1
|
Geffroy B, Goikoetxea A, Villain-Naud N, Martinez AS. Early fasting does not impact gonadal size nor vasa gene expression in the European seabass Dicentrarchus labrax. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024:10.1007/s10695-024-01395-6. [PMID: 39196454 DOI: 10.1007/s10695-024-01395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
Primordial germ cells (PGCs) play a crucial role in sexual development in fish, with recent studies revealing their influence on sexual fate. Notably, PGC number at specific developmental stages can determine whether an individual develops as male or female. Temperature was shown to impact PGC proliferation and the subsequent phenotypic sex in some fish species. Here, we aimed at testing the role of food deprivation on gonad development in the European seabass Dicentrarchus labrax, a species displaying a polygenic sex determination system with an environmental influence. We subjected larvae to two periods of starvation to investigate whether restricting growth affects both gonadal size and vasa gene expression. We first confirmed by immunohistochemistry that Vasa was indeed a marker of PGCs in the European seabass, as in other fish species. We also showed that vasa correlated positively with fish size, confirming that it could be used as a marker of feminization. However, starvation did not show any significant effects on vasa expression nor on gonadal size. It is hypothesized that evolutionary mechanisms likely safeguard PGCs against environmental stressors to ensure reproductive success. Further research is needed to elucidate the intricate interplay between environmental cues, PGC biology, and sexual differentiation in fish.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.
| | | | | | - Anne-Sophie Martinez
- Normandie Université, Unicaen, BOREA, 14000, Caen, France
- Normandie Université, Unicaen, ToxEMAC ABTE, 14000, Caen, France
| |
Collapse
|
2
|
Yu M, Wang F, Li M, Wang Y, Gao X, Zhang H, Liu Z, Zhou Z, Zhao D, Zhang M, Wang L, Jiang H, Qiao Z. Characteristics of the Vasa Gene in Silurus asotus and Its Expression Response to Letrozole Treatment. Genes (Basel) 2024; 15:756. [PMID: 38927693 PMCID: PMC11202796 DOI: 10.3390/genes15060756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The identification and expression of germ cells are important for studying sex-related mechanisms in fish. The vasa gene, encoding an ATP-dependent RNA helicase, is recognized as a molecular marker of germ cells and plays a crucial role in germ cell development. Silurus asotus, an important freshwater economic fish species in China, shows significant sex dimorphism with the female growing faster than the male. However, the molecular mechanisms underlying these sex differences especially involving in the vasa gene in this fish remain poorly understood. In this work, the vasa gene sequence of S. asotus (named as Savasa) was obtained through RT-PCR and rapid amplification of cDNA end (RACE), and its expression in embryos and tissues was analyzed using qRT-PCR and an in situ hybridization method. Letrozole (LT) treatment on the larvae fish was also conducted to investigate its influence on the gene. The results revealed that the open reading frame (ORF) of Savasa was 1989 bp, encoding 662 amino acids. The SaVasa protein contains 10 conserved domains unique to the DEAD-box protein family, showing the highest sequence identity of 95.92% with that of Silurus meridionalis. In embryos, Savasa is highly expressed from the two-cell stage to the blastula stage in early embryos, with a gradually decreasing trend from the gastrula stage to the heart-beating stage. Furthermore, Savasa was initially detected at the end of the cleavage furrow during the two-cell stage, later condensing into four symmetrical cell clusters with embryonic development. At the gastrula stage, Savasa-positive cells increased and began to migrate towards the dorsal side of the embryo. In tissues, Savasa is predominantly expressed in the ovaries, with almost no or lower expression in other detected tissues. Moreover, Savasa was expressed in phase I-V oocytes in the ovaries, as well as in spermatogonia and spermatocytes in the testis, implying a specific expression pattern of germ cells. In addition, LT significantly upregulated the expression of Savasa in a concentration-dependent manner during the key gonadal differentiation period of the fish. Notably, at 120 dph after LT treatment, Savasa expression was the lowest in the testis and ovary of the high concentration group. Collectively, findings from gene structure, protein sequence, phylogenetic analysis, RNA expression patterns, and response to LT suggest that Savasa is maternally inherited with conserved features, serving as a potential marker gene for germ cells in S.asotus, and might participate in LT-induced early embryonic development and gonadal development processes of the fish. This would provide a basis for further research on the application of germ cell markers and the molecular mechanisms of sex differences in S. asotus.
Collapse
Affiliation(s)
- Miao Yu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Fangyuan Wang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Muzi Li
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Yuan Wang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Xiangzhe Gao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Hanhan Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Zhenzhu Liu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Zhicheng Zhou
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Daoquan Zhao
- Yiluo River Aquatic Biology Field Scientific Observation and Research Station in the Yellow River Basin of Henan Province, Lushi, Sanmenxia City 472200, China;
| | - Meng Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Lei Wang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Hongxia Jiang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Zhigang Qiao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| |
Collapse
|
3
|
Yu Y, Chen M, Shen ZG. Molecular biological, physiological, cytological, and epigenetic mechanisms of environmental sex differentiation in teleosts: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115654. [PMID: 37918334 DOI: 10.1016/j.ecoenv.2023.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Human activities have been exerting widespread stress and environmental risks in aquatic ecosystems. Environmental stress, including temperature rise, acidification, hypoxia, light pollution, and crowding, had a considerable negative impact on the life histology of aquatic animals, especially on sex differentiation (SDi) and the resulting sex ratios. Understanding how the sex of fish responds to stressful environments is of great importance for understanding the origin and maintenance of sex, the dynamics of the natural population in the changing world, and the precise application of sex control in aquaculture. This review conducted an exhaustive search of the available literature on the influence of environmental stress (ES) on SDi. Evidence has shown that all types of ES can affect SDi and universally result in an increase in males or masculinization, which has been reported in 100 fish species and 121 cases. Then, this comprehensive review aimed to summarize the molecular biology, physiology, cytology, and epigenetic mechanisms through which ES contributes to male development or masculinization. The relationship between ES and fish SDi from multiple aspects was analyzed, and it was found that environmental sex differentiation (ESDi) is the result of the combined effects of genetic and epigenetic factors, self-physiological regulation, and response to environmental signals, which involves a sophisticated network of various hormones and numerous genes at multiple levels and multiple gradations in bipotential gonads. In both normal male differentiation and ES-induced masculinization, the stress pathway and epigenetic regulation play important roles; however, how they co-regulate SDi is unclear. Evidence suggests that the universal emergence or increase in males in aquatic animals is an adaptation to moderate ES. ES-induced sex reversal should be fully investigated in more fish species and extensively in the wild. The potential aquaculture applications and difficulties associated with ESDi have also been addressed. Finally, the knowledge gaps in the ESDi are presented, which will guide the priorities of future research.
Collapse
Affiliation(s)
- Yue Yu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Min Chen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zhi-Gang Shen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
4
|
Adashev VE, Kotov AA, Olenina LV. RNA Helicase Vasa as a Multifunctional Conservative Regulator of Gametogenesis in Eukaryotes. Curr Issues Mol Biol 2023; 45:5677-5705. [PMID: 37504274 PMCID: PMC10378496 DOI: 10.3390/cimb45070358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Being a conservative marker of germ cells across metazoan species, DEAD box RNA helicase Vasa (DDX4) remains the subject of worldwide investigations thanks to its multiple functional manifestations. Vasa takes part in the preformation of primordial germ cells in a group of organisms and contributes to the maintenance of germline stem cells. Vasa is an essential player in the piRNA-mediated silencing of harmful genomic elements and in the translational regulation of selected mRNAs. Vasa is the top hierarchical protein of germ granules, liquid droplet organelles that compartmentalize RNA processing factors. Here, we survey current advances and problems in the understanding of the multifaceted functions of Vasa proteins in the gametogenesis of different eukaryotic organisms, from nematodes to humans.
Collapse
Affiliation(s)
- Vladimir E Adashev
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Alexei A Kotov
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Ludmila V Olenina
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| |
Collapse
|
5
|
Yu Y, Yang Y, Ye H, Lu L, Li H, Xu Z, Li W, Yin X, Xu D. Identification of germ cells in large yellow croaker (Larimichthys crocea) and yellow drum (Nibea albiflora) using RT-PCR and in situ hybridization analyses. Gene 2023; 863:147280. [PMID: 36804002 DOI: 10.1016/j.gene.2023.147280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 02/20/2023]
Abstract
Ocean-caught large yellow croaker (Larimichthys crocea) represents an important germplasm resource for the breeding of this species; however, these fish tend to show poor survival in captivity and would be unsuitable breeding purposes. As an alternative to the use of wild-caught croakers, germ cell transplantation has been proposed using the L. crocea specimens as donors and yellow drum (Nibea albiflora) as recipients. In this regard, the identification of L. crocea and N. albiflora germ cells is an essential prerequisite for establishing a germ cell transplantation protocol for these fish. In this study, we cloned the 3' untranslated regions (UTR) of the vasa, dnd, and nanos2 genes in N. albiflora using the rapid amplification of cDNA ends (RACE) method and then aligned and analyzed the sequences of the corresponding genes in L. crocea and N. albiflora. On the basis of gene sequence differences, we designed species-specific primers and probes for RT-PCR analysis and in situ hybridization. RT-PCR analysis revealed that these species-specific primers exclusively amplified DNA from gonads of the respective species, thus confirming that we had six specific primer pairs that could be used to distinguish the germ cells in L. crocea and N. albiflora. Using in situ hybridization analysis, we established that whereas Lcvasa and Nadnd probes showed high species specificity, the probes for Navasa and Lcdnd showed a less specificity. In situ hybridization using Lcvasa and Nadnd thus enabled us to visualize the germ cells in these two species. Using these species-specific primers and probes, we can reliably distinguish the germ cells of L. crocea and N. albiflora, thereby establishing an effective approach for the post-transplantation identification of germ cells when using L. crocea and N. albiflora as donors and recipients, respectively.
