, CHU de Grenoble, France.
| | | | | |
Collapse
|