1
|
Dall'Olio F, Malagolini N. Immunoglobulin G Glycosylation Changes in Aging and Other Inflammatory Conditions. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:303-340. [PMID: 34687015 DOI: 10.1007/978-3-030-76912-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Among the multiple roles played by protein glycosylation, the fine regulation of biological interactions is one of the most important. The asparagine 297 (Asn297) of IgG heavy chains is decorated by a diantennary glycan bearing a number of galactose and sialic acid residues on the branches ranging from 0 to 2. In addition, the structure can present core-linked fucose and/or a bisecting GlcNAc. In many inflammatory and autoimmune conditions, as well as in metabolic, cardiovascular, infectious, and neoplastic diseases, the IgG Asn297-linked glycan becomes less sialylated and less galactosylated, leading to increased expression of glycans terminating with GlcNAc. These conditions alter also the presence of core-fucose and bisecting GlcNAc. Importantly, similar glycomic alterations are observed in aging. The common condition, shared by the above-mentioned pathological conditions and aging, is a low-grade, chronic, asymptomatic inflammatory state which, in the case of aging, is known as inflammaging. Glycomic alterations associated with inflammatory diseases often precede disease onset and follow remission. The aberrantly glycosylated IgG glycans associated with inflammation and aging can sustain inflammation through different mechanisms, fueling a vicious loop. These include complement activation, Fcγ receptor binding, binding to lectin receptors on antigen-presenting cells, and autoantibody reactivity. The complex molecular bases of the glycomic changes associated with inflammation and aging are still poorly understood.
Collapse
Affiliation(s)
- Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Autoantibodies as Diagnostic Markers and Mediator of Joint Inflammation in Arthritis. Mediators Inflamm 2019; 2019:6363086. [PMID: 31772505 PMCID: PMC6854956 DOI: 10.1155/2019/6363086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis is a systemic, polygenic, and multifactorial syndrome characterized by erosive polyarthritis, damage to joint architecture, and presence of autoantibodies against several self-structures in the serum and synovial fluid. These autoantibodies (anticitrullinated protein/peptide antibodies (ACPAs), rheumatoid factors (RF), anticollagen type II antibodies, antiglucose-6 phosphate isomerase antibodies, anticarbamylated protein antibodies, and antiacetylated protein antibodies) have different characteristics, diagnostic/prognostic value, and pathological significance in RA patients. Some of these antibodies are present in the patients' serum several years before the onset of clinical disease. Various genetic and environmental factors are associated with autoantibody production against different autoantigenic targets. Both the activating and inhibitory FcγRs and the activation of different complement cascades contribute to the downstream effector functions in the antibody-mediated disease pathology. Interplay between several molecules (cytokines, chemokines, proteases, and inflammatory mediators) culminates in causing damage to the articular cartilage and bones. In addition, autoantibodies are proven to be useful disease markers for RA, and different diagnostic tools are being developed for early diagnosis of the clinical disease. Recently, a direct link was proposed between the presence of autoantibodies and bone erosion as well as in the induction of pain. In this review, the diagnostic value of autoantibodies, their synthesis and function as a mediator of joint inflammation, and the significance of IgG-Fc glycosylation are discussed.
Collapse
|
3
|
Abstract
Glycosylation is one of the most frequent post-translational modification of proteins. Many membrane and secreted proteins are decorated by sugar chains mainly linked to asparagine (N-linked) or to serine or threonine (O-linked). The biosynthesis of the sugar chains is mainly controlled by the activity of their biosynthetic enzymes: the glycosyltransferases. Glycosylation plays multiple roles, including the fine regulation of the biological activity of glycoproteins. Inflammaging is a chronic low grade inflammatory status associated with aging, probably caused by the continuous exposure of the immune system to inflammatory stimuli of endogenous and exogenous origin. The aging-associated glycosylation changes often resemble those observed in inflammatory conditions. One of the most reproducible markers of calendar and biological aging is the presence of N-glycans lacking terminal galactose residues linked to Asn297 of IgG heavy chains (IgG-G0). Although the mechanism(s) generating IgG-G0 remain unclear, their presence in a variety of inflammatory conditions suggests a link with inflammaging. In addition, these aberrantly glycosylated IgG can exert a pro-inflammatory effect through different mechanisms, triggering a self-fueling inflammatory loop. A strong association with aging has been documented also for the plasmatic forms of glycosyltrasferases B4GALT1 and ST6GAL1, although their role in the extracellular glycosylation of antibodies does not appear likely. Siglecs, are a group of sialic acid binding mammalian lectins which mainly act as inhibitory receptors on the surface of immune cells. In general activity of Siglecs appears to be associated with long life, probably because of their ability to restrain aging-associated inflammation.