Collapse
Affiliation(s)
- Yanjie Yu
- School of Fisheries, Zhejiang Ocean University, Zhoushan, China; Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Yang Yang
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China; Ocean and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan, China
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Lei Lu
- School of Fisheries, Zhejiang Ocean University, Zhoushan, China; Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Haidong Li
- School of Fisheries, Zhejiang Ocean University, Zhoushan, China; Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China; Ocean and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan, China
| | - Zhijin Xu
- Zhoushan Fisheries Research Institute, Zhoushan, China
| | - Weiye Li
- Zhoushan Fisheries Research Institute, Zhoushan, China
| | - Xiaolong Yin
- Zhoushan Fisheries Research Institute, Zhoushan, China
| | - Dongdong Xu
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China; Ocean and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan, China.
| |
Collapse
|
6
|
Heikes KL, Game M, Smith FW, Goldstein B. The embryonic origin of primordial germ cells in the tardigrade Hypsibius exemplaris. Dev Biol 2023; 497:42-58. [PMID: 36893882 DOI: 10.1016/j.ydbio.2023.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
Primordial germ cells (PGCs) give rise to gametes - cells necessary for the propagation and fertility of diverse organisms. Current understanding of PGC development is limited to the small number of organisms whose PGCs have been identified and studied. Expanding the field to include little-studied taxa and emerging model organisms is important to understand the full breadth of the evolution of PGC development. In the phylum Tardigrada, no early cell lineages have been identified to date using molecular markers. This includes the PGC lineage. Here, we describe PGC development in the model tardigrade Hypsibius exemplaris. The four earliest-internalizing cells (EICs) exhibit PGC-like behavior and nuclear morphology. The location of the EICs is enriched for mRNAs of conserved PGC markers wiwi1 (water bear piwi 1) and vasa. At early stages, both wiwi1 and vasa mRNAs are detectable uniformly in embryos, which suggests that these mRNAs do not serve as localized determinants for PGC specification. Only later are wiwi1 and vasa enriched in the EICs. Finally, we traced the cells that give rise to the four PGCs. Our results reveal the embryonic origin of the PGCs of H. exemplaris and provide the first molecular characterization of an early cell lineage in the tardigrade phylum. We anticipate that these observations will serve as a basis for characterizing the mechanisms of PGC development in this animal.
Collapse
Affiliation(s)
- Kira L Heikes
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mandy Game
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Frank W Smith
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Heikes KL, Game M, Smith FW, Goldstein B. The Embryonic Origin of Primordial Germ Cells in the Tardigrade Hypsibius exemplaris. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.522500. [PMID: 36824831 PMCID: PMC9948961 DOI: 10.1101/2023.01.02.522500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Primordial germ cells (PGCs) give rise to gametes â€" cells necessary for the propagation and fertility of diverse organisms. Current understanding of PGC development is limited to the small number of organisms whose PGCs have been identified and studied. Expanding the field to include little-studied taxa and emerging model organisms is important to understand the full breadth of the evolution of PGC development. In the phylum Tardigrada, no early cell lineages have been identified to date using molecular markers. This includes the PGC lineage. Here, we describe PGC development in the model tardigrade Hypsibius exemplaris . The four earliest-internalizing cells (EICs) exhibit PGC-like behavior and nuclear morphology. The location of the EICs is enriched for mRNAs of conserved PGC markers wiwi1 (water bear piwi 1) and vasa . At early stages, both wiwi1 and vasa mRNAs are detectable uniformly in embryos, which suggests that these mRNAs do not serve as localized determinants for PGC specification. Only later are wiwi1 and vasa enriched in the EICs. Finally, we traced the cells that give rise to the four PGCs. Our results reveal the embryonic origin of the PGCs of H. exemplaris and provide the first molecular characterization of an early cell lineage in the tardigrade phylum. We anticipate that these observations will serve as a basis for characterizing the mechanisms of PGC development in this animal.
Collapse
Affiliation(s)
- Kira L. Heikes
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mandy Game
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Frank W. Smith
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Characterization of ddx4 and dnd Homologs in Snakeskin Gourami ( Trichopodus pectoralis) and Their Expression Levels during Larval Development and in Gonads of Males and Females. Animals (Basel) 2022; 12:ani12233415. [PMID: 36496935 PMCID: PMC9735842 DOI: 10.3390/ani12233415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/10/2022] Open
Abstract
The purpose of this study was to clone and characterize ddx4 and dnd1 homologs in snakeskin gourami (Trichopodus pectoralis) and to determine their expression levels during larval development and in the gonads of males and females. Both cDNAs contained predicted regions that shared consensus motifs with the ddx4 family in teleosts and the dnd family in vertebrates. Phylogenetic tree construction analysis confirmed that these two genes were clustered in the families of teleosts. Both ddx4 and dnd1 mRNAs were detectable only in the gonads, particularly in germ cells. These two genes were expressed during early larval development. The expression of ddx4 was high during early larval development and decreased with increasing developmental age, whereas dnd1 expression increased with developmental age. In adult fish, the expression levels of both genes were higher in the ovary than in the testis. Overall, these findings provide valuable molecular information on ddx4 and dnd, and can be applied in future reproductive biological studies relating to sex dimorphism in snakeskin gourami.
Collapse
|
9
|
DiBona E, Haley C, Geist S, Seemann F. Developmental Polyethylene Microplastic Fiber Exposure Entails Subtle Reproductive Impacts in Juvenile Japanese Medaka (Oryzias latipes). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2848-2858. [PMID: 35942914 DOI: 10.1002/etc.5456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Microplastic pollution has been recognized as a potential threat to environmental and human health. Recent studies have shown that microplastics reside in all ecosystems and contaminate human food/water sources. Microplastic exposure has been shown to result in adverse effects related to endocrine disruption; however, data are limited regarding how exposure to current environmental levels of microplastics during development may impact reproductive health. To determine the impact of environmentally relevant, chronic, low-dose microplastic fibers on fish reproductive health, juvenile Japanese medaka were exposed to five concentrations of polyethylene fibers for 21 days, and reproductive maturity was examined to assess the later life consequences. Fecundity, fertility, and hatching rate were evaluated to determine the organismal level impacts. Gonadal tissue integrity and stage were assessed to provide insights into potential tissue level changes. Expression of key reproductive genes in male and female gonads provided a molecular level assessment. A significant delay in hatching was observed, indicating cross-generational and organismal level impacts. A significant decrease in 11-beta-dehydrogenase isozyme 2 (HSD11 β 2) gene expression in male medaka indicated adverse effects at the molecular level. A decrease in male expression of HSD11 β 2 could have an impact on sperm quality because this enzyme is crucial for conversion of testosterone into the androgen 11-ketotestosterone. Our study is one of the first to demonstrate subtle impacts of virgin microplastic exposure during development on later life reproductive health. The results suggest a possible risk of polyethylene fiber exposure for wild fish during reproductive development, and populations should be monitored closely, specifically in spawning and nursery regions. Environ Toxicol Chem 2022;41:2848-2858. © 2022 SETAC.
Collapse
Affiliation(s)
- Elizabeth DiBona
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| | - Carol Haley
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| | - Simon Geist
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| | - Frauke Seemann
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
- Department of Life Sciences, Center for Coastal and Marine Studies, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| |
Collapse
|
10
|
Shiguemoto GF, Coelho GCZ, López LS, Pessoa GP, Dos Santos SCA, Senhorini JA, Monzani PS, Yasui GS. Primordial germ cell identification and traceability during the initial development of the Siluriformes fish Pseudopimelodus mangurus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1137-1153. [PMID: 35925505 DOI: 10.1007/s10695-022-01106-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Primordial germ cells (PGCs) are responsible for generating all germ cells. Therefore, they are essential targets to be used as a tool for the production of germline chimeras. The labeling and route of PGCs were evaluated during the initial embryonic development of Pseudopimelodus mangurus, using whole-mount in situ hybridization (WISH) and mRNA microinjection in zygotes. A specific antisense RNA probe constituted by a partial coding region from P. mangurus nanos3 mRNA was synthesized for the WISH method. RNA microinjection was performed using the GFP gene reporter regulated by translation regulatory P. mangurus buc and nanos3 3'UTR sequences, germline-specific markers used to describe in vivo migration of PGCs. Nanos3 and buc gene expression was evaluated in tissues for male and female adults and initial development phases and larvae from the first to seventh days post-hatching. The results from the WISH technique indicated the origin of PGCs in P. mangurus from the aggregations of nanos3 mRNA in the cleavage grooves and the signals obtained from nanos3 probes corresponded topographically to the migratory patterns of the PGCs reported for other fish species. Diffuse signals were observed in all blastomeres until the 16-cell stage, which could be related to the two sequences of the nanos3 3'UTR observed in the P. mangurus unfertilized egg transcriptome. Microinjection was not successful using GFP-Dr-nanos1 3'UTR mRNA and GFP-Pm-buc 3'UTR mRNA and allowed the identification of potential PGCs with less than 2% efficiency only and after hatching using GFP-Pm-nanos3 3'UTR. Nanos3 and buc gene expression was reported in the female gonads and from fertilized eggs until the blastula phase. These results provide information about the PGC migration of P. mangurus and the possible use of PGCs for the future generation of germline chimeras to be applied in the conservation efforts of Neotropical Siluriformes species. This study can contribute to establishing genetic banks, manipulating organisms, and assisting in biotechnologies such as transplanting germ cells in fish.
Collapse
Affiliation(s)
- Gustavo Fonseca Shiguemoto
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Geovanna Carla Zacheo Coelho
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Lucia Suárez López
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Giselle Pessanha Pessoa
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | | | - José Augusto Senhorini
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Paulo Sérgio Monzani
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil.
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil.
| | - George Shigueki Yasui
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| |
Collapse
|
11
|
The Divergent and Conserved Expression Profile of Turtle Nanog Gene Comparing with Fish and Mammals. BIOLOGY 2022; 11:biology11091342. [PMID: 36138820 PMCID: PMC9495436 DOI: 10.3390/biology11091342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Nanog is a homeodomain-containing transcription factor, and it plays a vital role in maintaining the pluripotency of embryonic stem cells. Nanog’s function has been well studied in many species. However, there is lack of reporting on the Nanog gene in reptile. Here, we identified a 1032 bp cDNA sequence of a Nanog gene in Pelidiscus sinensis, known as PsNanog. PsNanog has a highly conserved HD domain and shares a high identity with that of Chelonia mydas and the lowest identity with Oryzias latipes. Similarly, PsNanog presented a tight cluster with C. mydas Nanog, but was far from those of teleosts. Additionally, we cloned a length of 1870 bp PsNanog promoter. Dual luciferase assay showed that the DNA fragment of −1560 to +1 exhibited a high promoter activity. The RT-PCR and RT-qPCR results showed that PsNanog was predominantly expressed in ovary, and then in testis. The in situ hybridization and immunohistochemical analysis showed that PsNanog was expressed in the early primary oocytes and the cytoplasm of the cortical region of stage VIII oocytes in ovary, and distributed in most stages of germ cells in testis. Collectively, the results imply that PsNanog probably has the conserved function in regulating germ cell development across phyla and is also a pluripotent cell gene and expressed in germ cells, which is similar to that in teleosts and mammals.
