1
|
Swygart D, Yu WQ, Takeuchi S, Wong ROL, Schwartz GW. A presynaptic source drives differing levels of surround suppression in two mouse retinal ganglion cell types. Nat Commun 2024; 15:599. [PMID: 38238324 PMCID: PMC10796971 DOI: 10.1038/s41467-024-44851-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
In early sensory systems, cell-type diversity generally increases from the periphery into the brain, resulting in a greater heterogeneity of responses to the same stimuli. Surround suppression is a canonical visual computation that begins within the retina and is found at varying levels across retinal ganglion cell types. Our results show that heterogeneity in the level of surround suppression occurs subcellularly at bipolar cell synapses. Using single-cell electrophysiology and serial block-face scanning electron microscopy, we show that two retinal ganglion cell types exhibit very different levels of surround suppression even though they receive input from the same bipolar cell types. This divergence of the bipolar cell signal occurs through synapse-specific regulation by amacrine cells at the scale of tens of microns. These findings indicate that each synapse of a single bipolar cell can carry a unique visual signal, expanding the number of possible functional channels at the earliest stages of visual processing.
Collapse
Affiliation(s)
- David Swygart
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Shunsuke Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Gregory W Schwartz
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA.
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Wisner SR, Saha A, Grimes WN, Mizerska K, Kolarik HJ, Wallin J, Diamond JS, Sinha R, Hoon M. Sensory deprivation arrests cellular and synaptic development of the night-vision circuitry in the retina. Curr Biol 2023; 33:4415-4429.e3. [PMID: 37769662 PMCID: PMC10615854 DOI: 10.1016/j.cub.2023.08.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Experience regulates synapse formation and function across sensory circuits. How inhibitory synapses in the mammalian retina are sculpted by visual cues remains unclear. By use of a sensory deprivation paradigm, we find that visual cues regulate maturation of two GABA synapse types (GABAA and GABAC receptor synapses), localized across the axon terminals of rod bipolar cells (RBCs)-second-order retinal neurons integral to the night-vision circuit. Lack of visual cues causes GABAA synapses at RBC terminals to retain an immature receptor configuration with slower response profiles and prevents receptor recruitment at GABAC synapses. Additionally, the organizing protein for both these GABA synapses, LRRTM4, is not clustered at dark-reared RBC synapses. Ultrastructurally, the total number of ribbon-output/inhibitory-input synapses across RBC terminals remains unaltered by sensory deprivation, although ribbon synapse output sites are misarranged when the circuit develops without visual cues. Intrinsic electrophysiological properties of RBCs and expression of chloride transporters across RBC terminals are additionally altered by sensory deprivation. Introduction to normal 12-h light-dark housing conditions facilitates maturation of dark-reared RBC GABA synapses and restoration of intrinsic RBC properties, unveiling a new element of light-dependent retinal cellular and synaptic plasticity.
Collapse
Affiliation(s)
- Serena R Wisner
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Aindrila Saha
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA; Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - William N Grimes
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kamila Mizerska
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah J Kolarik
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Julie Wallin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raunak Sinha
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mrinalini Hoon
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
3
|
Sinha R, Grimes WN, Wallin J, Ebbinghaus BN, Luu K, Cherry T, Rieke F, Rudolph U, Wong RO, Hoon M. Transient expression of a GABA receptor subunit during early development is critical for inhibitory synapse maturation and function. Curr Biol 2021; 31:4314-4326.e5. [PMID: 34433078 DOI: 10.1016/j.cub.2021.07.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/29/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Developing neural circuits, including GABAergic circuits, switch receptor types. But the role of early GABA receptor expression for establishment of functional inhibitory circuits remains unclear. Tracking the development of GABAergic synapses across axon terminals of retinal bipolar cells (BCs), we uncovered a crucial role of early GABAA receptor expression for the formation and function of presynaptic inhibitory synapses. Specifically, early α3-subunit-containing GABAA (GABAAα3) receptors are a key developmental organizer. Before eye opening, GABAAα3 gives way to GABAAα1 at individual BC presynaptic inhibitory synapses. The developmental downregulation of GABAAα3 is independent of GABAAα1 expression. Importantly, lack of early GABAAα3 impairs clustering of GABAAα1 and formation of functional GABAA synapses across mature BC terminals. This impacts the sensitivity of visual responses transmitted through the circuit. Lack of early GABAAα3 also perturbs aggregation of LRRTM4, the organizing protein at GABAergic synapses of rod BC terminals, and their arrangement of output ribbon synapses.
Collapse
Affiliation(s)
- Raunak Sinha
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA; National Institute of Neurological Disease and Stroke, NIH, Bethesda, MD, USA
| | - Julie Wallin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Briana N Ebbinghaus
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Kelsey Luu
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Timothy Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington-Seattle and the Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Mrinalini Hoon
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Hirano AA, Vuong HE, Kornmann HL, Schietroma C, Stella SL, Barnes S, Brecha NC. Vesicular Release of GABA by Mammalian Horizontal Cells Mediates Inhibitory Output to Photoreceptors. Front Cell Neurosci 2020; 14:600777. [PMID: 33335476 PMCID: PMC7735995 DOI: 10.3389/fncel.2020.600777] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Feedback inhibition by horizontal cells regulates rod and cone photoreceptor calcium channels that control their release of the neurotransmitter glutamate. This inhibition contributes to synaptic gain control and the formation of the center-surround antagonistic receptive fields passed on to all downstream neurons, which is important for contrast sensitivity and color opponency in vision. In contrast to the plasmalemmal GABA transporter found in non-mammalian horizontal cells, there is evidence that the mechanism by which mammalian horizontal cells inhibit photoreceptors involves the vesicular release of the inhibitory neurotransmitter GABA. Historically, inconsistent findings of GABA and its biosynthetic enzyme, L-glutamate decarboxylase (GAD) in horizontal cells, and the apparent lack of surround response block by GABAergic agents diminished support for GABA's role in feedback inhibition. However, the immunolocalization of the vesicular GABA transporter (VGAT) in the dendritic and axonal endings of horizontal cells that innervate photoreceptor terminals suggested GABA was released via vesicular exocytosis. To test the idea that GABA is released from vesicles, we localized GABA and GAD, multiple SNARE complex proteins, synaptic vesicle proteins, and Cav channels that mediate exocytosis to horizontal cell dendritic tips and axonal terminals. To address the perceived relative paucity of synaptic vesicles in horizontal cell endings, we used conical electron tomography on mouse and guinea pig retinas that revealed small, clear-core vesicles, along with a few clathrin-coated vesicles and endosomes in horizontal cell processes within photoreceptor terminals. Some small-diameter vesicles were adjacent to the plasma membrane and plasma membrane specializations. To assess vesicular release, a functional assay involving incubation of retinal slices in luminal VGAT-C antibodies demonstrated vesicles fused with the membrane in a depolarization- and calcium-dependent manner, and these labeled vesicles can fuse multiple times. Finally, targeted elimination of VGAT in horizontal cells resulted in a loss of tonic, autaptic GABA currents, and of inhibitory feedback modulation of the cone photoreceptor Cai, consistent with the elimination of GABA release from horizontal cell endings. These results in mammalian retina identify the central role of vesicular release of GABA from horizontal cells in the feedback inhibition of photoreceptors.
Collapse
Affiliation(s)
- Arlene A. Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Helen E. Vuong
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Helen L. Kornmann
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cataldo Schietroma
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Salvatore L. Stella
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven Barnes
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicholas C. Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
LRRTM4: A Novel Regulator of Presynaptic Inhibition and Ribbon Synapse Arrangements of Retinal Bipolar Cells. Neuron 2020; 105:1007-1017.e5. [PMID: 31974009 DOI: 10.1016/j.neuron.2019.12.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/17/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
Abstract
LRRTM4 is a transsynaptic adhesion protein regulating glutamatergic synapse assembly on dendrites of central neurons. In the mouse retina, we find that LRRTM4 is enriched at GABAergic synapses on axon terminals of rod bipolar cells (RBCs). Knockout of LRRTM4 reduces RBC axonal GABAA and GABAC receptor clustering and disrupts presynaptic inhibition onto RBC terminals. LRRTM4 removal also perturbs the stereotyped output synapse arrangement at RBC terminals. Synaptic ribbons are normally apposed to two distinct postsynaptic "dyad" partners, but in the absence of LRRTM4, "monad" and "triad" arrangements are also formed. RBCs from retinas deficient in GABA release also demonstrate dyad mis-arrangements but maintain LRRTM4 expression, suggesting that defects in dyad organization in the LRRTM4 knockout could originate from reduced GABA receptor function. LRRTM4 is thus a key synapse organizing molecule at RBC terminals, where it regulates function of GABAergic synapses and assembly of RBC synaptic dyads.
