1
|
Huang W, Quach TD, Dascalu C, Liu Z, Leung T, Byrne-Steele M, Pan W, Yang Q, Han J, Lesser M, Rothstein TL, Furie R, Mackay M, Aranow C, Davidson A. Belimumab promotes negative selection of activated autoreactive B cells in systemic lupus erythematosus patients. JCI Insight 2018; 3:122525. [PMID: 30185675 DOI: 10.1172/jci.insight.122525] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Belimumab has therapeutic benefit in active systemic lupus erythematosus (SLE), especially in patients with high-titer anti-dsDNA antibodies. We asked whether the profound B cell loss in belimumab-treated SLE patients is accompanied by shifts in the immunoglobulin repertoire. We enrolled 15 patients who had been continuously treated with belimumab for more than 7 years, 17 matched controls, and 5 patients who were studied before and after drug initiation. VH genes of sort-purified mature B cells and plasmablasts were subjected to next-generation sequencing. We found that B cell-activating factor (BAFF) regulates the transitional B cell checkpoint, with conservation of transitional 1 (T1) cells and approximately 90% loss of T3 and naive B cells after chronic belimumab treatment. Class-switched memory B cells, B1 B cells, and plasmablasts were also substantially depleted. Next-generation sequencing revealed no redistribution of VH, DH, or JH family usage and no effect of belimumab on representation of the autoreactive VH4-34 gene or CDR3 composition in unmutated IgM sequences, suggesting a minimal effect on selection of the naive B cell repertoire. Interestingly, a significantly greater loss of VH4-34 was observed among mutated IgM and plasmablast sequences in chronic belimumab-treated subjects than in controls, suggesting that belimumab promotes negative selection of activated autoreactive B cells.
Collapse
Affiliation(s)
- Weiqing Huang
- Center for Autoimmunity and Musculoskeletal and Hematologic Diseases, and
| | - Tam D Quach
- Center for Autoimmunity and Musculoskeletal and Hematologic Diseases, and
| | - Cosmin Dascalu
- Center for Autoimmunity and Musculoskeletal and Hematologic Diseases, and
| | - Zheng Liu
- Center for Autoimmunity and Musculoskeletal and Hematologic Diseases, and
| | - Tungming Leung
- Biostatistics Unit, Feinstein Institute for Medical Research, Manhasset, New York, New York, USA
| | | | - Wenjing Pan
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Qunying Yang
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Jian Han
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Martin Lesser
- Biostatistics Unit, Feinstein Institute for Medical Research, Manhasset, New York, New York, USA
| | - Thomas L Rothstein
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan, USA
| | - Richard Furie
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Great Neck, New York, USA
| | - Meggan Mackay
- Center for Autoimmunity and Musculoskeletal and Hematologic Diseases, and.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Great Neck, New York, USA
| | - Cynthia Aranow
- Center for Autoimmunity and Musculoskeletal and Hematologic Diseases, and.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Great Neck, New York, USA
| | - Anne Davidson
- Center for Autoimmunity and Musculoskeletal and Hematologic Diseases, and.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Great Neck, New York, USA
| |
Collapse
|
2
|
Abstract
CD30 and CD40 are members of the tumor necrosis factor (TNF) receptor family. These two receptors have pleiotropic biologic functions including induction of apoptosis and enhancing cell survival. This review will discuss the pattern of expression of these receptors in malignant lymphoid disorders and their prospective ligands. Understanding issues related to these two ligands and their receptors in lymphoid malignancies may help to improve the classification of these diseases and could open the doors for new treatment strategies.
Collapse
Affiliation(s)
- A Younes
- Department of Lymphoma, U.T.M.D. Anderson Cancer Center, Houston, USA
| | | |
Collapse
|
3
|
Aviszus K, Macleod MKL, Kirchenbaum GA, Detanico TO, Heiser RA, St Clair JB, Guo W, Wysocki LJ. Antigen-specific suppression of humoral immunity by anergic Ars/A1 B cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:4275-83. [PMID: 23008448 DOI: 10.4049/jimmunol.1201818] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Autoreactive anergic B lymphocytes are considered to be dangerous because of their potential for activation and recruitment into autoimmune responses. However, they persist for days and constitute ∼5% of the B cell pool. We assessed their functional potential in the Ars/A1 transgene model, where anergic B cells express a dual-reactive Ag receptor that binds, in addition to a self-Ag, the hapten p-azophenylarsonate (Ars). When Ars/A1 B cells were transferred into adoptive recipients that were immunized with foreign proteins covalently conjugated with Ars, endogenous IgG immune responses to both were selectively and severely diminished, and the development of T helper cells was impaired. Approximately 95% inhibition of the anti-Ars response was attained with ∼4000 transferred Ars/A1 B cells through redundant mechanisms, one of which depended on their expression of MHC class II but not upon secretion of IL-10 or IgM. This Ag-specific suppressive activity implicates the autoreactive anergic B cell as an enforcer of immunological tolerance to self-Ags.