Collapse
|
12
|
Chen X, Zhu Y, Zhu T, Song P, Guo J, Zhong Y, Gui L, Li M. Vasa identifies germ cells in embryos and gonads of Oryzias celebensis. Gene X 2022; 823:146369. [PMID: 35240256 DOI: 10.1016/j.gene.2022.146369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
Vasa is the most studied germ cell marker that is indispensable for germ cell development in teleost fishes. Here, a vasa full-length cDNA from Oryzias celebensis was isolated. Analysis of gene expression by reversed transcription polymerase chain reaction and in situ hybridization showed the vasa transcript was maternally inherited and specifically expressed in germ cells during embryogenesis and in adult gonads. During embryogenesis, vasa mRNA was widely distributed in the embryos until the somitogenesis stage and then specifically expressed in primordial germ cells (PGCs). In the testis, vasa expression was highest in spermatogonia and gradually decreased during spermatogenesis. In ovary, vasa expression was present predominantly in immature oocytes and persisted throughout oogenesis. Constructs containing green or red fluorescence proteins and vasa 3' UTR or dnd 3' UTR, confirmed stable vasa expression in the PGCs of O. celebensis and co-expression of the two genes. In summary, the conservation of vasa expression in embryonic and adult germ cells of both sexes compared to other vertebrates suggests its function is also widely conserved.
Collapse
Affiliation(s)
- Xiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yefei Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Tianyu Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Peng Song
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ying Zhong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Mingyou Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
13
|
Du S, Zhou L, Wang X, Xu S, Li J, Song Z, Liu Q. Characterization of vasa and dnd homologs in summer flounder, Paralichthys dentatus: Expression analysis and colocalization of PGCs during embryogenesis. Theriogenology 2022; 181:180-189. [PMID: 35121562 DOI: 10.1016/j.theriogenology.2022.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023]
Abstract
Specification of primordial germ cells (PGCs) is particularly important for germline formation. Many maternal-effect genes such as vasa, dnd, and nanos have been identified. However, the research on distribution patterns of PGCs in marine fish is limited. Vasa has been widely used as a germ cell marker to identify its origination in teleosts because vasa RNA is a component of germ plasm. Dnd is known to be an RNA binding protein that protects germline-specific RNAs from degradation. In this study, we isolated full-length vasa and dnd cDNA from summer flounder to track germ cell origination and their expression patterns by RT-PCR and ISH. The results demonstrated that deduced amino acid sequence of Pdvas and Pddnd shared typically conserved motifs of their homologues and demonstrated high identities with other teleosts. Both vasa and dnd transcripts were exclusively detected in germ cells of the gonads. During embryogenesis, vasa and dnd RNA were located at the cleavage furrows of early cleavage stages, and then through proliferation and migration they eventually moved to a location at the predetermined genital ridge. Phylogenetic analysis revealed that summer flounder belongs to the Euteleostei species, but vasa/dnd transcripts localized at the cleavage furrows was similar to that in zebrafish (Osteriophysans). This suggests that germ cells differentiating at early embryogenesis have no direct relation with phylogenesis. At the same time, we found the spatio-temporal expression pattern of dnd was highly consistent with vasa during this process, which indicated the important function of dnd in keeping the target RNA from being degraded to maintain germ cell fate. These results will provide further understanding of germ plasm localization and PGC differentiation in teleosts, and facilitate germ cell manipulation in marine fishes.
Collapse
Affiliation(s)
- Shuran Du
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Zhou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Life Science, Ningde Normal University, Engineering Research Center of Mindong Aquatic Product Deep-Processing,Fujian Province University, Ningde, 352100, China
| | - Xueying Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shihong Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd., Weihai, 264319, China.
| | - Qinghua Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
14
|
Pou5f1 and Nanog Are Reliable Germ Cell-Specific Genes in Gonad of a Protogynous Hermaphroditic Fish, Orange-Spotted Grouper (Epinephelus coioides). Genes (Basel) 2021; 13:genes13010079. [PMID: 35052423 PMCID: PMC8774525 DOI: 10.3390/genes13010079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/12/2021] [Accepted: 12/25/2021] [Indexed: 01/06/2023] Open
Abstract
Pluripotency markers Pou5f1 and Nanog are core transcription factors regulating early embryonic development and maintaining the pluripotency and self-renewal of stem cells. Pou5f1 and Nanog also play important roles in germ cell development and gametogenesis. In this study, Pou5f1 (EcPou5f1) and Nanog (EcNanog) were cloned from orange-spotted grouper, Epinephelus coioides. The full-length cDNAs of EcPou5f1 and EcNanog were 2790 and 1820 bp, and encoded 475 and 432 amino acids, respectively. EcPou5f1 exhibited a specific expression in gonads, whereas EcNanog was expressed highly in gonads and weakly in some somatic tissues. In situ hybridization analyses showed that the mRNA signals of EcNanog and EcPou5f1 were exclusively restricted to germ cells in gonads. Likewise, immunohistofluorescence staining revealed that EcNanog protein was limited to germ cells. Moreover, both EcPou5f1 and EcNanog mRNAs were discovered to be co-localized with Vasa mRNA, a well-known germ cell maker, in male and female germ cells. These results implied that EcPou5f1 and EcNanog could be also regarded as reliable germ cell marker genes. Therefore, the findings of this study would pave the way for elucidating the mechanism whereby EcPou5f1 and EcNanog regulate germ cell development and gametogenesis in grouper fish, and even in other protogynous hermaphroditic species.
Collapse
|
15
|
Ichida K, Jangprai A, Khaosa-Art P, Yoshizaki G, Boonanuntanasarn S. Characterization of a vasa homolog in Mekong giant catfish (Pangasianodon gigas): Potential use as a germ cell marker. Anim Reprod Sci 2021; 234:106869. [PMID: 34656888 DOI: 10.1016/j.anireprosci.2021.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
For the long-term preservation of the genetic resources of endangered fish species, a combination of germ cell cryopreservation and transplantation can be an effective technique. To optimize these techniques, it is important to identify undifferentiated germ cells possessing transplantability, such as primordial germ cells, type A spermatogonia (ASGs), and oogonia. In this study, a homolog of vasa cDNA in Mekong giant catfish (MGC-vasa) (Pangasianodon gigas), which is an endangered species inhabiting the Mekong river, was cloned and characterized for use as a putative germ cell marker. Results indicate that MGC-Vasa contained all of the consensus motifs, including the arginine-glycine and arginine-glycine-glycine motifs, as well as the nine conserved motifs belonging to the DEAD-box family of proteins. Results from phylogenetic analysis indicated MGC-vasa also grouped with Vasa and was clearly distinguishable from Pl10 in other teleosts. Results from analysis of abundance of mRNA transcripts using reverse transcription-polymerase chain reaction and in situ hybridization performed on immature Mekong giant catfish testis indicated vasa was present specifically in germ cells, with large abundances of the relevant mRNA in spermatogonia and spermatocytes. Sequence similarity and the specific localization of MGC-vasa in these germ cells suggest that the sequence ascertained in this study was a vasa homolog in Mekong giant catfish. Furthermore, vasa-positive cells were detected in prepared smears of testicular cells, indicating that it may be a useful germ cell marker for enzymatically dissociated cells used for transplantation studies.
Collapse
Affiliation(s)
- Kensuke Ichida
- Institute for Reproductive Biotechnology for Aquatic Species (IRBAS), Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-ku, Tokyo 108-8477, Japan
| | - Araya Jangprai
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pongsawan Khaosa-Art
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Goro Yoshizaki
- Institute for Reproductive Biotechnology for Aquatic Species (IRBAS), Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-ku, Tokyo 108-8477, Japan; Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-ku, Tokyo 108-8477, Japan
| | - Surintorn Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
16
|
Hansen CL, Chamberlain TJ, Trevena RL, Kurek JE, Pelegri F. Conserved germ plasm characteristics across the Danio and Devario lineages. Genesis 2021; 59:e23452. [PMID: 34617657 DOI: 10.1002/dvg.23452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/06/2022]
Abstract
In many animal species, germ cell specification requires the inheritance of germ plasm, a biomolecular condensate containing maternally derived RNAs and proteins. Most studies of germ plasm composition and function have been performed in widely evolutionarily divergent model organisms, such as Caenorhabditis elegans, Drosophila, Xenopus laevis, and Danio rerio (zebrafish). In zebrafish, 12 RNAs localize to germ plasm at the furrows of the early embryo. Here, we tested for the presence of these RNAs in three additional species within the Danionin clade: Danio kyathit, Danio albolineatus, and Devario aequipinnatus. By visualizing nanos RNA, we find that germ plasm segregation patterns during early embryogenesis are conserved across these species. Ten additional germ plasm RNAs exhibit localization at the furrows of early embryos in all three non-zebrafish Danionin species, consistent with germ plasm localization. One component of zebrafish germ plasm, ca15b, lacked specific localization in embryos of the more distantly related D. aequipinnatus. Our findings show that within a subset of closely related Danionin species, the vast majority of germ plasm RNA components are conserved. At the same time, the lack of ca15b localization in D. aequipinnatus germ plasm highlights the potential for the divergence of germ plasm composition across a restricted phylogenetic space.
Collapse
Affiliation(s)
- Christina L Hansen
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Trevor J Chamberlain
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Ryan L Trevena
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Jacob E Kurek
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
17
|
Hansen CL, Pelegri F. Primordial Germ Cell Specification in Vertebrate Embryos: Phylogenetic Distribution and Conserved Molecular Features of Preformation and Induction. Front Cell Dev Biol 2021; 9:730332. [PMID: 34604230 PMCID: PMC8481613 DOI: 10.3389/fcell.2021.730332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
The differentiation of primordial germ cells (PGCs) occurs during early embryonic development and is critical for the survival and fitness of sexually reproducing species. Here, we review the two main mechanisms of PGC specification, induction, and preformation, in the context of four model vertebrate species: mouse, axolotl, Xenopus frogs, and zebrafish. We additionally discuss some notable molecular characteristics shared across PGC specification pathways, including the shared expression of products from three conserved germline gene families, DAZ (Deleted in Azoospermia) genes, nanos-related genes, and DEAD-box RNA helicases. Then, we summarize the current state of knowledge of the distribution of germ cell determination systems across kingdom Animalia, with particular attention to vertebrate species, but include several categories of invertebrates - ranging from the "proto-vertebrate" cephalochordates to arthropods, cnidarians, and ctenophores. We also briefly highlight ongoing investigations and potential lines of inquiry that aim to understand the evolutionary relationships between these modes of specification.