Collapse
|
6
|
Moore-Dotson JM, Eggers ED. Reductions in Calcium Signaling Limit Inhibition to Diabetic Retinal Rod Bipolar Cells. Invest Ophthalmol Vis Sci 2020; 60:4063-4073. [PMID: 31560762 PMCID: PMC6779064 DOI: 10.1167/iovs.19-27137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose The balance of neuronal excitation and inhibition is important for proper retinal signaling. A previous report showed that diabetes selectively reduces light-evoked inhibition to the retinal dim light rod pathway, changing this balance. Here, changes in mechanisms of retinal inhibitory synaptic transmission after 6 weeks of diabetes are investigated. Methods Diabetes was induced in C57BL/6J mice by three intraperitoneal injections of streptozotocin (STZ, 75 mg/kg), and confirmed by blood glucose levels more than 200 mg/dL. After 6 weeks, whole-cell voltage-clamp recordings of electrically evoked inhibitory postsynaptic currents from rod bipolar cells and light-evoked excitatory postsynaptic currents from A17-amacrine cells were made in dark-adapted retinal slices. Results Diabetes shortened the timecourse of directly activated lateral GABAergic inhibitory amacrine cell inputs to rod bipolar cells. The timing of GABA release onto rod bipolar cells depends on a prolonged amacrine cell calcium signal that is reduced by slow calcium buffering. Therefore, the effects of calcium buffering with EGTA-acetoxymethyl ester (AM) on diabetic GABAergic signaling were tested. EGTA-AM reduced GABAergic signaling in diabetic retinas more strongly, suggesting that diabetic amacrine cells have reduced calcium signals. Additionally, the timing of release from reciprocal inhibitory inputs to diabetic rod bipolar cells was reduced, but the activation of the A17 amacrine cells responsible for this inhibition was not changed. Conclusions These results suggest that reduced light-evoked inhibitory input to rod bipolar cells is due to reduced and shortened calcium signals in presynaptic GABAergic amacrine cells. A reduction in calcium signaling may be a common mechanism limiting inhibition in the retina.
Collapse
Affiliation(s)
- Johnnie M Moore-Dotson
- Departments of Physiology and Biomedical Engineering, University of Arizona, Tucson, Arizona, United States
| | - Erika D Eggers
- Departments of Physiology and Biomedical Engineering, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
7
|
Ochoa-de la Paz LD, González-Andrade M, Pasantes-Morales H, Franco R, Zamora-Alvarado R, Zenteno E, Quiroz-Mercado H, Gonzales-Salinas R, Gulias-Cañizo R. Differential modulation of human GABA C-ρ1 receptor by sulfur-containing compounds structurally related to taurine. BMC Neurosci 2018; 19:47. [PMID: 30075755 PMCID: PMC6076408 DOI: 10.1186/s12868-018-0448-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The amino acid taurine (2-Aminoethanesulfonic acid) modulates inhibitory neurotransmitter receptors. This study aimed to determine if the dual action of taurine on GABAC-ρ1R relates to its structure. To address this, we tested the ability of the structurally related compounds homotaurine, hypotaurine, and isethionic acid to modulate GABAC-ρ1R. RESULTS In Xenopus laevis oocytes, hypotaurine and homotaurine partially activate heterologously expressed GABAC-ρ1R, showing an increment in its deactivation time with no changes in channel permeability, whereas isethionic acid showed no effect. Competitive assays suggest that hypotaurine and homotaurine compete for the GABA-binding site. In addition, their effects were blocked by the ion-channel blockers picrotixin and Methyl(1,2,5,6-tetrahydropyridine-4-yl) phosphinic acid. In contrast to taurine, co-application of GABA with hypotaurine or homotaurine revealed that the dual effect is present separately for each compound: hypotaurine modulates positively the GABA current, while homotaurine shows a negative modulation, both in a dose-dependent manner. Interestingly, homotaurine diminished hypotaurine-induced currents. Thus, these results strongly suggest a competitive interaction between GABA and homotaurine or hypotaurine for the same binding site. "In silico" modeling confirms these observations, but it also shows a second binding site for homotaurine, which could explain the negative effect of this compound on the current generated by GABA or hypotaurine, during co-application protocols. CONCLUSIONS The sulfur-containing compounds structurally related to taurine are partial agonists of GABAC-ρ1R that occupy the agonist binding site. The dual effect is unique to taurine, whereas in the case of hypotaurine and homotaurine it presents separately; hypotaurine increases and homotaurine decreases the GABA current.
Collapse
Affiliation(s)
- Lenin David Ochoa-de la Paz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco Universidad, Cd. Universitaria, 04510, México City, México. .,Departamento de Investigación APEC, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, Fernández Leal 60, Col. La Concepción Coyoacán, 04020, Mexico City, Mexico.
| | - Martin González-Andrade
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco Universidad, Cd. Universitaria, 04510, México City, México
| | - Herminia Pasantes-Morales
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Coyoacán, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Rodrigo Franco
- Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Rubén Zamora-Alvarado
- Departamento de Investigación APEC, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, Fernández Leal 60, Col. La Concepción Coyoacán, 04020, Mexico City, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco Universidad, Cd. Universitaria, 04510, México City, México
| | - Hugo Quiroz-Mercado
- Departamento de Investigación APEC, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, Fernández Leal 60, Col. La Concepción Coyoacán, 04020, Mexico City, Mexico
| | - Roberto Gonzales-Salinas
- Departamento de Investigación APEC, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, Fernández Leal 60, Col. La Concepción Coyoacán, 04020, Mexico City, Mexico
| | - Rosario Gulias-Cañizo
- Departamento de Investigación APEC, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, Fernández Leal 60, Col. La Concepción Coyoacán, 04020, Mexico City, Mexico
| |
Collapse
|
8
|
Jensen R. Effects of GABACR and mGluR1 antagonists on contrast response functions of Sprague-Dawley and P23H rat retinal ganglion cells. PLoS One 2017; 12:e0189980. [PMID: 29253887 PMCID: PMC5734767 DOI: 10.1371/journal.pone.0189980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/06/2017] [Indexed: 01/07/2023] Open
Abstract
The GABACR antagonist TPMPA and the mGluR1 antagonist JNJ16259685 have been shown previously to alter the sensitivity of retinal ganglion cells (RGCs) in the Sprague-Dawley (SD) rat and P23H rat (animal model of retinitis pigmentosa) to brief flashes of light. In order to better understand the effects of these antagonists on the visual responses of SD and P23H rat RGCs, I examined the responses of RGCs to a drifting sinusoidal grating of various contrasts. Multielectrode array recordings were made from RGCs to a drifting sinusoidal grating of a spatial frequency of 1 cycle/mm and a temporal frequency of 2 cycles/s. In both SD and P23H rat retinas, contrast response functions were found to have a variable shape across cells. Some cells showed saturation of responses at high contrast levels while others did not. Whereas 49% of SD rat RGCs exhibited response saturation, only 14% of P23H rat RGCs showed response saturation. TPMPA decreased the responses of saturating SD rat RGCs to low (6% to 13%) grating contrasts but increased the response to the highest contrast (83%) tested. JNJ16259685 did not significantly affect the contrast response functions of either saturating or non-saturating SD rat RGCs. In contrast, both TPMPA and JNJ16259685 increased the responses of saturating and non-saturating P23H rat RGCs to all grating contrasts. Neither TPMPA nor JNJ16259685 affected the contrast thresholds of SD rat RGCs, but both antagonists lowered the contrast thresholds of P23H rat RGCs. Overall, the findings show that GABACR and mGluR1 antagonists have differential effects on the contrast response functions of SD and P23H rat RGCs. Notably, these receptor antagonists increase the responsiveness of P23H rat RGCs to both low and high contrast visual stimuli.
Collapse
Affiliation(s)
- Ralph Jensen
- Research Service, VA Boston Healthcare System, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
Characterization of the γ-aminobutyric acid signaling system in the zebrafish (Danio rerio Hamilton) central nervous system by reverse transcription-quantitative polymerase chain reaction. Neuroscience 2016; 343:300-321. [PMID: 27453477 DOI: 10.1016/j.neuroscience.2016.07.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 11/20/2022]
Abstract
In the vertebrate brain, inhibition is largely mediated by γ-aminobutyric acid (GABA). This neurotransmitter comprises a signaling machinery of GABAA, GABAB receptors, transporters, glutamate decarboxylases (gads) and 4-aminobutyrate aminotransferase (abat), and associated proteins. Chloride is intimately related to GABAA receptor conductance, GABA uptake, and GADs activity. The response of target neurons to GABA stimuli is shaped by chloride-cation co-transporters (CCCs), which strictly control Cl- gradient across plasma membranes. This research profiled the expression of forty genes involved in GABA signaling in the zebrafish (Danio rerio) brain, grouped brain regions and retinas. Primer pairs were developed for reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The mRNA levels of the zebrafish GABA system share similarities with that of mammals, and confirm previous studies in non-mammalian species. Proposed GABAA receptors are α1β2γ2, α1β2δ, α2bβ3γ2, α2bβ3δ, α4β2γ2, α4β2δ, α6bβ2γ2 and α6bβ2δ. Regional brain differences were documented. Retinal hetero- or homomeric ρ-composed GABAA receptors could exist, accompanying α1βyγ2, α1βyδ, α6aβyγ2, α6aβyδ. Expression patterns of α6a and α6b were opposite, with the former being more abundant in retinas, the latter in brains. Given the stoichiometry α6wβyγz, α6a- or α6b-containing receptors likely have different regulatory mechanisms. Different gene isoforms could originate after the rounds of genome duplication during teleost evolution. This research depicts that one isoform is generally more abundantly expressed than the other. Such observations also apply to GABAB receptors, GABA transporters, GABA-related enzymes, CCCs and GABAA receptor-associated proteins, whose presence further strengthens the proof of a GABA system in zebrafish.