Collapse
Affiliation(s)
- Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| |
Collapse
|
4
|
Brockhausen I, Anastassiades TP. Inflammation and arthritis: perspectives of the glycobiologist. Expert Rev Clin Immunol 2014; 4:173-91. [DOI: 10.1586/1744666x.4.2.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Ito K, Furukawa JI, Yamada K, Tran NL, Shinohara Y, Izui S. Lack of galactosylation enhances the pathogenic activity of IgG1 but Not IgG2a anti-erythrocyte autoantibodies. THE JOURNAL OF IMMUNOLOGY 2013; 192:581-8. [PMID: 24337750 DOI: 10.4049/jimmunol.1302488] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
IgG bears asparagine-linked oligosaccharide side chains in the Fc region. Variations in their extent of galactosylation and sialylation could modulate IgG Fc-dependent effector functions, and hence Ab activity. However, it has not yet been clarified whether the pathogenic potential of IgG autoantibodies is consistently enhanced by the absence of galactose residues per se or the lack of terminal sialylation, which is dependent on galactosylation. Moreover, it remains to be defined whether the increased pathogenicity of agalactosylated IgG is related to activation of the complement pathway by mannose-binding lectin, as suggested by in vitro studies. Using a murine model of autoimmune hemolytic anemia, we defined the contribution of galactosylation or sialylation to the pathogenic activity of IgG1 and IgG2a anti-erythrocyte class-switch variants of 34-3C monoclonal autoantibody. We generated their degalactosylated or highly sialylated glycovariants and compared their pathogenic effects with those of highly galactosylated or desialylated counterparts. Our results demonstrated that lack of galactosylation, but not sialylation, enhanced the pathogenic activity of 34-3C IgG1, but not IgG2a autoantibodies. Moreover, analysis of in vivo complement activation and of the pathogenic activity in mice deficient in C3 or IgG FcRs excluded the implication of mannose-binding lectin-mediated complement activation in the enhanced pathogenic effect of agalactosylated IgG1 anti-erythrocyte autoantibodies.
Collapse
Affiliation(s)
- Kiyoaki Ito
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
6
|
Dall’Olio F, Vanhooren V, Chen CC, Slagboom PE, Wuhrer M, Franceschi C. N-glycomic biomarkers of biological aging and longevity: a link with inflammaging. Ageing Res Rev 2013; 12:685-98. [PMID: 22353383 DOI: 10.1016/j.arr.2012.02.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/24/2012] [Accepted: 02/06/2012] [Indexed: 01/31/2023]
Abstract
Glycosylation is a frequent co/post-translational modification of proteins which modulates a variety of biological functions. The analysis of N-glycome, i.e. the sugar chains N-linked to asparagine, identified new candidate biomarkers of aging such as N-glycans devoid of galactose residues on their branches, in a variety of human and experimental model systems, such as healthy old people, centenarians and their offspring and caloric restricted mice. These agalactosylated biantennary structures mainly decorate Asn297 of Fc portion of IgG (IgG-G0), and are present also in patients affected by progeroid syndromes and a variety of autoimmune/inflammatory diseases. IgG-G0 exert a pro-inflammatory effect through different mechanisms, including the lectin pathway of complement, binding to Fcγ receptors and formation of autoantibody aggregates. The age-related accumulation of IgG-G0 can contribute to inflammaging, the low-grade pro-inflammatory status that characterizes elderly, by creating a vicious loop in which inflammation is responsible for the production of aberrantly glycosylated IgG which, in turn, would activate the immune system, exacerbating inflammation. Moreover, recent data suggest that the N-glycomic shift observed in aging could be related not only to inflammation but also to alteration of important metabolic pathways. Thus, altered N-glycans are both powerful markers of aging and possible contributors to its pathogenesis.
Collapse
|
7
|
Böhm S, Schwab I, Lux A, Nimmerjahn F. The role of sialic acid as a modulator of the anti-inflammatory activity of IgG. Semin Immunopathol 2012; 34:443-53. [PMID: 22437760 DOI: 10.1007/s00281-012-0308-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 03/05/2012] [Indexed: 12/24/2022]
Abstract
Immunoglobulin G (IgG) molecules can have two completely opposing activities. They can be very potent pro-inflammatory mediators on the one hand, directing the effector functions of the innate immune system towards infected cells, tumor cells or healthy tissues in the case of autoimmune diseases. On the other hand, a mixture of IgG molecules purified from the blood of ten thousands of healthy donors is used as an anti-inflammatory treatment for many autoimmune diseases since several decades. It has become evident only recently that certain residues in the sugar moiety attached to the IgG constant fragment can dramatically alter the pro- and anti-inflammatory activities of IgG. This review will focus on sialic acid residues as a modulator of the anti-inflammatory activity and provide an overview of situations where serum IgG glycosylation and sialylation is altered and which molecular and cellular pathways may be involved in this immunomodulatory pathway.