Collapse
Affiliation(s)
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
18
|
Nakamoto M, Uchino T, Koshimizu E, Kuchiishi Y, Sekiguchi R, Wang L, Sudo R, Endo M, Guiguen Y, Schartl M, Postlethwait JH, Sakamoto T. A Y-linked anti-Müllerian hormone type-II receptor is the sex-determining gene in ayu, Plecoglossus altivelis. PLoS Genet 2021; 17:e1009705. [PMID: 34437539 PMCID: PMC8389408 DOI: 10.1371/journal.pgen.1009705] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
Whole-genome duplication and genome compaction are thought to have played important roles in teleost fish evolution. Ayu (or sweetfish), Plecoglossus altivelis, belongs to the superorder Stomiati, order Osmeriformes. Stomiati is phylogenetically classified as sister taxa of Neoteleostei. Thus, ayu holds an important position in the fish tree of life. Although ayu is economically important for the food industry and recreational fishing in Japan, few genomic resources are available for this species. To address this problem, we produced a draft genome sequence of ayu by whole-genome shotgun sequencing and constructed linkage maps using a genotyping-by-sequencing approach. Syntenic analyses of ayu and other teleost fish provided information about chromosomal rearrangements during the divergence of Stomiati, Protacanthopterygii and Neoteleostei. The size of the ayu genome indicates that genome compaction occurred after the divergence of the family Osmeridae. Ayu has an XX/XY sex-determination system for which we identified sex-associated loci by a genome-wide association study by genotyping-by-sequencing and whole-genome resequencing using wild populations. Genome-wide association mapping using wild ayu populations revealed three sex-linked scaffolds (total, 2.03 Mb). Comparison of whole-genome resequencing mapping coverage between males and females identified male-specific regions in sex-linked scaffolds. A duplicate copy of the anti-Müllerian hormone type-II receptor gene (amhr2bY) was found within these male-specific regions, distinct from the autosomal copy of amhr2. Expression of the Y-linked amhr2 gene was male-specific in sox9b-positive somatic cells surrounding germ cells in undifferentiated gonads, whereas autosomal amhr2 transcripts were detected in somatic cells in sexually undifferentiated gonads of both genetic males and females. Loss-of-function mutation for amhr2bY induced male to female sex reversal. Taken together with the known role of Amh and Amhr2 in sex differentiation, these results indicate that the paralog of amhr2 on the ayu Y chromosome determines genetic sex, and the male-specific amh-amhr2 pathway is critical for testicular differentiation in ayu.
Collapse
Affiliation(s)
- Masatoshi Nakamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Tsubasa Uchino
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Eriko Koshimizu
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
- Department of Human Genetics, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Yudai Kuchiishi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ryota Sekiguchi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Liu Wang
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ryusuke Sudo
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Masato Endo
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | - Manfred Schartl
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, United States of America
| | - John H. Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Takashi Sakamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
19
|
Yoon JH, Cho YS, Lee HB, Park JY, Lim HK. Dead-End ( dnd) Gene Cloning and Gonad-Specific Expression Pattern in Starry Flounder ( Platichthys stellatus). Animals (Basel) 2021; 11:2256. [PMID: 34438719 PMCID: PMC8388513 DOI: 10.3390/ani11082256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
dnd is a germline-specific maternal RNA expressed in various vertebrate classes, which encodes an RNA-binding protein that is essential for PGC migration. The purpose of this study is fundamental research about starry flounder dnd gene for germ cell marker development. In this study, we cloned and analyzed the expression levels of Platichthys stellatus dead end (psdnd) in various tissues and embryonic stages. The psdnd gene was isolated from starry flounder ovaries, cloned into a pGEM-t vector, and sequenced. Full-length of psdnd cDNA was 1495 bp long, encoding 395 amino acids. psdnd expression levels were investigated by real-time polymerase chain reaction (qRT-PCR) in various tissues and embryo developmental stages. psdnd transcripts were detected in the testes and ovaries, but not in somatic tissues. Embryonic psdnd expression levels were higher during early embryo development stages than during late embryogenesis; psdnd expression was highest at the 1 cell stage, then gradually decreased throughout the subsequent developmental stages. The spatial expression pattern was analyzed by whole-mount in situ hybridization (WISH). The psdnd transcripts migration pattern was similar with zebrafish (Danio rerio). Our results suggest that psdnd may function as a germ cell-specific marker.
Collapse
Affiliation(s)
- Ji-Hye Yoon
- Department of Interdisciplinary Program of Biomedicine, Health & Life Convergence Science, Mokpo National University (MNU), Muan 58554, Korea; (J.-H.Y.); (H.-B.L.)
| | - Youn-Su Cho
- Department of Fishery Biology, Pukyong National University (PKNU), Busan 48512, Korea;
| | - Hyo-Bin Lee
- Department of Interdisciplinary Program of Biomedicine, Health & Life Convergence Science, Mokpo National University (MNU), Muan 58554, Korea; (J.-H.Y.); (H.-B.L.)
| | - Jung-Yeol Park
- Department of Marine and Fisheries Resources, Mokpo National University (MNU), Muan 58554, Korea;
| | - Han-Kyu Lim
- Department of Interdisciplinary Program of Biomedicine, Health & Life Convergence Science, Mokpo National University (MNU), Muan 58554, Korea; (J.-H.Y.); (H.-B.L.)
| |
Collapse
|
20
|
Zhao Y, Wei P, Wang D, Han W, Mao H, Wei S, Yan F. Isolation and initial characterization of a vasa homolog in Cynops cyanurus. Gene Expr Patterns 2021; 40:119180. [PMID: 33794349 DOI: 10.1016/j.gep.2021.119180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 11/15/2022]
Abstract
The vasa mRNA encodes a putative RNA helicase that belongs to the DEAD-box protein family. Vasa protein is a conserved germ cell marker ranging from fruit fly to human. In this study, we cloned the full-length vasa cDNA from the ovary of newt Cynops cyanurus and examined its expression in embryos and adult tissues. The predictive C. cyanurus Vasa protein sequence shares eight conserved regions with Vasa proteins from other vertebrates. The C. cyanurus vasa mRNA expression is restricted to testis and ovary. During oogenesis, vasa mRNA shows highest expression in the early stages of oocytes. However, it rapidly down-regulates during embryogenesis. These findings suggest that Vasa may be involved in early germ cell specification/initiation in C. cyanurus.
Collapse
Affiliation(s)
- Yinjiao Zhao
- School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China; State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Pingfan Wei
- Key Laboratory of Conserving Wildlife with Small Populations in Yunnan, Southwest Forestry University, Kunming, Yunnan, 650091, China
| | - Dan Wang
- School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China; State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Wenrui Han
- School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China; State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Hanyu Mao
- School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Shu Wei
- School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China; State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Fang Yan
- School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China; State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.
| |
Collapse
|
21
|
Imarazene B, Beille S, Jouanno E, Branthonne A, Thermes V, Thomas M, Herpin A, Rétaux S, Guiguen Y. Primordial Germ Cell Migration and Histological and Molecular Characterization of Gonadal Differentiation in Pachón Cavefish Astyanax mexicanus. Sex Dev 2021; 14:80-98. [PMID: 33691331 DOI: 10.1159/000513378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/16/2020] [Indexed: 11/19/2022] Open
Abstract
The genetic regulatory network governing vertebrate gonadal differentiation appears less conserved than previously thought. Here, we investigated the gonadal development of Astyanax mexicanus Pachón cavefish by looking at primordial germ cells (PGCs) migration and proliferation, gonad histology, and gene expression patterns. We showed that PGCs are first detected at the 80% epiboly stage and then reach the gonadal primordium at 1 day post-fertilization (dpf). However, in contrast to the generally described absence of PGCs proliferation during their migration phase, PGCs number in cavefish doubles between early neurula and 8-9 somites stages. Combining both gonadal histology and vasa (germ cell marker) expression patterns, we observed that ovarian and testicular differentiation occurs around 65 dpf in females and 90 dpf in males, respectively, with an important inter-individual variability. The expression patterns of dmrt1, gsdf, and amh revealed a conserved predominant male expression during cavefish gonadal development, but none of the ovarian differentiation genes, i. e., foxl2a, cyp19a1a, and wnt4b displayed an early sexually dimorphic expression, and surprisingly all these genes exhibited predominant expression in adult testes. Altogether, our results lay the foundation for further research on sex determination and differentiation in A. mexicanus and contribute to the emerging picture that the vertebrate sex differentiation downstream regulatory network is less conserved than previously thought, at least in teleost fishes.
Collapse
Affiliation(s)
- Boudjema Imarazene
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France.,Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Séverine Beille
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Elodie Jouanno
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Adéle Branthonne
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Violette Thermes
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Manon Thomas
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Amaury Herpin
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Sylvie Rétaux
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Yann Guiguen
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France,
| |
Collapse
|
22
|
Song P, Sun B, Zhu Y, Zhong Y, Guo J, Gui L, Li M. Bucky ball induces primordial germ cell increase in medaka. Gene 2020; 768:145317. [PMID: 33221537 DOI: 10.1016/j.gene.2020.145317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/25/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022]
Abstract
Balbaini body (Bb) plays a vital role in germ plasm (GP) assembly and dorsoventral pattern, which is of critical important in germline specification and development. Bucky ball (buc) is reported to be essential for boosting primordial germ cell (PGC) through Bb in previous research. In the present study, a buc homolog (Olbuc) was identified in medaka (Oryzias latipes), and the roles of Olbuc on PGC development were further elucidated. The full length of Olbuc was 2148 bp, which contains a 1724 bp CDS (Coding sequence), a 167 bp 5' UTR (Untranslated region), and a 257 bp 3' UTR. By RT-PCR, the Olbuc RNA expression was maternally provided during embryogenesis and was restricted in the ovary of adult tissues. By in situ hybridization, Olbuc RNA was abundant in oocyte of meiotic stage, but gradually decreased as the oogenesis proceeded. Surprisingly, Olbuc was not co-localized with dazl, the marker gene of Bb. Interestingly, GFP can be specifically and stably expressed through the induction of Olbuc 3'UTR in PGCs. Furthermore, overexpression of Olbuc mRNA could increase PGC number and generate ectopic PGC in medaka and zebrafish embryos. In summary, our results showed that Olbuc performs a conserved function in PGC development in medaka.