Collapse
|
10
|
Jensen R. Effects of Dopamine D2-Like Receptor Antagonists on Light Responses of Ganglion Cells in Wild-Type and P23H Rat Retinas. PLoS One 2015; 10:e0146154. [PMID: 26717015 PMCID: PMC4696741 DOI: 10.1371/journal.pone.0146154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 12/14/2015] [Indexed: 12/04/2022] Open
Abstract
In animal models of retinitis pigmentosa the dopaminergic system in the retina appears to be dysfunctional, which may contribute to the debilitated sight experienced by retinitis pigmentosa patients. Since dopamine D2-like receptors are known to modulate the activity of dopaminergic neurons, I examined the effects of dopamine D2-like receptor antagonists on the light responses of retinal ganglion cells (RGCs) in the P23H rat model of retinitis pigmentosa. Extracellular electrical recordings were made from RGCs in isolated transgenic P23H rat retinas and wild-type Sprague-Dawley rat retinas. Intensity-response curves to flashes of light were evaluated prior to and during bath application of a dopamine D2-like receptor antagonist. The dopamine D2/D3 receptor antagonists sulpiride and eticlopride and the D4 receptor antagonist L-745,870 increased light sensitivity of P23H rat RGCs but decreased light sensitivity in Sprague-Dawley rat RGCs. In addition, L-745,870, but not sulpiride or eticlopride, reduced the maximum peak responses of Sprague-Dawley rat RGCs. I describe for the first time ON-center RGCs in P23H rats that exhibit an abnormally long-latency (>200 ms) response to the onset of a small spot of light. Both sulpiride and eticlopride, but not L-745,870, reduced this ON response and brought out a short-latency OFF response, suggesting that these cells are in actuality OFF-center cells. Overall, the results show that the altered dopaminergic system in degenerate retinas contributes to the deteriorated light responses of RGCs.
Collapse
Affiliation(s)
- Ralph Jensen
- VA Boston Healthcare System, Mail Stop 151E, 150 South Huntington Avenue, Boston, Massachusetts 02130, United States of America
- * E-mail:
| |
Collapse
|
11
|
Neurotransmission plays contrasting roles in the maturation of inhibitory synapses on axons and dendrites of retinal bipolar cells. Proc Natl Acad Sci U S A 2015; 112:12840-5. [PMID: 26420868 DOI: 10.1073/pnas.1510483112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuronal output is modulated by inhibition onto both dendrites and axons. It is unknown whether inhibitory synapses at these two cellular compartments of an individual neuron are regulated coordinately or separately during in vivo development. Because neurotransmission influences synapse maturation and circuit development, we determined how loss of inhibition affects the expression of diverse types of inhibitory receptors on the axon and dendrites of mouse retinal bipolar cells. We found that axonal GABA but not glycine receptor expression depends on neurotransmission. Importantly, axonal and dendritic GABAA receptors comprise distinct subunit compositions that are regulated differentially by GABA release: Axonal GABAA receptors are down-regulated but dendritic receptors are up-regulated in the absence of inhibition. The homeostatic increase in GABAA receptors on bipolar cell dendrites is pathway-specific: Cone but not rod bipolar cell dendrites maintain an up-regulation of receptors in the transmission deficient mutants. Furthermore, the bipolar cell GABAA receptor alterations are a consequence of impaired vesicular GABA release from amacrine but not horizontal interneurons. Thus, inhibitory neurotransmission regulates in vivo postsynaptic maturation of inhibitory synapses with contrasting modes of action specific to synapse type and location.
Collapse
|
12
|
In vivo electroretinographic studies of the role of GABAC receptors in retinal signal processing. Exp Eye Res 2015; 139:48-63. [PMID: 26164072 DOI: 10.1016/j.exer.2015.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/09/2015] [Accepted: 07/07/2015] [Indexed: 11/23/2022]
Abstract
All three classes of receptors for the inhibitory neurotransmitter GABA (GABAR) are expressed in the retina. This study investigated roles of GABAR, especially GABACR (GABA(A)-ρ), in retinal signaling in vivo by studying effects on the mouse electroretinogram (ERG) of genetic deletion of GABACR versus pharmacological blockade using receptor antagonists. Brief full-field flash ERGs were recorded from anesthetized GABACR(-/-) mice, and WT C57BL/6 (B6) mice, before and after intravitreal injection of GABACR antagonists, TPMPA, 3-APMPA, or the more recently developed 2-AEMP; GABAAR antagonist, SR95531; GABABR antagonist, CGP, and agonist, baclofen. Intravitreal injections of TPMPA and SR95531 were also made in Brown Norway rats. The effect of 2-AEMP on GABA-induced current was tested directly in isolated rat rod bipolar cells, and 2-AEMP was found to preferentially block GABACR in those cells. Maximum amplitudes of dark (DA) and light-adapted (LA) ERG b-waves were reduced in GABACR(-/-) mice, compared to B6 mice, by 30-60%; a-waves were unaltered and oscillatory potential amplitudes were increased. In B6 mice, after injection of TPMPA (also in rats), 3-APMPA or 2-AEMP, ERGs became similar to ERGs of GABACR(-/-) mice. Blockade of GABAARs and GABABRs, or agonism of GABABRs did not alter B6 DA b-wave amplitude. The negative scotopic threshold response (nSTR) was slightly less sensitive in GABACR(-/-) than in B6 mice, and unaltered by 2-AEMP. However, amplitudes of nSTR and photopic negative response (PhNR), both of which originate from inner retina, were enhanced by TPMPA and 3-APMPA, each of which has GABAB agonist properties, and further increased by baclofen. The finding that genetic deletion of GABACR, the GABACR antagonist 2-AEMP, and other antagonists all reduced ERG b-wave amplitude, supports a role for GABACR in determining the maximum response amplitude of bipolar cells contributing to the b-wave. GABACR antagonists differed in their effects on nSTR and PhNR; antagonists with GABAB agonist properties enhanced light-driven responses whereas 2-AEMP did not.
Collapse
|
13
|
Elgueta C, Vielma AH, Palacios AG, Schmachtenberg O. Acetylcholine induces GABA release onto rod bipolar cells through heteromeric nicotinic receptors expressed in A17 amacrine cells. Front Cell Neurosci 2015; 9:6. [PMID: 25709566 PMCID: PMC4321611 DOI: 10.3389/fncel.2015.00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 01/07/2015] [Indexed: 11/13/2022] Open
Abstract
Acetylcholine (ACh) is a major retinal neurotransmitter that modulates visual processing through a large repertoire of cholinergic receptors expressed on different retinal cell types. ACh is released from starburst amacrine cells (SACs) under scotopic conditions, but its effects on cells of the rod pathway have not been investigated. Using whole-cell patch clamp recordings in slices of rat retina, we found that ACh application triggers GABA release onto rod bipolar (RB) cells. GABA was released from A17 amacrine cells and activated postsynaptic GABAA and GABAC receptors in RB cells. The sensitivity of ACh-induced currents to nicotinic ACh receptor (nAChR) antagonists (TMPH ~ mecamylamine > erysodine > DhβE > MLA) together with the differential potency of specific agonists to mimic ACh responses (cytisine >> RJR2403 ~ choline), suggest that A17 cells express heteromeric nAChRs containing the β4 subunit. Activation of nAChRs induced GABA release after Ca(2+) accumulation in A17 cell dendrites and varicosities mediated by L-type voltage-gated calcium channels (VGCCs) and intracellular Ca(2+) stores. Inhibition of acetylcholinesterase depolarized A17 cells and increased spontaneous inhibitory postsynaptic currents in RB cells, indicating that endogenous ACh enhances GABAergic inhibition of RB cells. Moreover, injection of neostigmine or cytisine reduced the b-wave of the scotopic flash electroretinogram (ERG), suggesting that cholinergic modulation of GABA release controls RB cell activity in vivo. These results describe a novel regulatory mechanism of RB cell inhibition and complement our understanding of the neuromodulatory control of retinal signal processing.