Collapse
Affiliation(s)
- Sybille Böhm
- Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | |
Collapse
|
8
|
Lux A, Nimmerjahn F. Impact of Differential Glycosylation on IgG Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 780:113-24. [DOI: 10.1007/978-1-4419-5632-3_10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Nandakumar KS, Collin M, Olsén A, Nimmerjahn F, Blom AM, Ravetch JV, Holmdahl R. Endoglycosidase treatment abrogates IgG arthritogenicity: Importance of IgG glycosylation in arthritis. Eur J Immunol 2007; 37:2973-82. [PMID: 17899548 DOI: 10.1002/eji.200737581] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The glycosylation status of IgG has been implicated in the pathology of rheumatoid arthritis. Earlier, we reported the identification of a novel secreted endo-beta-N-acetylglucosaminidase (EndoS), secreted by Streptococcus pyogenes that specifically hydrolyzes the beta-1,4-di-N-acetylchitobiose core of the asparagine-linked glycan of human IgG. Here, we analyzed the arthritogenicity of EndoS-treated collagen type II (CII)-specific mouse mAb in vivo. Endoglycosidase treatment of the antibodies inhibited the induction of arthritis in (BALB/c x B10.Q) F1 mice and induced a milder arthritis in B10.RIII mice as compared with the severe arthritis induced by non-treated antibodies. Furthermore, EndoS treatment did not affect the binding of IgG to CII and their ability to activate complement, but it resulted in reduced IgG binding to FcgammaR and disturbed the formation of stable immune complexes. Hence, the asparagine-linked glycan on IgG plays a crucial role in the development of arthritis.
Collapse
|
10
|
Kuroda Y, Shikata K, Takeuchi F, Akazawa T, Kojima N, Nakata M, Mizuochi T, Goto M. Structural alterations in outer arms of IgG oligosaccharides in patients with Werner syndrome. Exp Gerontol 2007; 42:545-53. [PMID: 17306488 DOI: 10.1016/j.exger.2007.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 12/30/2006] [Accepted: 01/09/2007] [Indexed: 11/21/2022]
Abstract
Werner syndrome (WS) is a heredofamilial disorder characterized by clinicopathological premature aging. In healthy individuals, structural alteration of serum IgG oligosaccharides is known to be an aging phenotype. In the present study, we determined and compared oligosaccharide structures of serum IgG among WS patients, healthy age-sex-matched individuals, and healthy elderly individuals from both sexes in order to reveal whether WS patients exhibit an aging phenotype in terms of IgG oligosaccharide structure. Sialylation and galactosylation levels of IgG oligosaccharides from WS patients were similar to those from healthy elderly individuals in which sialylation and galactosylation levels were significantly lower than those from the healthy age-sex-matched individuals. In contrast, the bisecting N-acetylglucosaminylation level of IgG oligosaccharides from WS patients was comparable to that from the healthy age-sex-matched controls and significantly lower than that of the healthy elderly controls. There was no significant sexual difference in these modifications of IgG oligosaccharides. These results suggest that WS patients exhibit an aging phenotype for structural alterations such as sialylation and galactosylation in the outer arms of IgG oligosaccharides.
Collapse
Affiliation(s)
- Yasuhiro Kuroda
- Institute of Glycotechnology, Tokai University, Hiratsuka, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Alavi A, Pool AJ, Axford JS. New Insights into Rheumatoid Arthritis Associated Glycosylation Changes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 564:129-38. [PMID: 16400819 DOI: 10.1007/0-387-25515-x_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Azita Alavi
- Biochemistry and Immunology, Academic Unit for Musculoskeletal Disease, St Georges Hospital Med School, Cranmer Terrace, London SW17 0RE, UK
| | | | | |
Collapse
|
12
|
Kuroda Y, Nakata M, Makino A, Matsumoto A, Ohashi K, Itahashi K, Takeuchi F, Goto M, Kojima N, Mizuochi T. Structural studies on IgG oligosaccharides of patients with primary Sjögren's syndrome. Glycoconj J 2002; 19:23-31. [PMID: 12652077 DOI: 10.1023/a:1022528829799] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sjögren's syndrome (SS) is an autoimmune disease, and some patients have been found to have SS complicated with rheumatoid arthritis (RA), in which IgG is known to carry abnormal N-linked oligosaccharides. In order to investigate the relationship between SS and RA, the structures of N-linked oligosaccharides of IgG from 12 primary SS patients without RA, 9 RA patients, and 8 healthy individuals were analyzed using reversed-phase high-performance liquid chromatography, in combination with sequential exoglycosidase treatment and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. All of the IgG samples obtained from primary SS patients, RA patients, and healthy individuals contained the same series of biantennary complex-type oligosaccharides, but the ratio of each oligosaccharide differed among these 3 groups. The incidence of galactose-lacking N-linked oligosaccharides obtained from the IgG of RA patients was significantly higher than that from healthy individuals, but that from the serum IgG of primary SS patients varied among individuals. The patients with primary SS were classified into two groups based on the galactosylation levels of IgG oligosaccharides; one group exhibits galactosylation levels as low as those of RA patients and another exhibits levels similar to those of healthy individuals. Measurement of levels of rheumatoid factor (RF) revealed that primary SS patients with a high incidence of RF belonged to the low galactosylation group, as did RA patients. These results suggest that appearance of IgG carrying abnormal N-linked oligosaccharides in primary SS may be related to future complication with RA.
Collapse
Affiliation(s)
- Yasuhiro Kuroda
- Department of Applied Biochemistry, Institute of Glycotechnology, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|