Collapse
Affiliation(s)
- Peng Song
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Bingyan Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yefei Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ying Zhong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Mingyou Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
23
|
Zhou L, Wang X, Du S, Wang Y, Zhao H, Du T, Yu J, Wu L, Song Z, Liu Q, Li J. Germline Specific Expression of a vasa Homologue Gene in the Viviparous Fish Black Rockfish ( Sebastes schlegelii) and Functional Analysis of the vasa 3 ' Untranslated Region. Front Cell Dev Biol 2020; 8:575788. [PMID: 33330452 PMCID: PMC7732447 DOI: 10.3389/fcell.2020.575788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/18/2020] [Indexed: 11/13/2022] Open
Abstract
Germ cells play a key role in gonad development. As precursors, primordial germ cells (PGCs) are particularly important for germline formation. However, the origination and migration patterns of PGCs are poorly studied in marine fish, especially for viviparous economic species. The vasa gene has been widely used as a germ cell marker to identify a germline because vasa RNA is a component of germ plasm. In this study, we described the expression pattern of black rockfish (Sebastes schlegelii) vasa (Ssvas) in gonadal formation and development by in situ hybridization. The results showed that Ssvas failed in localization at the cleavage furrows until the late gastrula stage, when PGCs appeared and migrated to the genital ridge and formed elongated gonadal primordia at 10 days after birth. This study firstly revealed the PGCs origination and migration characteristics in viviparous marine fish. Furthermore, we microinjected chimeric mRNA containing EGFP and the 3′untranslated region (3′UTR) of Ssvas into zebrafish (Danio rerio) and marine medaka (Oryzias melastigma) fertilized eggs for tracing PGCs. We found that, although Sebastes schlegelii lacked early localization, similar to red seabream (Pagrus major) and marine medaka, only the 3′UTR of Ssvas vasa 3′UTR of black rockfish was able to label both zebrafish and marine medaka PGCs. In comparison with other three Euteleostei species, besides some basal motifs, black rockfish had three specific motifs of M10, M12, and M19 just presented in zebrafish, which might play an important role in labeling zebrafish PGCs. These results will promote germ cell manipulation technology development and facilitate artificial reproduction regulation in aquaculture.
Collapse
Affiliation(s)
- Li Zhou
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xueying Wang
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shuran Du
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yanfeng Wang
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Haixia Zhao
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tengfei Du
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiachen Yu
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lele Wu
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co., Ltd., Weihai, China
| | - Qinghua Liu
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
24
|
Zhou L, Xu S, Lin F, Wang X, Wang Y, Wang Y, Yu D, Liu Q, Li J. Both of marine fish species Oryzias melastigma and Pagrus major all failing in early localization at embryo stage by vasa RNA. Gene 2020; 769:145204. [PMID: 33031890 DOI: 10.1016/j.gene.2020.145204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 11/15/2022]
Abstract
Germ cells are essential for gonadal development. As precursors of germ cells, primordial germ cells (PGCs) are particularly important for germline formation. However, the research on distribution patterns of PGCs in marine fish is very limited, especially for economic species. The vasa gene has been widely used as marker to identify PGCs origination and migration because of vasa RNA is a component of germ plasm. In this study, we isolated full-length vasa cDNA (Omvas and Pmvas) from marine medaka (Oryzias melastigma) and red seabream (Pagrus major), detected vasa transcripts in different tissues by RT-PCR and described vasa expression patterns during embryogenesis and gametogenesis by in situ hybridization. At the same time, we also explored the relationship between early distribution of germ plasm components and species evolution. The results demonstrated that deduced amino acid sequence of Omvas and Pmvas shared several conserved motifs of Vasa homologues and high identity with other teleost, and vasa transcripts were exclusively detected in early germ cells of gonad. During embryogenesis, vasa RNA of both fishes, like medaka (Oryzias latipes), failed to localize at cleavage furrows and distributed uniformly throughout each blastomere. This study firstly discovered that the marine economic fish, red seabream, lost vasa RNA early specific localization at cleavage furrows and distinctive distribution in germ cells. In addition, compared with other teleost, we found that early distribution of germ plasm might not relate to species evolution. This will improve our understanding of vasa localization modes in teleost, and facilitate fish germ cell manipulation.
Collapse
Affiliation(s)
- Li Zhou
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihong Xu
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fan Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xueying Wang
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yunong Wang
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfeng Wang
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Daode Yu
- Marine Biology Institute of Shandong Province, Qingdao 266104, China
| | - Qinghua Liu
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jun Li
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
25
|
Li Y, Liu Y, Yang H, Zhang T, Naruse K, Tu Q. Dynamic transcriptional and chromatin accessibility landscape of medaka embryogenesis. Genome Res 2020; 30:924-937. [PMID: 32591361 PMCID: PMC7370878 DOI: 10.1101/gr.258871.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
Abstract
Medaka (Oryzias latipes) has become an important vertebrate model widely used in genetics, developmental biology, environmental sciences, and many other fields. A high-quality genome sequence and a variety of genetic tools are available for this model organism. However, existing genome annotation is still rudimentary, as it was mainly based on computational prediction and short-read RNA-seq data. Here we report a dynamic transcriptome landscape of medaka embryogenesis profiled by long-read RNA-seq, short-read RNA-seq, and ATAC-seq. By integrating these data sets, we constructed a much-improved gene model set including about 17,000 novel isoforms and identified 1600 transcription factors, 1100 long noncoding RNAs, and 150,000 potential cis-regulatory elements as well. Time-series data sets provided another dimension of information. With the expression dynamics of genes and accessibility dynamics of cis-regulatory elements, we investigated isoform switching, as well as regulatory logic between accessible elements and genes, during embryogenesis. We built a user-friendly medaka omics data portal to present these data sets. This resource provides the first comprehensive omics data sets of medaka embryogenesis. Ultimately, we term these three assays as the minimum ENCODE toolbox and propose the use of it as the initial and essential profiling genomic assays for model organisms that have limited data available. This work will be of great value for the research community using medaka as the model organism and many others as well.
Collapse
Affiliation(s)
- Yingshu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjie Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Aichi, Japan
| | - Qiang Tu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Molecular approaches underlying the oogenic cycle of the scleractinian coral, Acropora tenuis. Sci Rep 2020; 10:9914. [PMID: 32555307 PMCID: PMC7303178 DOI: 10.1038/s41598-020-66020-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/13/2020] [Indexed: 11/18/2022] Open
Abstract
This study aimed to elucidate the physiological processes of oogenesis in Acropora tenuis. Genes/proteins related to oogenesis were investigated: Vasa, a germ cell marker, vitellogenin (VG), a major yolk protein precursor, and its receptor (LDLR). Coral branches were collected monthly from coral reefs around Sesoko Island (Okinawa, Japan) for histological observation by in situ hybridisation (ISH) of the Vasa (AtVasa) and Low Density Lipoprotein Receptor (AtLDLR) genes and immunohistochemistry (IHC) of AtVasa and AtVG. AtVasa immunoreactivity was detected in germline cells and ooplasm, whereas AtVG immunoreactivity was detected in ooplasm and putative ovarian tissues. AtVasa was localised in germline cells located in the retractor muscles of the mesentery, whereas AtLDLR was localised in the putative ovarian and mesentery tissues. AtLDLR was detected in coral tissues during the vitellogenic phase, whereas AtVG immunoreactivity was found in primary oocytes. Germline cells expressing AtVasa are present throughout the year. In conclusion, Vasa has physiological and molecular roles throughout the oogenic cycle, as it determines gonadal germline cells and ensures normal oocyte development, whereas the roles of VG and LDLR are limited to the vitellogenic stages because they act in coordination with lipoprotein transport, vitellogenin synthesis, and yolk incorporation into oocytes.
Collapse
|
27
|
Wang X, Bhandari RK. The dynamics of DNA methylation during epigenetic reprogramming of primordial germ cells in medaka ( Oryzias latipes). Epigenetics 2020; 15:483-498. [PMID: 31851575 PMCID: PMC7188396 DOI: 10.1080/15592294.2019.1695341] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 11/22/2022] Open
Abstract
Primordial germ cells (PGCs) are precursors of eggs and sperm. How the PGCs epigenetically reprogram during early embryonic development in fish is currently unknown. Here we generated a series of PGC methylomes using whole genome bisulfite sequencing across key stages from 8 days post fertilization (dpf) to 25 dpf coinciding with germ cell sex determination and gonadal sex differentiation in medaka (Oryzias latipes) to elucidate the dynamics of DNA methylation during epigenetic reprogramming in germ cells. Our high-resolution DNA methylome maps show a global demethylation taking place in medaka PGCs in a two-step strategy. The first step occurs between the blastula and 8-dpf stages, and the second step occurs between the 10-dpf and 12-dpf stages. Both demethylation processes are global, except for CGI promoters which remain hypomethylated throughout the stage of PGC specification. De novo methylation proceeded at 25-dpf stage with the process in male germ cells superseding female germ cells. Gene expression analysis showed that tet2 maintains high levels of expression during the demethylation stage, while dnmt3ba expression increases during the de novo methylation stage during sexual fate determination in germ cells. The present results suggest that medaka PGCs undergo a bi-phasic epigenetic reprogramming process. Global erasure of DNA methylation marks peaks at 15-dpf and de novo methylation in male germ cells takes precedence over female germ cells at 25 dpf. Results also provide important insights into the developmental window of susceptibility to environmental stressors for multi- and trans-generational health outcomes in fish.
Collapse
Affiliation(s)
- Xuegeng Wang
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Ramji Kumar Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| |
Collapse
|
28
|
Identification and characterization of germ cell genes vasa and dazl in a protogynous hermaphrodite fish, orange-spotted grouper (Epinephelus coioides). Gene Expr Patterns 2020; 35:119095. [DOI: 10.1016/j.gep.2020.119095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/18/2020] [Accepted: 01/25/2020] [Indexed: 12/21/2022]
|
29
|
Zhou L, Wang X, Liu Q, Xu S, Zhao H, Han M, Wang Y, Song Z, Li J. Visualization of Turbot (Scophthalmus maximus) Primordial Germ Cells in vivo Using Fluorescent Protein Mediated by the 3' Untranslated Region of nanos3 or vasa Gene. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:671-682. [PMID: 31502176 DOI: 10.1007/s10126-019-09911-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Primordial germ cells (PGCs) as the precursors of germ cells are responsible for transmitting genetic information to the next generation. Visualization of teleost PGCs in vivo is essential to research the origination and development of germ cells and facilitate further manipulation on PGCs isolation, cryopreservation, and surrogate breeding. In this study, artificially synthesized mRNAs constructed by fusing fluorescent protein coding region to the 3' untranslated region (3'UTR) of nanos3 or vasa (mCherry-Smnanos3 3'UTR or mCherry-Smvasa 3'UTR mRNA) were injected into turbot (Scophthalmus maximus) fertilized eggs for tracing PGCs. The results demonstrated that the fluorescent PGCs differentiated from somatic cells and aligned on both sides of the trunk at the early segmentation period, then migrated and located at the dorsal part of the gut where the gonad would form. In the same way, we also found that the zebrafish (Danio rerio) vasa 3'UTR could trace turbot PGCs, while the vasa 3'UTR s of marine medaka (Oryzias melastigma) and red seabream (Pagrus major) failed, although they could label the marine medaka PGCs. In addition, through comparative analysis, we discovered that some potential sequence elements in the3 'UTRs of nanos3 and vasa, such as GCACs, 62-bp U-rich regions and nucleotide 187-218 regions might be involved in PGCs stabilization. The results of this study provided an efficient, rapid, and specific non-transgenic approach for visualizing PGCs of economical marine fish in vivo.