Collapse
Affiliation(s)
- Claudio Elgueta
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile ; Systemic and Cellular Neurophysiology, Institute of Physiology I, Albert-Ludwigs-Universität Freiburg, Germany
| | - Alex H Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
14
|
Popova E. GABAergic neurotransmission and retinal ganglion cell function. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:261-83. [PMID: 25656810 DOI: 10.1007/s00359-015-0981-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/13/2023]
Abstract
Ganglion cells are the output retinal neurons that convey visual information to the brain. There are ~20 different types of ganglion cells, each encoding a specific aspect of the visual scene as spatial and temporal contrast, orientation, direction of movement, presence of looming stimuli; etc. Ganglion cell functioning depends on the intrinsic properties of ganglion cell's membrane as well as on the excitatory and inhibitory inputs that these cells receive from other retinal neurons. GABA is one of the most abundant inhibitory neurotransmitters in the retina. How it modulates the activity of different types of ganglion cells and what is its significance in extracting the basic features from visual scene are questions with fundamental importance in visual neuroscience. The present review summarizes current data concerning the types of membrane receptors that mediate GABA action in proximal retina; the effects of GABA and its antagonists on the ganglion cell light-evoked postsynaptic potentials and spike discharges; the action of GABAergic agents on centre-surround organization of the receptive fields and feature related ganglion cell activity. Special emphasis is put on the GABA action regarding the ON-OFF and sustained-transient ganglion cell dichotomy in both nonmammalian and mammalian retina.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
15
|
Moore-Dotson JM, Klein JS, Mazade RE, Eggers ED. Different types of retinal inhibition have distinct neurotransmitter release properties. J Neurophysiol 2015; 113:2078-90. [PMID: 25568157 DOI: 10.1152/jn.00447.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 01/06/2015] [Indexed: 01/27/2023] Open
Abstract
Neurotransmitter release varies between neurons due to differences in presynaptic mechanisms such as Ca(2+) sensitivity and timing. Retinal rod bipolar cells respond to brief dim illumination with prolonged glutamate release that is tuned by the differential release of GABA and glycine from amacrine cells in the inner retina. To test if differences among types of GABA and glycine release are due to inherent amacrine cell release properties, we directly activated amacrine cell neurotransmitter release by electrical stimulation. We found that the timing of electrically evoked inhibitory currents was inherently slow and that the timecourse of inhibition from slowest to fastest was GABAC receptors > glycine receptors > GABAA receptors. Deconvolution analysis showed that the distinct timing was due to differences in prolonged GABA and glycine release from amacrine cells. The timecourses of slow glycine release and GABA release onto GABAC receptors were reduced by Ca(2+) buffering with EGTA-AM and BAPTA-AM, but faster GABA release on GABAA receptors was not, suggesting that release onto GABAA receptors is tightly coupled to Ca(2+). The differential timing of GABA release was detected from spiking amacrine cells and not nonspiking A17 amacrine cells that form a reciprocal synapse with rod bipolar cells. Our results indicate that release from amacrine cells is inherently asynchronous and that the source of nonreciprocal rod bipolar cell inhibition differs between GABA receptors. The slow, differential timecourse of inhibition may be a mechanism to match the prolonged rod bipolar cell glutamate release and provide a way to temporally tune information across retinal pathways.
Collapse
Affiliation(s)
- Johnnie M Moore-Dotson
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona; and
| | - Justin S Klein
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona; and
| | - Reece E Mazade
- Graduate Interdisciplinary Program in Physiological Sciences, University of Arizona, Tucson, Arizona
| | - Erika D Eggers
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona; and
| |
Collapse
|
16
|
Popova E. Ionotropic GABA Receptors and Distal Retinal ON and OFF Responses. SCIENTIFICA 2014; 2014:149187. [PMID: 25143858 PMCID: PMC4131092 DOI: 10.1155/2014/149187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/24/2014] [Accepted: 05/27/2014] [Indexed: 05/27/2023]
Abstract
In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells in distal retina. The activity of large populations of ON and OFF bipolar cells is reflected in the b- and d-waves of the diffuse electroretinogram (ERG). The role of gamma-aminobutyric acid (GABA), acting through ionotropic GABA receptors in shaping the ON and OFF responses in distal retina, is a matter of debate. This review summarized current knowledge about the types of the GABAergic neurons and ionotropic GABA receptors in the retina as well as the effects of GABA and specific GABAA and GABAC receptor antagonists on the activity of the ON and OFF bipolar cells in both nonmammalian and mammalian retina. Special emphasis is put on the effects on b- and d-waves of the ERG as a useful tool for assessment of the overall function of distal retinal ON and OFF channels. The role of GABAergic system in establishing the ON-OFF asymmetry concerning the time course and absolute and relative sensitivity of the ERG responses under different conditions of light adaptation in amphibian retina is also discussed.
Collapse
Affiliation(s)
- E. Popova
- Department of Physiology, Medical Faculty, Medical University, 1431 Sofia, Bulgaria
| |
Collapse
|
17
|
Popova E. Effects of picrotoxin on light adapted frog electroretinogram are not due entirely to its action in proximal retina. Vision Res 2014; 101:138-50. [PMID: 24999030 DOI: 10.1016/j.visres.2014.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
Abstract
In order to evaluate the site of action of picrotoxin (antagonist of ionotropic GABA receptors) on the electroretinographic (ERG) b- and d-waves, in this study we compared its effects on the intensity-response function of the ERG waves in intact light adapted frog eyecup preparations with its effects in eyecups, where the activity of proximal neurons was blocked by 1 mMN-methyl-d-aspartate (MNDA). Picrotoxin markedly enhanced the b- and d-wave amplitude and slowed the time course of the responses at all stimulus intensities in the intact eyecups. Perfusion with NMDA alone caused significant enhancement of the b-wave amplitude and diminution of the d-wave amplitude without altering their time course in the entire intensity range. When picrotoxin was applied in combination with NMDA, an enhancement of the b-wave amplitude and slowing of its time course were observed at all stimulus intensities. The increase of the b-wave amplitude was significantly higher than that seen in NMDA group. Combined application of picrotoxin and NMDA caused an enhancement of the d-wave amplitude at the lower stimulus intensities and its diminution at the higher ones, while the d-wave time course was delayed over the entire intensity range. The results obtained indicate that a part of picrotoxin effects on the amplitude and time course of the photopic ERG b- and d-waves are due to its action in the distal frog retina.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431 Sofia, Bulgaria.
| |
Collapse
|
18
|
Jensen RJ. Effects of a metabotropic glutamate 1 receptor antagonist on light responses of retinal ganglion cells in a rat model of retinitis pigmentosa. PLoS One 2013; 8:e79126. [PMID: 24205371 PMCID: PMC3810128 DOI: 10.1371/journal.pone.0079126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/18/2013] [Indexed: 11/30/2022] Open
Abstract
Background Retinitis pigmentosa (RP) is a progressive retinal degenerative disease that causes deterioration of rod and cone photoreceptors. A well-studied animal model of RP is the transgenic P23H rat, which carries a mutation in the rhodopsin gene. Previously, I reported that blocking retinal GABAC receptors in the P23H rat increases light responsiveness of retinal ganglion cells (RGCs). Because activation of metabotropic glutamate 1 (mGlu1) receptors may enhance the release of GABA onto GABAC receptors, I examined the possibility that blocking retinal mGlu1 receptors might in itself increase light responsiveness of RGCs in the P23H rat. Methodology/Principal Findings Electrical recordings were made from RGCs in isolated P23H rat retinas. Spike activity of RGCs was measured in response to brief flashes of light over a range of light intensities. Intensity-response curves were evaluated prior to and during bath application of the mGlu1 receptor antagonist JNJ16259685. I found that JNJ16259685 increased light sensitivity of all ON-center RGCs and most OFF-center RGCs studied. RGCs that were least sensitive to light showed the greatest JNJ16259685-induced increase in light sensitivity. On average, light sensitivity increased in ON-center RGCs by 0.58 log unit and in OFF-center RGCs by 0.13 log unit. JNJ16259685 increased the maximum peak response of ON-center RGCs by 7% but had no significant effect on the maximum peak response of OFF-center RGCs. The effects of JNJ16259685 on ON-center RGCs were occluded by a GABAC receptor antagonist. Conclusions The results of this study indicate that blocking retinal mGlu1 receptors in a rodent model of human RP potentiates transmission of any, weak signals originating from photoreceptors. This augmentation of photoreceptor-mediated signals to RGCs occurs presumably through a reduction in GABAC-mediated inhibition.
