1
|
Nakata H, Suzuki T, Namba K, Oyanagi K. Dimerization of G protein-coupled purinergic receptors: increasing the diversity of purinergic receptor signal responses and receptor functions. J Recept Signal Transduct Res 2011; 30:337-46. [PMID: 20843271 DOI: 10.3109/10799893.2010.509729] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is well accepted that G protein-coupled receptors (GPCRs) arrange into dimers or higher-order oligomers that may modify various functions of GPCRs. GPCR-type purinergic receptors (i.e. adenosine and P2Y receptors) tend to form heterodimers with GPCRs not only of the different families but also of the same purinergic receptor families, leading to alterations in functional properties. In the present review, we focus on current knowledge of the formation of heterodimers between metabotropic purinergic receptors that activate novel functions in response to extracellular nucleosides/nucleotides, revealing that the dimerization seems to be employed for 'fine-tuning' of purinergic signaling. Thus, the relationship between adenosine and adenosine triphosphate is likely to be more and more intimate than simply being a metabolite of the other.
Collapse
Affiliation(s)
- Hiroyasu Nakata
- Department of Molecular Cell Signaling, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Japan.
| | | | | | | |
Collapse
|
2
|
Morikawa T, Tanaka N, Kubota Y, Mizuno H, Nakamura K, Kunitomo M, Shinozuka K. ATP modulates the release of noradrenaline through two different prejunctional receptors on the adrenergic nerves of rat prostate. Clin Exp Pharmacol Physiol 2007; 34:601-5. [PMID: 17581215 DOI: 10.1111/j.1440-1681.2007.04627.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. The effects of adenosine and ATP receptor agonists on the release of endogenous noradrenaline from electrically stimulated (2 Hz, 0.1 msec) rat prostate were examined in order to clarify the pharmacological properties of prejunctional receptors for adenosine and ATP on the adrenergic nerve varicosities in the prostate. Noradrenaline was quantified by HPLC coupled with electrochemical detection techniques. 2. Both adenosine and ATP receptor agonists (1 micromol/L) inhibited noradrenaline release and the relative order of inhibitory effect was N(6)-cyclopentyl-adenosine (CPA) > 5'-N-ethylcarboxamidoadenosine > 2-chloroadenosine > adenosine > 2-methylthio-ATP (2mSATP) > AMP > ATP. 3. The adenosine receptor agonist CPA (1 nmol/L-1 micromol/L) and the ATP receptor agonist 2mSATP (100 nmol/L-100 micromol/L) inhibited the stimulation-induced release of noradrenaline in a concentration-dependent manner. The concentrations of CPA and 2mSATP that produced 50% inhibition of noradrenaline release were 9.6 nmol/L and 1.4 micromol/L, respectively. 4. 1,3-Dipropyl-8-cyclopentylxanthine, an adenosine A(1) receptor antagonist, significantly reduced the inhibitory effects of not only CPA, but also 2mSATP. 5. Suramin, an ATP receptor antagonist, significantly reduced the inhibitory effects of 2mSATP, but not those of CPA. 6. Pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, another ATP receptor antagonist, had no effect on the inhibitory action of either agonist. 7. These results suggest that, in the sympathetic nerve terminals of rat prostate, adenosine and ATP induce inhibition of noradrenaline release via the activation of adenosine A(1) and/or xanthine-sensitive ATP receptors, which play an inhibitory regulatory role in adrenergic neurotransmission in the prostate.