Collapse
Affiliation(s)
- Li Zhou
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueying Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
| | - Qinghua Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, P. R. China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China.
| | - Shihong Xu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
| | - Haixia Zhao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingming Han
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
| | - Yunong Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd., Weihai, 264200, China
| | - Jun Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, P. R. China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China.
| |
Collapse
|
30
|
Yang GC, Wang RR, Liu ZQ, Ma KY, Feng JB, Qiu GF. Alternative splice variants and differential relative abundance patterns of vasa mRNAs during gonadal development in the Chinese mitten crab Eriocheir sinensis. Anim Reprod Sci 2019; 208:106131. [PMID: 31405476 DOI: 10.1016/j.anireprosci.2019.106131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/19/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022]
Abstract
Gonadal development usually involves alternative splicing of sex-related genes. Vasa, a highly conserved ATP-dependent RNA helicase present mainly in germ cells, has an important function in gonadal development. As an important sex-related gene, recent evidence indicates that different splice variants of vasa exist in many species. In this study, there was identification of two types of vasa splice variants in the Chinese mitten crab Eriocheir sinensis, termed Esvasa-l and Esvasa-s, respectively. Furthermore, splice variants of Esvasa-s were sub-divided into Esvasa-s1, Esvasa-s2, Esvasa-s3, Esvasa-s4, and Esvasa-s5, based on differing numbers of TGG repeats. Results from genomic structure analyses indicated that these forms are alternatively spliced transcripts from a single vasa gene. Results from tissue distribution assessments indicate the vasa splice variants were exclusively expressed in the gonads of male and female adult crabs. In situ hybridization results indicate Esvasa mRNA was mainly present in the cytoplasm of previtellogenic oocytes. As oocyte size increased, relative abundance of Esvasa mRNA decreased and became distributed near the cellular membrane. The Esvasa mRNA was not detectable in mature oocytes. In testis, Esvasa mRNA was detected in spermatids and spermatozoa, but not in spermatogonia and spermatocytes. Notably, results from qPCR analysis of Esvasa-l and Esvasa-s indicate there are different relative proportions during gametogenesis, implying that splice variants of the Esvasa gene may have different biological functions during crab gonadal development.
Collapse
Affiliation(s)
- Guo-Cui Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, 201306 Shanghai, People's Republic of China
| | - Rui-Rui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, 201306 Shanghai, People's Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, 201306 Shanghai, People's Republic of China; Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 200082 Shanghai, People's Republic of China
| | - Ke-Yi Ma
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, 201306 Shanghai, People's Republic of China
| | - Jian-Bin Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, 201306 Shanghai, People's Republic of China
| | - Gao-Feng Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, 201306 Shanghai, People's Republic of China.
| |
Collapse
|
31
|
A state-of-the-art review of surrogate propagation in fish. Theriogenology 2019; 133:216-227. [DOI: 10.1016/j.theriogenology.2019.03.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 03/30/2019] [Indexed: 12/20/2022]
|
32
|
Duangkaew R, Jangprai A, Ichida K, Yoshizaki G, Boonanuntanasarn S. Characterization and expression of a vasa homolog in the gonads and primordial germ cells of the striped catfish (Pangasianodon hypophthalmus). Theriogenology 2019; 131:61-71. [DOI: 10.1016/j.theriogenology.2019.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/19/2019] [Accepted: 01/27/2019] [Indexed: 10/27/2022]
|
33
|
Li Y, Song W, Zhu YF, Zhu TY, Ma LB, Li MY. Evolutionarily conserved vasa identifies embryonic and gonadal germ cells in spinyhead croaker Collichthys lucidus. JOURNAL OF FISH BIOLOGY 2019; 94:772-780. [PMID: 30873617 DOI: 10.1111/jfb.13964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
In this study, a 2198 bp full-length cDNA of spinyhead croaker Collichthys lucidus vasa gene encoding 616 amino-acid residues was obtained. Multiple alignment revealed that C. lucidus vasa has eight conserved characteristic motifs of the DEAD box protein family and has the highest identity to large yellow croaker Larimichthys croceas. Reverse-transcription (RT)-PCR and Western blot analyses indicated that the vasa messenger (m)RNA and Vasa protein are specifically expressed in the gonads in both sexes. In situ hybridisation (ISH) demonstrated that vasa RNA is exclusively detected in the germ cells in C. lucidus gonads and its temporospatial expression reveals a dynamic pattern during oogenesis. Surprisingly, C. lucidus vasa 3'UTR can direct stable and specific GFP expression in the primordial germ cells (PGC) of medaka Oryzias latipes embryos. Taken together, these results suggest that because C. lucidus vasa expression delineates critical stages of oogenesis, it may be a useful molecular marker for the identification of gonadal germ cells, facilitating the isolation and utilization of germ cells in future study.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education Shanghai Ocean University, Shanghai, China
| | - Wei Song
- Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Yei Fei Zhu
- Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education Shanghai Ocean University, Shanghai, China
| | - Tian Yu Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education Shanghai Ocean University, Shanghai, China
| | - Ling Bo Ma
- Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Ming You Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education Shanghai Ocean University, Shanghai, China
| |
Collapse
|
34
|
Wang X, Bhandari RK. DNA methylation dynamics during epigenetic reprogramming of medaka embryo. Epigenetics 2019; 14:611-622. [PMID: 31010368 DOI: 10.1080/15592294.2019.1605816] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Post-fertilization epigenome reprogramming erases epigenetic marks transmitted through gametes and establishes new marks during mid-blastula stages. The mouse embryo undergoes dynamic DNA methylation reprogramming after fertilization, while in zebrafish, the paternal DNA methylation pattern is maintained throughout the early embryogenesis and the maternal genome is reprogrammed in a pattern similar to that of sperm during the mid-blastula transition. Here, we show DNA methylation dynamics in medaka embryos, the biomedical model fish, during epigenetic reprogramming of embryonic genome. The sperm genome was hypermethylated and the oocyte genome hypomethylated prior to fertilization. After fertilization, the methylation marks of sperm genome were erased within the first cell cycle and embryonic genome remained hypomethylated from the zygote until 16-cell stage. The DNA methylation level gradually increased from 16-cell stage through the gastrula. The 5-hydroxymethylation (5hmC) levels showed an opposite pattern to DNA methylation (5-mC). The mRNA levels for DNA methyltransferase (DNMT) 1 remained high in oocytes and maintained the same level through late blastula stage and was reduced thereafter. DNMT3BB.1 mRNA levels increased prior to remethylation. The mRNA levels for ten-eleven translocation methylcytosine dioxygenases (TET2 & TET3) were detected in sperm and embryos at cleavage stages, whereas TET1 and TET3 mRNAs decreased during gastrulation. The pattern of genome methylation in medaka was identical to mammalian genome methylation but not to zebrafish. The present study suggests that a medaka embryo resets its DNA methylation pattern by active demethylation and by a gradual remethylation similar to mammals.
Collapse
Affiliation(s)
- Xuegeng Wang
- a Department of Biology , University of North Carolina Greensboro , Greensboro , NC , USA
| | - Ramji Kumar Bhandari
- a Department of Biology , University of North Carolina Greensboro , Greensboro , NC , USA
| |
Collapse
|
35
|
Jin Y, Davie A, Migaud H. Expression pattern of nanos, piwil, dnd, vasa and pum genes during ontogenic development in Nile tilapia Oreochromis niloticus. Gene 2019; 688:62-70. [DOI: 10.1016/j.gene.2018.11.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/07/2018] [Accepted: 11/22/2018] [Indexed: 11/16/2022]
|
36
|
Zhang R, Wu K, Ke X, Zhang X, Xu G, Shen H, Nibona E, Al Hafiz A, Liang X, Wang Z, Qi C, Zhou Q, Zhong X, Zhao H. Bcl6aa and bcl6ab are ubiquitously expressed and are inducible by lipopolysaccharide and polyI:C in adult tissues of medaka Oryzias latipes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:17-25. [PMID: 30680935 DOI: 10.1002/jez.b.22843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/17/2019] [Indexed: 11/10/2022]
Abstract
B-cell lymphoma-6 (Bcl6) is a transcriptional repressor that plays important roles in various physiological activities such as innate and adaptive immune response, lymphocyte differentiation, and cell cycle regulation in mammals. Two homologs of Bcl6a, namely Bcl6aa and Bcl6ab, are identified in teleost fish including medaka Oryzias latipes. The expression profiles of bcl6aa and bcl6ab in medaka were studied using reverse-transcription polymerase chain reaction and in situ hybridization. The transcripts of bcl6aa and bcl6ab were detected from very early embryos such as the four-cell stage until hatching. Bcl6aa and bcl6ab were clearly detected in the embryonic body from 5 days postfertilization onward by in situ hybridization. Bcl6aa was specifically expressed in the retina, whereas bcl6ab was expressed in entire embryonic body. The results referred to that both bcl6aa and bcl6ab originate maternally in the zygotes and may play major roles in embryogenesis of medaka. The transcripts of bcl6aa and bcl6ab were detected in all examined adult tissues, including immune organs such as the gill, spleen, kidney, liver, and intestine. The expression of bcl6aa and bcl6ab in the liver, spleen, head-kidney, and intestine could be upregulated or downregulated by lipopolysaccharide and polyriboinosinic-polyribocytidylic acid. These results indicate that both bcl6aa and bcl6ab may be involved in immune response in medaka.