Collapse
Affiliation(s)
- Ralph J. Jensen
- VA Boston Healthcare System, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Schubert T, Hoon M, Euler T, Lukasiewicz PD, Wong ROL. Developmental regulation and activity-dependent maintenance of GABAergic presynaptic inhibition onto rod bipolar cell axonal terminals. Neuron 2013; 78:124-37. [PMID: 23583111 DOI: 10.1016/j.neuron.2013.01.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2013] [Indexed: 01/12/2023]
Abstract
Presynaptic inhibition onto axons regulates neuronal output, but how such inhibitory synapses develop and are maintained in vivo remains unclear. Axon terminals of glutamatergic retinal rod bipolar cells (RBCs) receive GABAA and GABAC receptor-mediated synaptic inhibition. We found that perturbing GABAergic or glutamatergic neurotransmission does not prevent GABAergic synaptogenesis onto RBC axons. But, GABA release is necessary for maintaining axonal GABA receptors. This activity-dependent process is receptor subtype specific: GABAC receptors are maintained, whereas GABAA receptors containing α1, but not α3, subunits decrease over time in mice with deficient GABA synthesis. GABAA receptor distribution on RBC axons is unaffected in GABAC receptor knockout mice. Thus, GABAA and GABAC receptor maintenance are regulated separately. Although immature RBCs elevate their glutamate release when GABA synthesis is impaired, homeostatic mechanisms ensure that the RBC output operates within its normal range after eye opening, perhaps to regain proper visual processing within the scotopic pathway.
Collapse
Affiliation(s)
- Timm Schubert
- Department of Biological Structure, University of Washington, School of Medicine, 1959 Northeast Pacific Street, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
20
|
Gasulla J, Beltrán González AN, Calvo DJ. Nitric oxide potentiation of the homomeric ρ1 GABA(C) receptor function. Br J Pharmacol 2013; 167:1369-77. [PMID: 22747884 DOI: 10.1111/j.1476-5381.2012.02087.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE NO is a highly diffusible and reactive gas produced in the nervous system, which acts as a neuronal signal mediating physiological or pathological mechanisms. NO can modulate the activity of neurotransmitter receptors and ion channels, including NMDA and GABA(A) receptors. In the present work, we examined whether GABA(C) receptor function can also be regulated by NO. EXPERIMENTAL APPROACH Homomeric ρ1 GABA(C) receptors were expressed in oocytes and GABA-evoked responses electrophysiologically recorded in the presence or absence of the NO donor DEA. Chemical protection of cysteines by selective sulfhydryl reagents and site-directed mutagenesis were used to determine the protein residues involved in the actions of NO. KEY RESULTS GABAρ1 receptor responses were significantly enhanced in a dose-dependent, fast and reversible manner by DEA and the specific NO scavenger CPTIO prevented these potentiating effects. The ρ1 subunits contain only three cysteine residues, two extracellular at the Cys-loop (C177 and C191) and one intracellular (C364). Mutations of C177 and C191 render the ρ1 GABA receptors non-functional, but C364 can be safely exchanged by alanine (C364A). NEM, N-ethyl maleimide and (2-aminoethyl) methanethiosulfonate prevented the effects of DEA on GABAρ1 receptors. Meanwhile, the potentiating effects of DEA on mutant GABAρ1(C364A) receptors were similar to those observed on wild-type receptors. CONCLUSIONS AND IMPLICATIONS Our results suggest that the function of GABA(C) receptors can be enhanced by NO acting at the extracellular Cys-loop.
Collapse
Affiliation(s)
- J Gasulla
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | | | | |
Collapse
|
21
|
Paired-pulse plasticity in the strength and latency of light-evoked lateral inhibition to retinal bipolar cell terminals. J Neurosci 2012; 32:11688-99. [PMID: 22915111 DOI: 10.1523/jneurosci.0547-12.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synapses in the inner plexiform layer of the retina undergo short-term plasticity that may mediate different forms of adaptation to regularities in light stimuli. Using patch-clamp recordings from axotomized goldfish Mb bipolar cell (BC) terminals with paired-pulse light stimulation, we isolated and quantified the short-term plasticity of GABAergic lateral IPSCs (L-IPSCs). Bright light stimulation evoked ON and OFF L-IPSCs in axotomized BCs, which had distinct onset latencies (∼50-80 and ∼70-150 ms, respectively) that depended on background light adaptation. We observed plasticity in both the synaptic strength and latency of the L-IPSCs. With paired light stimulation, latencies of ON L-IPSCs increased at paired-pulse intervals (PPIs) of 50 and 300 ms, whereas OFF L-IPSC latencies decreased at the 300 ms PPI. ON L-IPSCs showed paired-pulse depression at intervals <1 s, whereas OFF L-IPSCs showed depression at intervals ≤1 s and amplitude facilitation at longer intervals (1-2 s). This biphasic form of L-IPSC plasticity may underlie adaptation and sensitization to surround temporal contrast over multiple timescales. Block of retinal signaling at GABA(A)Rs and AMPARs differentially affected ON and OFF L-IPSCs, confirming that these two types of feedback inhibition are mediated by distinct and convergent retinal pathways with different mechanisms of plasticity. We propose that these plastic changes in the strength and timing of L-IPSCs help to dynamically shape the time course of glutamate release from ON-type BC terminals. Short-term plasticity of L-IPSCs may thus influence the strength, timing, and spatial extent of amacrine and ganglion cell inhibitory surrounds.
Collapse
|
22
|
Jensen RJ. Blocking GABA(C) receptors increases light responsiveness of retinal ganglion cells in a rat model of retinitis pigmentosa. Exp Eye Res 2012; 105:21-6. [PMID: 23085337 DOI: 10.1016/j.exer.2012.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/02/2012] [Accepted: 10/10/2012] [Indexed: 11/16/2022]
Abstract
Previous studies in a mouse model of retinitis pigmentosa indicate that the GABAergic system in the retina may be overactive. GABA is known to act on GABA(C) receptors present on the axon terminals of bipolar cells to inhibit the release of excitatory neurotransmitter from these cells. The present study examined the effects of a GABA(C) receptor antagonist on the light-evoked responses of retinal ganglion cells (RGCs) in a rat model of retinitis pigmentosa. Extracellular recordings were made from RGCs in retinas isolated from P23H transgenic rats and non-dystrophic Sprague-Dawley (SD) rats. Spike activity of RGCs was measured in response to brief flashes of light over a range of light intensities. Intensity-response curves were evaluated prior to and during bath application of the GABA(C) receptor antagonist TPMPA. I found that TPMPA consistently increased the sensitivity of P23H rat RGCs to light flashes. For ON-center RGCs (n = 21), the average increase in light sensitivity was 0.63 log unit. For OFF-center RGCs (n = 6), the average increase was 0.38 log unit. TPMPA increased the maximum peak response of ON-center RGCs by 22% and OFF-center RGCs by 11%. However, the increase in maximum peak response of OFF-center RGCs was not statistically significant. TPMPA had no significant effect on the dynamic operating range of either ON-center or OFF-center RGCs. Nine ON-center SD rat RGCs were also tested. In contrast to what was observed for P23H rat RGCs, TPMPA decreased the sensitivity of these RGCs to light flashes, on average by 0.20 log unit. In conclusion, GABA(C) receptors may be novel targets for therapeutic interventions aimed at increasing light responsiveness in patients with retinitis pigmentosa or other diseases involving degeneration of photoreceptors.
Collapse
Affiliation(s)
- Ralph J Jensen
- VA Boston Healthcare System, Mail Stop 151E, 150 South Huntington Avenue, Boston, MA 02130, USA.
| |
Collapse
|
23
|
Buldyrev I, Taylor WR. Inhibitory mechanisms that generate centre and surround properties in ON and OFF brisk-sustained ganglion cells in the rabbit retina. J Physiol 2012; 591:303-25. [PMID: 23045347 DOI: 10.1113/jphysiol.2012.243113] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Lateral inhibition produces the centre-surround organization of retinal receptive fields, in which inhibition driven by the mean luminance enhances the sensitivity of ganglion cells to spatial and temporal contrast. Surround inhibition is generated in both synaptic layers; however, the synaptic mechanisms within the inner plexiform layer are not well characterized within specific classes of retinal ganglion cell. Here, we compared the synaptic circuits generating concentric centre-surround receptive fields in ON and OFF brisk-sustained ganglion cells (BSGCs) in the rabbit retina. We first characterized the synaptic inputs to the centre of ON BSGCs, for comparison with previous results from OFF BSGCs. Similar to wide-field ganglion cells, the spatial extent of the excitatory centre and inhibitory surround was larger for the ON than the OFF BSGCs. The results indicate that the surrounds of ON and OFF BSGCs are generated in both the outer and the inner plexiform layers. The inner plexiform layer surround inhibition comprised GABAergic suppression of excitatory inputs from bipolar cells. However, ON and OFF BSGCs displayed notable differences. Surround suppression of excitatory inputs was weaker in ON than OFF BSGCs, and was mediated largely by GABA(C) receptors in ON BSGCs, and by both GABA(A) and GABA(C) receptors in OFF BSGCs. Large ON pathway-mediated glycinergic inputs to ON and OFF BSGCs also showed surround suppression, while much smaller GABAergic inputs showed weak, if any, spatial tuning. Unlike OFF BSGCs, which receive strong glycinergic crossover inhibition from the ON pathway, the ON BSGCs do not receive crossover inhibition from the OFF pathway. We compare and discuss possible roles for glycinergic inhibition in the two cell types.