Collapse
Affiliation(s)
- Tsugumi Morikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | | | | | | | | | | | | |
Collapse
|
3
|
Nakata H. [Heterodimerization of G protein-coupled receptors]. Nihon Yakurigaku Zasshi 2007; 130:4-8. [PMID: 17634672 DOI: 10.1254/fpj.130.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Melnik S, Wright M, Tanner JA, Tsintsadze T, Tsintsadze V, Miller AD, Lozovaya N. Diadenosine polyphosphate analog controls postsynaptic excitation in CA3-CA1 synapses via a nitric oxide-dependent mechanism. J Pharmacol Exp Ther 2006; 318:579-88. [PMID: 16709679 DOI: 10.1124/jpet.105.097642] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we have described the modulatory effect of diadenosine polyphosphates Ap4A and Ap5A on synaptic transmission in the rat hippocampal slices mediated by presynaptic receptors (Klishin et al., 1994). In contrast, we now describe how nonhydrolyzable Ap4A analog diadenosine-5',5'''-P1,P4-[beta,beta'-methylene]tetraphosphate (AppCH2ppA) at low micromolar concentrations exerts strong nondesensitizing inhibition of orthodromically evoked field potentials (OFPs) without affecting the amplitude of excitatory postsynaptic currents and antidromically evoked field potentials, as recorded in hippocampal CA1 zone. The effects of AppCH2ppA on OFPs are eliminated by a P2 receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) but not mimicked by purinoceptor agonists alpha,beta-methylene-ATP and adenosine 5'-O-(3-thio)-triphosphate, indicating that a P2-like receptor is involved but not one belonging to the conventional P2X/P2Y receptor classes. Diadenosine polyphosphate receptor (P4) antagonist Ip4I (diinosine tetraphosphate) was unable to modulate AppCH2ppA effects. Thus, the PPADS-sensitive P2-like receptor for AppCH2ppA seems to control selectively dendritic excitation of the CA1 neurons. The specific nitric oxide (NO)-scavenger 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide is shown to significantly attenuate AppCH2ppA-mediated inhibitory effects, indicating that NO is involved in the cascade of events initiated by AppCH2ppA. Further downstream mediation by adenosine A1 receptors is also demonstrated. Hence, AppCH2ppA-mediated effects involve PPADS-sensitive P2-like receptor activation leading to the production of NO that stimulates intracellular synthesis of adenosine, causing in turn postsynaptic A1 receptor activation and subsequent postsynaptic CA1 dendritic inhibition. Such spatially selective postsynaptic dendritic inhibition may influence dendritic electrogenesis in pyramidal neurons and consequently mediate control of neuronal network activity.
Collapse
Affiliation(s)
- Sergei Melnik
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kiev, Ukraine, Russia
| | | | | | | | | | | | | |
Collapse
|
5
|
Nakata H, Yoshioka K, Kamiya T, Tsuga H, Oyanagi K. Functions of heteromeric association between adenosine and P2Y receptors. J Mol Neurosci 2005; 26:233-8. [PMID: 16012196 DOI: 10.1385/jmn:26:2-3:233] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is now well accepted that G protein-coupled receptors (GPCRs) can be directly associated, as either homo- or hetero-oligomers, to alter their functions. G protein-coupled purinergic receptors, classified as adenosine receptors, and P2Y receptors (ATP receptors) are also found to oligomerize each other to alter their pharmacology. Specifically, adenosine receptor of A1 subtype (A1R) is able to form a heteromeric complex with P2Y receptor of P2Y1 type (P2Y1R) either in heterologously transfected cells or in rat brain tissues, as demonstrated by coimmunoprecipitation or bioluminescence resonance energy transfer methods in addition to double immunocytochemistry. It is shown that the heteromerization between A1R and P2Y1R generates an adenosine receptor with P2Y-like agonistic pharmacology, i.e., a potent P2Y1R agonist, adenosine 5'-O-(2-thiodiphosphate), binds the A1R binding pocket of the A1R/P2Y1R complex and inhibits adenylyl cyclase activity via Gi/o protein. This hetero-oligomerization between adenosine receptor and P2Y receptor might be one of the mechanisms for the adenine nucleotide-mediated inhibition of neurotransmitter release. The oligomerization of purinergic receptors is thus considered as an important regulation system in the central nervous system.