Collapse
Affiliation(s)
- Katja Aviszus
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO 80206, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Chang KC, Unsinger J, Davis CG, Schwulst SJ, Muenzer JT, Strasser A, Hotchkiss RS. Multiple triggers of cell death in sepsis: death receptor and mitochondrial‐mediated apoptosis. FASEB J 2007; 21:708-19. [PMID: 17307841 DOI: 10.1096/fj.06-6805com] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lymphocyte apoptosis plays a central role in the pathophysiology of sepsis. Lymphocyte apoptosis was examined in mice with defective death receptor pathways due to transgenic expression of a dominant negative mutant of Fas-associated death domain (FADD-DN) or Bid-/- and in mice with defective mitochondrial-mediated pathways due to loss of Bim-/-, Puma-/-, or Noxa-/-. FADD-DN transgenic and Bid-/- mice had significant albeit incomplete protection, and this protection was associated with increased survival. Surprisingly, splenic B cells were also protected in FADD-DN mice although transgene expression was confined to T cells, providing evidence for an indirect protective mechanism. Bim-/- provided virtually complete protection against lymphocyte apoptosis whereas Puma-/- and Noxa-/- mice had modest or no protection, respectively. Bim-/- mice had improved survival, and adoptive transfer of splenocytes from Bim-/- mice into Rag 1-/- mice demonstrated that this was a lymphocyte intrinsic effect. The improved survival was associated with decreased interleukin (IL) -10 and IL-6 cytokines. Collectively, these data indicate that numerous death stimuli are generated during sepsis, and it therefore appears unlikely that blocking a single "trigger" can inhibit apoptosis. If siRNA becomes practical therapeutically, proapoptotic proteins would be potential targets.
Collapse
Affiliation(s)
- Katherine C Chang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Kuzmin AI, Galenko O, Eisensmith RC. An immunomodulatory procedure that stabilizes transgene expression and permits readministration of E1-deleted adenovirus vectors. Mol Ther 2001; 3:293-301. [PMID: 11273770 DOI: 10.1006/mthe.2000.0258] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Immune responses against E1-deleted adenovirus vectors and/or their transgene products result in the rapid elimination of vector-transduced cells and the generation of neutralizing antibodies. Different strategies of immunomodulation to stabilize transgene expression at therapeutic levels and to permit productive vector readministration have been examined. Our previous studies have shown that depletion of macrophages from spleen and liver decreases hepatic inflammation, significantly prolongs transgene expression, and delays the onset of humoral immune responses after systemic administration of an E1-deleted adenovirus vector. In the present study, we have examined the effects of macrophage depletion in combination with temporary blockade of CD40 ligation on E1-deleted adenovirus vector-mediated gene transfer. Alone, each of these treatments significantly inhibited the humoral immune response against the transgene product and prolonged its expression. Together, these treatments completely stabilized transgene expression and inhibited the production of neutralizing anti-adenovirus antibodies, permitting successful vector readministration. Animals rendered immunologically unresponsive to vector and transgene antigens regained their ability to mount productive immune responses against the vector after recovery of immune function, but remained unresponsive to the transgene product. These experiments demonstrate that this treatment is transient and antigen-specific.
Collapse
Affiliation(s)
- A I Kuzmin
- Institute for Gene Therapy and Molecular Medicine, Mt. Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
6
|
Melamed D, Miri E, Leider N, Nemazee D. Unexpected autoantibody production in membrane Ig-mu-deficient/lpr mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4353-8. [PMID: 11035071 DOI: 10.4049/jimmunol.165.8.4353] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the B lymphocyte lineage, Fas-mediated cell death is important in controlling activated mature cells, but little is known about possible functions at earlier developmental stages. In this study we found that in mice lacking the IgM transmembrane tail exons (muMT mice), in which B cell development is blocked at the pro-B stage, the absence of Fas or Fas ligand allows significant B cell development and maturation, resulting in high serum Ig levels. These B cells demonstrate Ig heavy chain isotype switching and autoimmune reactivity, suggesting that lack of functional Fas allows maturation of defective and/or self-reactive B cells in muMT/lpr mice. Possible mechanisms that may allow maturation of these B cells are discussed.
Collapse
Affiliation(s)
- D Melamed
- Faculty of Medicine, Department of Immunology, Technion, Haifa, Israel. Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|