Collapse
Affiliation(s)
- Runshuai Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Kongyue Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xiaomei Ke
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xueyan Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Gongyu Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Hao Shen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Emile Nibona
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Abdullah Al Hafiz
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xiaoting Liang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zequn Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Chao Qi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Qingchun Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xueping Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Haobin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
37
|
Vasconcelos ACN, Streit DP, Octavera A, Miwa M, Kabeya N, Freitas Garcia RR, Rotili DA, Yoshizaki G. Isolation and characterization of a germ cell marker in teleost fish Colossoma macropomum. Gene 2019; 683:54-60. [DOI: 10.1016/j.gene.2018.10.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/24/2018] [Accepted: 10/11/2018] [Indexed: 10/28/2022]
|
38
|
de Siqueira-Silva DH, Saito T, Dos Santos-Silva AP, da Silva Costa R, Psenicka M, Yasui GS. Biotechnology applied to fish reproduction: tools for conservation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1469-1485. [PMID: 29707740 DOI: 10.1007/s10695-018-0506-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
This review discusses the new biotechnological tools that are arising and promising for conservation and enhancement of fish production, mainly regarding the endangered and the most economically important species. Two main techniques, in particular, are available to avoid extinction of endangered fish species and to improve the production of commercial species. Germ cell transplantation technology includes a number of approaches that have been studied, such as the transplantation of embryo-to-embryo blastomere, embryo-to-embryo differentiated PGC, larvae to larvae and embryo differentiated PGC, transplantation of spermatogonia from adult to larvae or between adults, and oogonia transplantation. However, the success of germ cell transplantation relies on the prior sterilization of fish, which can be performed at different stages of fish species development by means of several protocols that have been tested in order to achieve the best approach to produce a sterile fish. Among them, fish hybridization and triploidization, germline gene knockdown, hyperthermia, and chemical treatment deserve attention based on important results achieved thus far. This review currently used technologies and knowledge about surrogate technology and fish sterilization, discussing the stronger and the weaker points of each approach.
Collapse
Affiliation(s)
- Diógenes Henrique de Siqueira-Silva
- UNIFESSPA - Federal University of South and Southeast of Para - Institute for Health and Biological Studies - IESB, Faculty of Biology - FACBIO, Laboratory of Neuroscience and Behavior, Marabá, Para, Brazil.
| | - Taiju Saito
- Nishiura Station, South Ehime Fisheries Research Center, Ehime University, Uchidomari, Ainan, Japan
| | | | - Raphael da Silva Costa
- PPG in Animal Biology, UNESP - Paulista State University, São José do Rio Preto, São Paulo, Brazil
| | - Martin Psenicka
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - George Shigueki Yasui
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| |
Collapse
|
39
|
Expression of the alternative splicing variants of bcl6b in medaka Oryzias latipes. Comp Biochem Physiol B Biochem Mol Biol 2018; 227:83-89. [PMID: 30292753 DOI: 10.1016/j.cbpb.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 01/01/2023]
Abstract
Bcl6B, also known as BAZF, plays important roles in the immune response, repression of cancers, and maintenance of spermatogonial stem cells in mammals. In this study, the homologous gene bcl6b and its 5 alternative splicing variants, namely bcl6bX1 to bcl6bX5, were isolated from medaka fish, Oryzias latipes. Medaka bcl6b possesses conserved domains such as BTB domain, RD2 domain and four zinc fingers. Medaka bcl6bX1 to bcl6bX3 possess all three previously mentioned domains with minor differences in sequences. Medaka bcl6bX4 possesses only the BTB domain due to premature stopping, and bcl6bX5 possesses both the BTB domain and zinc fingers without the RD2 domain. Medaka bcl6b was expressed in the tissues including the brain, heart, gill, muscle, spleen, kidney, intestine, ovary and testes of adult fish. Medaka bcl6b was expressed in the embryos from very early stage, and could be detected clearly in the developing eyes by RT-PCR and in situ hybridization. Medaka bcl6b could respond to the stimuli of polyI:C and LPS in the kidney and spleen. Medaka bcl6bX1 to bcl6bX3 were the majority of the variants expressed in the adult tissues and the embryos, and were the major response to the stimulation of polyI:C and LPS in the spleen. These results suggested that bcl6b, including its isoforms, could function in various tissues and embryogenesis. Moreover, bcl6b might be a factor for immune response in medaka.
Collapse
|
40
|
Zhu T, Gui L, Zhu Y, Li Y, Li M. Dnd is required for primordial germ cell specification in Oryzias celebensis. Gene 2018; 679:36-43. [PMID: 30171940 DOI: 10.1016/j.gene.2018.08.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 11/15/2022]
Abstract
Dead end (dnd) is a germ plasm component that plays an essential role for primordial germ cell (PGC) development in vertebrates. Previously, we have found that dnd is the first fish PGC specifier in medaka. Here, we present an additional evidence that dnd is the determinant for PGC specification in Oryzias celebensis. In adult tissues, the O. celebensis dnd (Ocdnd) RNA shows germ cells specific expression in gonads. In the testis, Ocdnd RNA is strongly detected in spermatogonia and meiotic cells and gradually decreases during the spermatogenesis. In the ovary, Ocdnd RNA is present throughout oogenesis. In the embryos, Ocdnd RNA is maternally provided and asymmetrically localized to prominent particles of presumptive PGCs before gastrulation stage and restricted to PGCs subsequently. In addition, Ocdnd 3' UTR can induce specific and stabilized GFP reporter expression in PGCs. Furthermore, knockdown of Ocdnd by morpholino (MO) injection abolishes the PGCs formation and this can be rescued by co-injection of medaka dnd (Oldnd) mRNA. More importantly, overexpression of Oldnd mRNA surprisingly boosts PGCs number. These results provide insights into function of dnd as a conserved specifier of PGCs in the genus Oryzias.
Collapse
Affiliation(s)
- Tianyu Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education Shanghai Ocean University, Shanghai, 201306, China
| | - Lang Gui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education Shanghai Ocean University, Shanghai, 201306, China
| | - Yefei Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education Shanghai Ocean University, Shanghai, 201306, China
| | - Yu Li
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Mingyou Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
41
|
Escuredo-Vielba R, Del Río-Portilla MA, Mata-Sotres JA, Barón-Sevilla B, Guerrero-Rentería Y, Paniagua-Chávez CG. Characterization and localization of primordial germ cells in Totoaba macdonaldi. Comp Biochem Physiol B Biochem Mol Biol 2018; 225:29-37. [PMID: 30003958 DOI: 10.1016/j.cbpb.2018.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
Abstract
The totoaba, Totoaba macdonaldi, is an endangered fish of the Gulf of California with high economic and ecological potential. Therefore, our purpose was to characterize the Primordial Germ Cells (PGCs) of this Sciaenid with two objectives: (1) to provide the basis for PGCs cryopreservation to preserve the genetic resources and (2) to take the first step to know the gonadal genesis and sex differentiation of totoaba. Immunofluorescence analysis performed from 2-cell stage to 8-day after hatch (DAH) shows that Vasa protein is specific for PGCs. These cells were first observed in the peripheral and dorsal regions of the blastodisc at approximately the 50%-epiboly stage and migrated to both sides of embryo body during the development. Finally, at 7 DAH the PGCs of the hatching embryo reached the place where the gonad will be developed. Histology analysis of larvae showed a genital ridge with enclosed PGCs on the dorsal side of the peritoneum at 9 DAH, gonadal primordium growth was observed at 11 DAH as a result of the interaction between PGCs and somatic cells derived from the peritoneum. Results of qPCR showed that vasa expression was restricted to the embryonic and early larval development, highest values were observed in 2-cell and mid-blastula stage suggesting the maternal inheritance of vasa mRNA. These findings support the hypothesis of preformation in T. macdonaldi PGCs. The migration pattern of PGCs allow us to recommend the isolation and subsequent cryopreservation of these cells before 7 DAH when the embryonic and larval development is given at 21 °C.
Collapse
Affiliation(s)
- Raquel Escuredo-Vielba
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Departamento de Acuicultura, Ensenada, Baja California 22860, Mexico
| | - Miguel A Del Río-Portilla
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Departamento de Acuicultura, Ensenada, Baja California 22860, Mexico
| | - Jose Antonio Mata-Sotres
- CONACYT - Nutrición y Fisiología Digestiva, Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California (UABC), Baja California 22860, Mexico
| | - Benjamín Barón-Sevilla
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Departamento de Acuicultura, Ensenada, Baja California 22860, Mexico
| | - Yanet Guerrero-Rentería
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Departamento de Acuicultura, Ensenada, Baja California 22860, Mexico
| | - Carmen G Paniagua-Chávez
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Departamento de Acuicultura, Ensenada, Baja California 22860, Mexico.
| |
Collapse
|
42
|
Wu XL, Tang ZK, Li W, Chu ZJ, Hong XY, Zhu XP, Xu HY. Identifying the germ cells during embryogenesis and gametogenesis by germ-line gene vasa in an anadromous fish, American shad Alosa sapidissima. JOURNAL OF FISH BIOLOGY 2018; 92:1422-1434. [PMID: 29573270 DOI: 10.1111/jfb.13595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
American shad Alosa sapidissima, an anadromous clupeid, exhibits variation in reproductive strategies, including semelparity and iteroparity. It provides an excellent model for studying the behaviour of germ cells in anadromous fish during their migration from sea to river. The vasa gene was characterized in A. sapidissima as a germ-cell marker to elaborate the process of germ-cell development and differentiation in anadromous species. A complementary (c)DNA fragment of 819 bp, partial open reading frame (ORF), was cloned by degenerate PCR and named as ASvas. In adult A. sapidissima, vasa transcript was exclusively detected in gonads by reverse-transcription (RT)-PCR. Through chromogenic in situ hybridization, the vasa messenger (m)RNA was specifically detected in primordial germ cells (PGC) in embryos and germ cells at early stages in ovary and testis. Besides, the cellular distribution profile of Vasa protein also proved that vasa gene could be used as a germ-line marker to trace the PGCs migration during embryogenesis and the germ-cell differentiation during gametogenesis in A. sapidissima. During embryogenesis, the migrating PGCs were clearly detected at tail-bud stage and the PGCs reached the genital ridge at the stage of pre-hatching stage in A. sapidissima embryos. During gametogenesis, the Vasa protein was dynamically expressed in differentiating germ cells at different stages in adult gonads. As far as we know, this is the first report to demonstrate the PGCs migration and germ-cell differentiation through vasa gene expression in the anadromous species. The findings will pave a way for investigating germ-cell development and maturation in the A. sapidissima and other anadromous fish.