Collapse
Affiliation(s)
- Hiroyasu Nakata
- Department of Molecular Cell Signaling, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
6
|
Tanoue A, Koshimizu T, Tsujimoto G, Nakata H, Hirose S, Fukuzawa T, Abe J, Kurose H. [Heterogeneity of G protein-coupled receptor generated by post-translational mechanisms and its clinical meanings]. Nihon Yakurigaku Zasshi 2005; 124:235-43. [PMID: 15467257 DOI: 10.1254/fpj.124.235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
G protein-coupled receptors (GPCRs) are the most famous target proteins for medicinal drugs. So far, heterogeneity of GPCRs is mainly focused on genetic variation. However, it has been reported that the structure and function of GPCRs are modified by several mechanisms after translation. RNA editing introduces the amino acid different from that encoded in genome by changing the nucleotide. Dimer formation is another example of how heterogeneity is produced. Many receptors form homo- or hetero-dimers, and obtain different function from original receptors. Receptors are regulated by several means to modulate stimulation strength. Receptor subtype is often differentially regulated by receptor kinases and/or second messenger-regulated kinases. There is a new type of receptor that shows a novel structural feature, a long amino terminal region belonging to class B seven transmembrane receptors. The physiological function of this class of receptor is assumed to play a role in cell-cell communication. This novel structural feature may directly link GPCR to the cytoskeleton. These mechanisms to produce functional and structural heterogeneity may explain how cells evoke different responses in different tissues or cells upon the same stimulation. Thus, the post-translational mechanism to produce heterogeneity provides additional flexibility when cells respond to one extracellular stimulus.
Collapse
Affiliation(s)
- Akito Tanoue
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo 154-8567, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Gorzalka S, Vittori S, Volpini R, Cristalli G, von Kügelgen I, Müller CE. Evidence for the functional expression and pharmacological characterization of adenine receptors in native cells and tissues. Mol Pharmacol 2004; 67:955-64. [PMID: 15604413 DOI: 10.1124/mol.104.006601] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An orphan G protein-coupled receptor from rat has recently been discovered to be activated by the nucleobase adenine (Proc Natl Acad Sci USA 99:8573-8578, 2002). In the present study, we show for the first time that the adenine receptor is expressed in membrane preparations of native tissues and cell lines in high density, including rat brain cortex, rat brain striatum, and the mouse neuroblastoma x rat glioma hybrid cell line NG108-15. Saturation analysis with [3H]adenine at rat brain cortical membranes exhibited a single high-affinity binding site with a KD value of 27.2 nM, and a binding capacity of 2.28 pmol/mg of protein. Kinetic studies revealed unusual binding kinetics of [3H]adenine with rapid association and slow dissociation. A series of compounds were investigated in [3H]adenine competition experiments at rat brain cortex. Only minor substitution of the adenine structure was tolerated, the most potent compounds of the present series being 2-fluoroadenine (Ki value of 620 nM), 8-thioadenine (Ki value of 2.77 microM), N6-methyladenine (Ki value of 3.64 microM), and 7-methyladenine (Ki value of 4.13 microM), all of which were partial agonists (40-60% intrinsic activity). Adenine dose dependently inhibited forskolin-stimulated adenylate cyclase in membrane preparations of NG108-15 cells as well as in intact cells, showing that the receptor is functional in NG108-15 cells. Reverse transcriptase-polymerase chain reaction experiments followed by sequencing indicate that the NG108-15 cells express the murine ortholog of the adenine receptor. Moreover, preliminary radioligand binding studies with [3H]adenine at membranes of human astrocytoma 1321N1 cells suggest that a human ortholog of the rat adenine receptor exists.
Collapse
Affiliation(s)
- Simone Gorzalka
- Pharmaceutical Institute, Pharmaceutical Chemistry Poppelsdorf, University of Bonn, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Yoshioka K, Nakata H. ATP- and adenosine-mediated signaling in the central nervous system: purinergic receptor complex: generating adenine nucleotide-sensitive adenosine receptors. J Pharmacol Sci 2004; 94:88-94. [PMID: 14978342 DOI: 10.1254/jphs.94.88] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Adenosine A(1) receptors (A(1)R) are able to form a heteromeric complex with P2Y(1) receptors (P2Y(1)R) that generates A(1)R with P2Y(1)R-like agonistic pharmacology. A potent P2Y(1)R agonist, adenosine 5'-O-(2-thiotriphosphate), binds the A(1)R binding pocket of the A(1)R/P2Y(1)R complex and inhibits adenylyl cyclase activity via G(i/o) protein. These mechanisms might be used to fine-tune purinergic inhibition locally at sites where there is a particular oligomerization structure between purinergic receptors and explain the undefined purinergic functions by adenosine and adenine nucleotides.