Collapse
Affiliation(s)
- Ilya Buldyrev
- Casey Eye Institute, Department of Ophthalmology, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
24
|
Thoreson WB, Mangel SC. Lateral interactions in the outer retina. Prog Retin Eye Res 2012; 31:407-41. [PMID: 22580106 PMCID: PMC3401171 DOI: 10.1016/j.preteyeres.2012.04.003] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
Lateral interactions in the outer retina, particularly negative feedback from horizontal cells to cones and direct feed-forward input from horizontal cells to bipolar cells, play a number of important roles in early visual processing, such as generating center-surround receptive fields that enhance spatial discrimination. These circuits may also contribute to post-receptoral light adaptation and the generation of color opponency. In this review, we examine the contributions of horizontal cell feedback and feed-forward pathways to early visual processing. We begin by reviewing the properties of bipolar cell receptive fields, especially with respect to modulation of the bipolar receptive field surround by the ambient light level and to the contribution of horizontal cells to the surround. We then review evidence for and against three proposed mechanisms for negative feedback from horizontal cells to cones: 1) GABA release by horizontal cells, 2) ephaptic modulation of the cone pedicle membrane potential generated by currents flowing through hemigap junctions in horizontal cell dendrites, and 3) modulation of cone calcium currents (I(Ca)) by changes in synaptic cleft proton levels. We also consider evidence for the presence of direct horizontal cell feed-forward input to bipolar cells and discuss a possible role for GABA at this synapse. We summarize proposed functions of horizontal cell feedback and feed-forward pathways. Finally, we examine the mechanisms and functions of two other forms of lateral interaction in the outer retina: negative feedback from horizontal cells to rods and positive feedback from horizontal cells to cones.
Collapse
Affiliation(s)
- Wallace B. Thoreson
- Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Stuart C. Mangel
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| |
Collapse
|
25
|
Abstract
Amacrine cells are a morphologically and functionally diverse group of inhibitory interneurons. Morphologically, they have been divided into approximately 30 types. Although this diversity is probably important to the fine structure and function of the retinal circuit, the amacrine cells have been more generally divided into two subclasses. Glycinergic narrow-field amacrine cells have dendrites that ramify close to their somas, cross the sublaminae of the inner plexiform layer, and create cross talk between its parallel ON and OFF pathways. GABAergic wide-field amacrine cells have dendrites that stretch long distances from their soma but ramify narrowly within an inner plexiform layer sublamina. These wide-field cells are thought to mediate inhibition within a sublamina and thus within the ON or OFF pathway. The postsynaptic targets of all amacrine cell types include bipolar, ganglion, and other amacrine cells. Almost all amacrine cells use GABA or glycine as their primary neurotransmitter, and their postsynaptic receptor targets include the most common GABA(A), GABA(C), and glycine subunit receptor configurations. This review addresses the diversity of amacrine cells, the postsynaptic receptors on their target cells in the inner plexiform layer of the retina, and some of the inhibitory mechanisms that arise as a result. When possible, the effects of GABAergic and glycinergic inputs on the visually evoked responses of their postsynaptic targets are discussed.
Collapse
|
26
|
Jones SM, Palmer MJ. Pharmacological analysis of the activation and receptor properties of the tonic GABA(C)R current in retinal bipolar cell terminals. PLoS One 2011; 6:e24892. [PMID: 21949779 PMCID: PMC3174224 DOI: 10.1371/journal.pone.0024892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/22/2011] [Indexed: 11/29/2022] Open
Abstract
GABAergic inhibition in the central nervous system (CNS) can occur via rapid, transient postsynaptic currents and via a tonic increase in membrane conductance, mediated by synaptic and extrasynaptic GABAA receptors (GABAARs) respectively. Retinal bipolar cells (BCs) exhibit a tonic current mediated by GABACRs in their axon terminal, in addition to synaptic GABAAR and GABACR currents, which strongly regulate BC output. The tonic GABACR current in BC terminals (BCTs) is not dependent on vesicular GABA release, but properties such as the alternative source of GABA and the identity of the GABACRs remain unknown. Following a recent report that tonic GABA release from cerebellar glial cells is mediated by Bestrophin 1 anion channels, we have investigated their role in non-vesicular GABA release in the retina. Using patch-clamp recordings from BCTs in goldfish retinal slices, we find that the tonic GABACR current is not reduced by the anion channel inhibitors NPPB or flufenamic acid but is reduced by DIDS, which decreases the tonic current without directly affecting GABACRs. All three drugs also exhibit non-specific effects including inhibition of GABA transporters. GABACR ρ subunits can form homomeric and heteromeric receptors that differ in their properties, but BC GABACRs are thought to be ρ1-ρ2 heteromers. To investigate whether GABACRs mediating tonic and synaptic currents may differ in their subunit composition, as is the case for GABAARs, we have examined the effects of two antagonists that show partial ρ subunit selectivity: picrotoxin and cyclothiazide. Tonic and synaptic GABACR currents were differentially affected by both drugs, suggesting that a population of homomeric ρ1 receptors contributes to the tonic current. These results extend our understanding of the multiple forms of GABAergic inhibition that exist in the CNS and contribute to visual signal processing in the retina.
Collapse
Affiliation(s)
- Stefanie M. Jones
- Neuroscience Group, Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom
| | - Mary J. Palmer
- Neuroscience Group, Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Martínez-Delgado G, Estrada-Mondragón A, Miledi R, Martínez-Torres A. An Update on GABAρ Receptors. Curr Neuropharmacol 2011; 8:422-33. [PMID: 21629448 PMCID: PMC3080597 DOI: 10.2174/157015910793358141] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 04/08/2010] [Accepted: 06/21/2010] [Indexed: 01/29/2023] Open
Abstract
The present review discusses the functional and molecular diversity of GABAρ receptors. These receptors were originally described in the mammalian retina, and their functional role in the visual pathway has been recently elucidated; however new studies on their distribution in the brain and spinal cord have revealed that they are more spread than originally thought, and thus it will be important to determine their physiological contribution to the GABAergic transmission in other areas of the central nervous system. In addition, molecular modeling has revealed peculiar traits of these receptors that have impacted on the interpretations of the latest pharmacolgical and biophysical findings. Finally, sequencing of several vertebrate genomes has permitted a comparative analysis of the organization of the GABAρ genes.
Collapse
Affiliation(s)
- Gustavo Martínez-Delgado
- Instituto de Neurbiología, Departamento de Neurobiología Celular y Molecular, Laboratorio D15, Campus UNAM Juriquilla. Querétaro 76230, México
| | | | | | | |
Collapse
|
28
|
Cheng ZY, Chebib M, Schmid KL. rho1 GABAC receptors are expressed in fibrous and cartilaginous layers of chick sclera and located on sclera fibroblasts and chondrocytes. J Neurochem 2011; 118:281-7. [DOI: 10.1111/j.1471-4159.2011.07300.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Jensen RJ, Rizzo JF. Effects of GABA receptor antagonists on thresholds of P23H rat retinal ganglion cells to electrical stimulation of the retina. J Neural Eng 2011; 8:035002. [PMID: 21593547 DOI: 10.1088/1741-2560/8/3/035002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An electronic retinal prosthesis may provide useful vision for patients suffering from retinitis pigmentosa (RP). In animal models of RP, the amount of current needed to activate retinal ganglion cells (RGCs) is higher than in normal, healthy retinas. In this study, we sought to reduce the stimulation thresholds of RGCs in a degenerate rat model (P23H-line 1) by blocking GABA receptor mediated inhibition in the retina. We examined the effects of TPMPA, a GABA(C) receptor antagonist, and SR95531, a GABA(A) receptor antagonist, on the electrically evoked responses of RGCs to biphasic current pulses delivered to the subretinal surface through a 400 µm diameter electrode. Both TPMPA and SR95531 reduced the stimulation thresholds of ON-center RGCs on average by 15% and 20% respectively. Co-application of the two GABA receptor antagonists had the greatest effect, on average reducing stimulation thresholds by 32%. In addition, co-application of the two GABA receptor antagonists increased the magnitude of the electrically evoked responses on average three-fold. Neither TPMPA nor SR95531, applied alone or in combination, had consistent effects on the stimulation thresholds of OFF-center RGCs. We suggest that the effects of the GABA receptor antagonists on ON-center RGCs may be attributable to blockage of GABA receptors on the axon terminals of ON bipolar cells.