Collapse
Affiliation(s)
- X L Wu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Z K Tang
- School of Fishery, Zhejiang Ocean University, Zhoushan, 316022, China
| | - W Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Z J Chu
- School of Fishery, Zhejiang Ocean University, Zhoushan, 316022, China
| | - X Y Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - X P Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - H Y Xu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| |
Collapse
|
43
|
Nakamoto M, Shibata Y, Ohno K, Usami T, Kamei Y, Taniguchi Y, Todo T, Sakamoto T, Young G, Swanson P, Naruse K, Nagahama Y. Ovarian aromatase loss-of-function mutant medaka undergo ovary degeneration and partial female-to-male sex reversal after puberty. Mol Cell Endocrinol 2018; 460:104-122. [PMID: 28711606 DOI: 10.1016/j.mce.2017.07.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
Abstract
Although estrogens have been generally considered to play a critical role in ovarian differentiation in non-mammalian vertebrates, the specific functions of estrogens during ovarian differentiation remain unclear. We isolated two mutants with premature stops in the ovarian aromatase (cyp19a1) gene from an N-ethyl-N-nitrosourea-based gene-driven mutagenesis library of the medaka, Oryzias latipes. In XX mutants, gonads first differentiated into normal ovaries containing many ovarian follicles that failed to accumulate yolk. Subsequently, ovarian tissues underwent extensive degeneration, followed by the appearance of testicular tissues on the dorsal side of ovaries. In the newly formed testicular tissue, strong expression of gsdf was detected in sox9a2-positive somatic cells surrounding germline stem cells suggesting that gsdf plays an important role in testicular differentiation during estrogen-depleted female-to-male sex reversal. We conclude that endogenous estrogens synthesized after fertilization are not essential for early ovarian differentiation but are critical for the maintenance of adult ovaries.
Collapse
Affiliation(s)
- Masatoshi Nakamoto
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 108-8777, Japan
| | - Yasushi Shibata
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195-5020, USA
| | - Kaoru Ohno
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Takeshi Usami
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Yoshihito Taniguchi
- Department of Public Health and Preventive Medicine, Kyorin University, School of Medicine, Tokyo 181-8611, Japan
| | - Takeshi Todo
- Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takashi Sakamoto
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 108-8777, Japan
| | - Graham Young
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195-5020, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164-7521, USA
| | - Penny Swanson
- Center for Reproductive Biology, Washington State University, Pullman, WA 99164-7521, USA; Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112-2097, USA
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan.
| | - Yoshitaka Nagahama
- Institution for Collaborative Relations, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
44
|
He S, Zhu L, Liu F, Liu Q, Shao Y, Hua M, Ding H, Shao W, Du Y, Hou X, Ren C, Liu M, Shen J. Functions of the Vasa gene in Schistosoma japonicum as assessed by RNA interference. Gene 2017; 638:13-19. [PMID: 28964895 DOI: 10.1016/j.gene.2017.09.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 11/28/2022]
Abstract
Vasa, an enzyme belonging to the helicase family, contributes to the regulation of reproductive system development in many species. Thus, we hypothesized that the Vasa3 gene may function in the reproductive system of the parasite Schistosoma japonicum (S. japonicum), which is a major causative agent of schistosomiasis. It is a severe disease globally affecting humans and animals. To test this hypothesis, we firstly conducted whole mount in situ hybridization analyses and found that the S. japonicum Vasa3 (SjVasa3) gene was expressed mainly in the reproductive organs. We then explored the reproductive functions of Vasa3 in S. japonicum using RNA interference (RNAi) techniques. Coupled schistosomes collected from mice 28days post infection (dpi) were transfected three times with SjVasa3-specific small interfering RNA (siRNA) and cultured in vitro for up to 10days. As measured by quantitative PCR (qPCR) and Western blot analysis, levels of SjVasa3 mRNA and protein in Vasa siRNA treated worms were significantly reduced compared with untreated and scrambled siRNA treated worms. Confocal laser scanning microscopy (CLSM) images showed markedly siRNA induced changes in the morphology of the reproductive organs, especially in the female ovary, vitellarium and the male testes. SjVasa3 gene silencing also significantly reduced egg production. These data demonstrate that SjVasa3 is essential in reproductive organ development and egg production in S. japonicum, and could be a potential target for developing novel compounds to treat schistosomiasis.
Collapse
Affiliation(s)
- Siyu He
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Lulu Zhu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Fengchun Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Quan Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Yanjing Shao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Mengqing Hua
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Han Ding
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Wei Shao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Yinan Du
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Xin Hou
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Cuiping Ren
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Miao Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China.
| | - Jijia Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China.
| |
Collapse
|
45
|
Sun ZH, Zhou L, Li Z, Liu XC, Li SS, Wang Y, Gui JF. Sexual dimorphic expression of dnd in germ cells during sex reversal and its requirement for primordial germ cell survival in protogynous hermaphroditic grouper. Comp Biochem Physiol B Biochem Mol Biol 2017; 208-209:47-57. [DOI: 10.1016/j.cbpb.2017.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/25/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
|
46
|
Tian C, Tan S, Bao L, Zeng Q, Liu S, Yang Y, Zhong X, Liu Z. DExD/H-box RNA helicase genes are differentially expressed between males and females during the critical period of male sex differentiation in channel catfish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 22:109-119. [DOI: 10.1016/j.cbd.2017.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 01/19/2023]
|
47
|
Black carp vasa identifies embryonic and gonadal germ cells. Dev Genes Evol 2017; 227:231-243. [DOI: 10.1007/s00427-017-0583-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/09/2017] [Indexed: 11/26/2022]
|
48
|
Yang YJ, Wang Y, Li Z, Zhou L, Gui JF. Sequential, Divergent, and Cooperative Requirements of Foxl2a and Foxl2b in Ovary Development and Maintenance of Zebrafish. Genetics 2017; 205:1551-1572. [PMID: 28193729 PMCID: PMC5378113 DOI: 10.1534/genetics.116.199133] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/09/2017] [Indexed: 12/11/2022] Open
Abstract
Foxl2 is essential for mammalian ovary maintenance. Although sexually dimorphic expression of foxl2 was observed in many teleosts, its role and regulative mechanism in fish remained largely unclear. In this study, we first identified two transcript variants of foxl2a and its homologous gene foxl2b in zebrafish, and revealed their specific expression in follicular layer cells in a sequential and divergent fashion during ovary differentiation, maturation, and maintenance. Then, homozygous foxl2a mutants (foxl2a-/-) and foxl2b mutants (foxl2b-/-) were constructed and detailed comparisons, such as sex ratio, gonadal histological structure, transcriptome profiling, and dynamic expression of gonadal development-related genes, were carried out. Initial ovarian differentiation and oocyte development occur normally both in foxl2a-/- and foxl2b-/- mutants, but foxl2a and foxl2b disruptions result in premature ovarian failure and partial sex reversal, respectively, in adult females. In foxl2a-/- female mutants, sox9a-amh/cyp19a1a signaling was upregulated at 150 days postfertilization (dpf) and subsequently oocyte apoptosis was triggered after 180 dpf. In contrast, dmrt1 expression was greater at 105 dpf and increased several 100-fold in foxl2b-/- mutated ovaries at 270 dpf, along with other testis-related genes. Finally, homozygous foxl2a-/-/foxl2b-/- double mutants were constructed in which complete sex reversal occurs early and testis-differentiation genes robustly increase at 60 dpf. Given mutual compensation between foxl2a and foxl2b in foxl2b-/- and foxl2a-/- mutants, we proposed a model in which foxl2a and foxl2b cooperate to regulate zebrafish ovary development and maintenance, with foxl2b potentially having a dominant role in preventing the ovary from differentiating as testis, as compared to foxl2a.
Collapse
Affiliation(s)
- Yan-Jing Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
49
|
Sasado T, Kondoh H, Furutani-Seiki M, Naruse K. Mutation in cpsf6/CFIm68 (Cleavage and Polyadenylation Specificity Factor Subunit 6) causes short 3'UTRs and disturbs gene expression in developing embryos, as revealed by an analysis of primordial germ cell migration using the medaka mutant naruto. PLoS One 2017; 12:e0172467. [PMID: 28253363 PMCID: PMC5333813 DOI: 10.1371/journal.pone.0172467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/06/2017] [Indexed: 02/02/2023] Open
Abstract
Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC) migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar) is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68). CPSF6 is a component of the Cleavage Factor Im complex (CFIm) which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3'UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3'UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3'UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo.
Collapse
Affiliation(s)
- Takao Sasado
- Laboratory of Bioresources, National Institute for Basic Biology, Aichi, Japan
| | - Hisato Kondoh
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Aichi, Japan
| |
Collapse
|
50
|
Boonanuntanasarn S, Bunlipatanon P, Ichida K, Yoohat K, Mengyu O, Detsathit S, Yazawa R, Yoshizaki G. Characterization of a vasa homolog in the brown-marbled grouper (Epinephelus fuscoguttatus) and its expression in gonad and germ cells during larval development. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1621-1636. [PMID: 27406385 DOI: 10.1007/s10695-016-0245-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
The vasa gene is specifically expressed in the germ cell lineage, and its expression has been used to study germline development in many organisms, including fishes. In this study, we cloned and characterized vasa as Efu-vasa in the brown-marbled grouper (Epinephelus fuscoguttatus). Efu-vasa contained predicted regions that shared consensus motifs with the vasa family in teleosts, including arginine- and glycine-rich repeats, ATPase motifs, and a DEAD box. Phylogenetic-tree construction using various DEAD-box proteins confirmed that Efu-vasa was clustered in the vasa family. Efu-vasa mRNA was detectable only in gonads, by reverse transcription polymerase chain reaction. Primordial germ cells (PGCs) during early gonad development in larvae were characterized by histological examination and in situ hybridization using an Efu-vasa antisense probe. Migrating PGCs were found in larvae at 9-21 days post-hatching, and rapid proliferation of PGCs was initiated in 36 days post-hatching. These findings provide a valuable basis for optimizing the developmental stages for germ cell transplantation in order to produce surrogate broodstock, which may help in the production of larvae of large and endangered grouper species.
Collapse
Affiliation(s)
- Surintorn Boonanuntanasarn
- School of Animal Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, 30000, Thailand.
| | - Paiboon Bunlipatanon
- Krabi Coastal Fisheries Research and Development Center, 141 Moo 6, Saithai, Muang, Krabi, 81000, Thailand
| | - Kensuke Ichida
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477, Japan
| | - Kirana Yoohat
- School of Animal Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Ornkanya Mengyu
- Krabi Coastal Fisheries Research and Development Center, 141 Moo 6, Saithai, Muang, Krabi, 81000, Thailand
| | - Samart Detsathit
- Krabi Coastal Fisheries Research and Development Center, 141 Moo 6, Saithai, Muang, Krabi, 81000, Thailand
| | - Ryosuke Yazawa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477, Japan
| |
Collapse
|