Collapse
Affiliation(s)
- Kazuaki Yoshioka
- Department of Molecular Cell Signaling, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
| | | |
Collapse
|
9
|
Nakata H, Yoshioka K, Kamiya T. Purinergic-receptor oligomerization: implications for neural functions in the central nervous system. Neurotox Res 2004; 6:291-7. [PMID: 15545012 DOI: 10.1007/bf03033439] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is becoming clear that the functions of G protein-coupled receptors (GPCRs), the largest family of plasma membrane-localized receptors, are regulated by direct oligomeric formation between GPCRs, as either homo- or hetero-oligomers. This review article explores the mechanistic implications of GPCR dimerization, especially among purinergic receptors, adenosine receptors and P2 receptors, which play critical roles in the regulation of neurotransmission in the central nervous system. Briefly, adenosine receptors are able to form a heteromeric complex with P2 receptors that generates an adenosine receptor with P2 receptor-like agonistic pharmacology. This mechanism may be used to fine-tune purinergic inhibition locally at sites where there is a particular oligomerization structure between purinergic receptors, and to explain the undefined adenosine-like purinergic functions of adenine nucleotides. Purinergic receptors also form oligomers with GPCRs of other families present in the brain, such as dopamine receptors and metabotropic glutamate receptors, to alter the functional properties. The effect of GPCR oligomerization on receptor functions is thus considered as an important system in the central nervous system.
Collapse
Affiliation(s)
- Hiruyasu Nakata
- Department of Molecular Cell Signaling, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo, 183-8526, Japan.
| | | | | |
Collapse
|
10
|
Nakata H, Yoshioka K, Saitoh O. Hetero-oligomerization between adenosine A1 and P2Y1 receptors in living cells: Formation of ATP-sensitive adenosine receptors. Drug Dev Res 2003. [DOI: 10.1002/ddr.10169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Shinozuka K, Mizuno H, Nakamura K, Kunitomo M. Purinergic modulation of vascular sympathetic neurotransmission. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 88:19-25. [PMID: 11855674 DOI: 10.1254/jjp.88.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is generally agreed that the release of norepinephrine (NE) is inhibited by activation of prejunctional purinoceptor. We examined the pharmacological properties of purinoceptors on vascular sympathetic nerve terminals and the source of endogenous adenyl purines. Electrically (1 Hz) evoked NE-release was inhibited by not only P1-agonists but also P2-agonists. Although the inhibition induced by P2-agonists was blocked by P1-antagonists, P2-agonists-induced inhibition was not due to the breakdown to adenosine. Therefore, there may be a new class of purinoceptor that is activated by both P1- and P2-agonists and antagonized by P1-antagonists. Electrical stimulation at 8 Hz but not at 1 Hz evoked the release of adenyl purines such as ATP, ADP, AMP and adenosine, in addition to NE; and the purines-release was blocked by an alpha1-antagonist. Methoxamine, an alpha1-agonist, also evoked the release of purines. Electrically (1 Hz)-evoked NE-release was inhibited by methoxamine, and this inhibition was blocked by not only an alpha1-antagonist but also a P1-antagonist. Therefore, the activation of alpha1-adrenoceptor appeared to release purines, which in turn inhibited NE-release via prejunctional purinoceptors. From these results, it is suggested that the unique purinoceptor and the endogenous purines released from alpha1-adrenoceptor-sensitive sources participate in the antidromic transsynaptic modulation of vascular sympathetic neurotransmission.
Collapse
Affiliation(s)
- Kazumasa Shinozuka
- Department of Pharmacology, School of Pharmaceutical Sciences, Mukogawa Women 's University, Nishinomiya, Japan.
| | | | | | | |
Collapse
|