Collapse
Affiliation(s)
- Ralph J Jensen
- The Center for Innovative Visual Rehabilitation, VA Boston Healthcare System, Mail Stop 151E, 150 South Huntington Avenue, Boston, MA 02130, USA.
| | | |
Collapse
|
30
|
Le-Corronc H, Rigo JM, Branchereau P, Legendre P. GABA(A) receptor and glycine receptor activation by paracrine/autocrine release of endogenous agonists: more than a simple communication pathway. Mol Neurobiol 2011; 44:28-52. [PMID: 21547557 DOI: 10.1007/s12035-011-8185-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 04/14/2011] [Indexed: 02/04/2023]
Abstract
It is a common and widely accepted assumption that glycine and GABA are the main inhibitory transmitters in the central nervous system (CNS). But, in the past 20 years, several studies have clearly demonstrated that these amino acids can also be excitatory in the immature central nervous system. In addition, it is now established that both GABA receptors (GABARs) and glycine receptors (GlyRs) can be located extrasynaptically and can be activated by paracrine release of endogenous agonists, such as GABA, glycine, and taurine. Recently, non-synaptic release of GABA, glycine, and taurine gained further attention with increasing evidence suggesting a developmental role of these neurotransmitters in neuronal network formation before and during synaptogenesis. This review summarizes recent knowledge about the non-synaptic activation of GABA(A)Rs and GlyRs, both in developing and adult CNS. We first present studies that reveal the functional specialization of both non-synaptic GABA(A)Rs and GlyRs and we discuss the neuronal versus non-neuronal origin of the paracrine release of GABA(A)R and GlyR agonists. We then discuss the proposed non-synaptic release mechanisms and/or pathways for GABA, glycine, and taurine. Finally, we summarize recent data about the various roles of non-synaptic GABAergic and glycinergic systems during the development of neuronal networks and in the adult.
Collapse
Affiliation(s)
- Herve Le-Corronc
- Institut National de la Santé et de la Recherche Médicale, U952, Centre National de la Recherche Scientifique, UMR 7224, Université Pierre et Marie Curie, 9 quai Saint Bernard, Paris, Ile de France, France
| | | | | | | |
Collapse
|
31
|
Guimarães-Souza E, Gardino P, De Mello F, Calaza K. A calcium-dependent glutamate release induced by metabotropic glutamate receptors I/II promotes GABA efflux from amacrine cells via a transporter-mediated process. Neuroscience 2011; 179:23-31. [DOI: 10.1016/j.neuroscience.2011.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/17/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
32
|
Johnston GAR, Chebib M, Hanrahan JR, Mewett KN. Neurochemicals for the investigation of GABA(C) receptors. Neurochem Res 2010; 35:1970-7. [PMID: 20963487 DOI: 10.1007/s11064-010-0271-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2010] [Indexed: 01/23/2023]
Abstract
GABA(C) receptors are being investigated for their role in many aspects of nervous system function including memory, myopia, pain and sleep. There is evidence for functional GABA(C) receptors in many tissues such as retina, hippocampus, spinal cord, superior colliculus, pituitary and the gut. This review describes a variety of neurochemicals that have been shown to be useful in distinguishing GABA(C) receptors from other receptors for the major inhibitory neurotransmitter GABA. Some selective agonists (including (+)-CAMP and 5-methyl-IAA), competitive antagonists (such as TPMPA, (±)-cis-3-ACPBPA and aza-THIP), positive (allopregnanolone) and negative modulators (epipregnanolone, loreclezole) are described. Neurochemicals that may assist in distinguishing between homomeric ρ1 and ρ2 GABA(C) receptors (2-methyl-TACA and cyclothiazide) are also covered. Given their less widespread distribution, lower abundance and relative structural simplicity compared to GABA(A) and GABA(B) receptors, GABA(C) receptors are attractive drug targets.
Collapse
Affiliation(s)
- Graham A R Johnston
- Adrien Albert Laboratory of Medicinal Chemistry, Department of Pharmacology D06, The University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
33
|
Abstract
GABAergic feedback inhibition from amacrine cells shapes visual signaling in the inner retina. Rod bipolar cells (RBCs), ON-sensitive cells that depolarize in response to light increments, receive reciprocal GABAergic feedback from A17 amacrine cells and additional GABAergic inputs from other amacrine cells located laterally in the inner plexiform layer. The circuitry and synaptic mechanisms underlying lateral GABAergic inhibition of RBCs are poorly understood. A-type and rho-subunit-containing (C-type) GABA receptors (GABA(A)Rs and GABA(C)Rs) mediate both forms of inhibition, but their relative activation during synaptic transmission is unclear, and potential interactions between adjacent reciprocal and lateral synapses have not been explored. Here, we recorded from RBCs in acute slices of rat retina and isolated lateral GABAergic inhibition by pharmacologically ablating A17 amacrine cells. We found that amacrine cells providing lateral GABAergic inhibition to RBCs receive excitatory synaptic input mostly from ON bipolar cells via activation of both Ca(2+)-impermeable and Ca(2+)-permeable AMPA receptors (CP-AMPARs) but not NMDA receptors (NMDARs). Voltage-gated Ca(2+) (Ca(v)) channels mediate the majority of Ca(2+) influx that triggers GABA release, although CP-AMPARs contribute a small component. The intracellular Ca(2+) signal contributing to transmitter release is amplified by Ca(2+)-induced Ca(2+) release from intracellular stores via activation of ryanodine receptors. Furthermore, lateral nonreciprocal feedback is mediated primarily by GABA(C)Rs that are activated independently from receptors mediating reciprocal feedback inhibition. These results illustrate numerous physiological differences that distinguish GABA release at reciprocal and lateral synapses, indicating complex, pathway-specific modulation of RBC signaling.
Collapse
|
34
|
Zheng W, Zhao X, Wang J, Lu L. Retinal vascular leakage occurring in GABA Rho-1 subunit deficient mice. Exp Eye Res 2010; 90:634-40. [PMID: 20193681 DOI: 10.1016/j.exer.2010.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 02/11/2010] [Accepted: 02/22/2010] [Indexed: 11/18/2022]
Abstract
Recent studies demonstrate that GABAergic activity elicits relaxation of retinal arterioles leading to an increase in blood flow. It has also been found that GABAnergic activity in the retina of mice with diabetic retinopathy is suppressed. In this study, we provide further evidence that lack of GABAergic activity significantly alters vasculature development as well as the hypoxia-induced angiogenic response. Using GABA(C) receptor rho(1) subunit-knockout mice (rho-1(-/-)), our results demonstrate that in hypoxia-induced retinas a severe vascular leakage occurred in 2 week-old rho-1(-/-) mice compared with their wildtype counterparts. In addition, our results also showed that all of the rho-1(-/-) mice developed significant retinal vascular leakages by 48 weeks-of-age. Microarray and real-time PCR experiments revealed a unique angiogenesis-related gene expression pattern. This suggests that retinal vascular disorders of rho-1(-/-) mice results from significant up-regulation of angiogenic genes and concomitant down-regulation of anti-angiogenic genes. The study results are consistent with the pathological changes of the retinal vascular leakage seen in diabetic retinopathy. Our data indicate that the GABA(C) rho(1) subunit plays a role in maintaining both homeostasis and balance of retinal neurotransmitter function. Knockout of the retinal GABA(C) rho(1)-subunit leads to changes in vascular permeability similar to the pathological changes induced by retinal hypoxic conditions.
Collapse
Affiliation(s)
- Wei Zheng
- Division of Molecular Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, CA 90502, USA
| | | | | | | |
Collapse
|
35
|
Eggers ED, Lukasiewicz PD. Interneuron circuits tune inhibition in retinal bipolar cells. J Neurophysiol 2009; 103:25-37. [PMID: 19906884 DOI: 10.1152/jn.00458.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While connections between inhibitory interneurons are common circuit elements, it has been difficult to define their signal processing roles because of the inability to activate these circuits using natural stimuli. We overcame this limitation by studying connections between inhibitory amacrine cells in the retina. These interneurons form spatially extensive inhibitory networks that shape signaling between bipolar cell relay neurons to ganglion cell output neurons. We investigated how amacrine cell networks modulate these retinal signals by selectively activating the networks with spatially defined light stimuli. The roles of amacrine cell networks were assessed by recording their inhibitory synaptic outputs in bipolar cells that suppress bipolar cell output to ganglion cells. When the amacrine cell network was activated by large light stimuli, the inhibitory connections between amacrine cells unexpectedly depressed bipolar cell inhibition. Bipolar cell inhibition elicited by smaller light stimuli or electrically activated feedback inhibition was not suppressed because these stimuli did not activate the connections between amacrine cells. Thus the activation of amacrine cell circuits with large light stimuli can shape the spatial sensitivity of the retina by limiting the spatial extent of bipolar cell inhibition. Because inner retinal inhibition contributes to ganglion cell surround inhibition, in part, by controlling input from bipolar cells, these connections may refine the spatial properties of the retinal output. This functional role of interneuron connections may be repeated throughout the CNS.
Collapse
Affiliation(s)
- Erika D Eggers
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
36
|
Jones SM, Palmer MJ. Activation of the tonic GABAC receptor current in retinal bipolar cell terminals by nonvesicular GABA release. J Neurophysiol 2009; 102:691-9. [PMID: 19494193 DOI: 10.1152/jn.00285.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Within the second synaptic layer of the retina, bipolar cell (BC) output to ganglion cells is regulated by inhibitory input to BC axon terminals. GABA(A) receptors (GABA(A)Rs) mediate rapid synaptic currents in BC terminals, whereas GABA(C) receptors (GABA(C)Rs) mediate slow evoked currents and a tonic current, which is strongly regulated by GAT-1 GABA transporters. We have used voltage-clamp recordings from BC terminals in goldfish retinal slices to determine the source of GABA for activation of these currents. Inhibition of vesicular release with concanamycin A or tetanus toxin significantly inhibited GABA(A)R inhibitory postsynaptic currents and glutamate-evoked GABA(A)R and GABA(C)R currents but did not reduce the tonic GABA(C)R current, which was also not dependent on extracellular Ca(2+). The tonic current was strongly potentiated by inhibition of GABA transaminase, under both normal and Ca(2+)-free conditions, and was activated by exogenous taurine; however inhibition of taurine transport had little effect. The tonic current was unaffected by GAT-2/3 inhibition and was potentiated by GAT-1 inhibition even in the absence of vesicular release, indicating that it is unlikely to be evoked by reversal of GABA transporters or by ambient GABA. In addition, GABA release does not appear to occur via hemichannels or P2X(7) receptors. BC terminals therefore exhibit two forms of GABA(C)R-mediated inhibition, activated by vesicular and by nonvesicular GABA release, which are likely to have distinct functions in visual signal processing. The tonic GABA(C)R current in BC terminals exhibits similar properties to tonic GABA(A)R and glutamate receptor currents in the brain.
Collapse
Affiliation(s)
- S M Jones
- Neuroscience Group, Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | | |
Collapse
|
37
|
Delgado LM, Vielma AH, Kähne T, Palacios AG, Schmachtenberg O. The GABAergic system in the retina of neonate and adult Octodon degus, studied by immunohistochemistry and electroretinography. J Comp Neurol 2009; 514:459-72. [PMID: 19350652 DOI: 10.1002/cne.22023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
UNLABELLED In the vertebrate retina, gamma-aminobutyric acid (GABA) mediates inhibitory processes that shape the visual response and is also thought to have neurotrophic functions during retinal development. To investigate the role of GABAergic signaling at the beginning of visual experience, we used immunohistochemistry to compare the distribution of GABA, the two isoforms of glutamic acid decarboxylase GAD65/67, and the GABA receptor types A, B, and C, in neonate versus adult Octodon degus, a native South American rodent with diurnal-crepuscular activity and a high cone-to-rod ratio. In parallel, we used electroretinography to evaluate retinal functionality and to test the contribution of fast GABAergic transmission to light responses at both developmental stages. Neonate O. degus opened their eyes on postnatal day (P)0 and displayed an adult-like retinal morphology at this time. GABA, its biosynthetic sources, and receptors had a similar cellular distribution in neonates and adults, but labeling of the outer plexiform layer and of certain amacrine and ganglion cells was more conspicuous at P0. In neonates, retinal sensitivity was 10 times lower than in adults, responses to ultraviolet light could not be detected, and oscillatory potentials were reduced or absent. Blockade of GABA(A/C) receptors by bicuculline and TPMPA had no noticeable effect in neonates, while it significantly altered the electroretinogram response in adults. CONCLUSION In spite of modest differences regarding retinal morphology and GABAergic expression, overall light response properties and GABAergic signaling are undeveloped in neonate O. degus compared to adults, suggesting that full retinal functionality requires a period of neural refinement under visual experience.
Collapse
Affiliation(s)
- Luz M Delgado
- Centro de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | | | | | | | | |
Collapse
|
38
|
Olsen RW, Sieghart W. GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 2009; 56:141-8. [PMID: 18760291 PMCID: PMC3525320 DOI: 10.1016/j.neuropharm.2008.07.045] [Citation(s) in RCA: 724] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2008] [Revised: 07/31/2008] [Accepted: 07/31/2008] [Indexed: 12/12/2022]
Abstract
This mini-review attempts to update experimental evidence on the existence of GABA(A) receptor pharmacological subtypes and to produce a list of those native receptors that exist. GABA(A) receptors are chloride channels that mediate inhibitory neurotransmission. They are members of the Cys-loop pentameric ligand-gated ion channel (LGIC) superfamily and share structural and functional homology with other members of that family. They are assembled from a family of 19 homologous subunit gene products and form numerous receptor subtypes with properties that depend upon subunit composition, mostly hetero-oligomeric. These vary in their regulation and developmental expression, and importantly, in brain regional, cellular, and subcellular localization, and thus their role in brain circuits and behaviors. We propose several criteria for including a receptor hetero-oligomeric subtype candidate on a list of native subtypes, and a working GABA(A) receptor list. These criteria can be applied to all the members of the LGIC superfamily. The list is divided into three categories of native receptor subtypes: "Identified", "Existence with High Probability", and "Tentative", and currently includes 26 members, but will undoubtedly grow, with future information. This list was first presented by Olsen & Sieghart (in press).
Collapse
Affiliation(s)
- Richard W Olsen
- Department of Molecular & Medical Pharmacology, Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1735, USA.
| | | |
Collapse
|
39
|
Traustason S, Eysteinsson T, Agnarsson BA, Stefánsson E. GABA agonists fail to protect the retina from ischemia-reperfusion injury. Exp Eye Res 2008; 88:361-6. [PMID: 19101544 DOI: 10.1016/j.exer.2008.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 06/17/2008] [Accepted: 07/08/2008] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to test the hypothesis that ischemia/reperfusion injury in the rat retina may be ameliorated by reducing retinal metabolism with either hypothermia or inhibitory GABA agonists. The intraocular pressure of each right eye in rats was raised to 130 mm Hg for 60 min with the left eye serving as normal control. The rats were divided into four groups in terms of drug and hypothermia treatment: (1) Untreated ischemia, (2) Hypothermia, (3) Baclofen/midazolam and (4) Baclofen/muscimol. Electroretinogram was recorded before ischemia and again after 10-day reperfusion. Histological analysis with H&E staining and cell counts was performed. Untreated ischemia/reperfusion resulted in severely reduced ERG responses. The ERG b-wave was reduced from 423+/-144 microV to 130+/-91 microV (mean+/-SD, n=5). With hypothermia the ERG b-wave was reduced from 499+/-80 microV to 237+/-111 microV (n=4). With combinations of baclofen and midazolam the ERG b-wave was reduced from 432+/-96 microV to 104+/-67 microV (n=7). In baclofen/muscimol treated eyes the ERG b-wave went from 426+/-101 microV to 148+/-118 microV (n=6). The histological tissue damage was severe in untreated ischemia and the baclofen/midazolam and baclofen/muscimol groups, but less severe in the hypothermia group. The GABA agonists do not provide any protection in our ischemia/reperfusion model. Our results are consistent with earlier reports that hypothermia may be helpful in ischemic conditions in the retina.
Collapse
Affiliation(s)
- Sindri Traustason
- Department of Ophthalmology and Physiology, National University Hospital, University of Iceland, Reykjavík, Iceland
| | | | | | | |
Collapse
|
40
|
A core paired-type and POU homeodomain-containing transcription factor program drives retinal bipolar cell gene expression. J Neurosci 2008; 28:7748-64. [PMID: 18667607 DOI: 10.1523/jneurosci.0397-08.2008] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The diversity of cell types found within the vertebrate CNS arises in part from action of complex transcriptional programs. In the retina, the programs driving diversification of various cell types have not been completely elucidated. To investigate gene regulatory networks that underlie formation and function of one retinal circuit component, the bipolar cell, transcriptional regulation of three bipolar cell-enriched genes was analyzed. Using in vivo retinal DNA transfection and reporter gene constructs, a 200 bp Grm6 enhancer sequence, a 445 bp Cabp5 promoter sequence, and a 164 bp Chx10 enhancer sequence, were defined, each driving reporter expression specifically in distinct but overlapping bipolar cell subtypes. Bioinformatic analysis of sequences revealed the presence of potential paired-type and POU homeodomain-containing transcription factor binding sites, which were shown to be critical for reporter expression through deletion studies. The paired-type homeodomain transcription factors (TFs) Crx and Otx2 and the POU homeodomain factor Brn2 are expressed in bipolar cells and interacted with the predicted binding sequences as assessed by electrophoretic mobility shift assay. Grm6, Cabp5, and Chx10 reporter activity was reduced in Otx2 loss-of-function retinas. Endogenous gene expression of bipolar cell molecular markers was also dependent on paired-type homeodomain-containing TFs, as assessed by RNA in situ hybridization and reverse transcription-PCR in mutant retinas. Cabp5 and Chx10 reporter expression was reduced in dominant-negative Brn2-transfected retinas. The paired-type and POU homeodomain-containing TFs Otx2 and Brn2 together appear to play a common role in regulating gene expression in retinal bipolar cells.
Collapse
|
41
|
Inhibitory interaction between P2X4 and GABA(C) rho1 receptors. Biochem Biophys Res Commun 2008; 375:38-43. [PMID: 18675255 DOI: 10.1016/j.bbrc.2008.07.096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 07/18/2008] [Indexed: 01/16/2023]
Abstract
Reciprocal functional inhibition between P2X and GABA(A/C) receptors represents a novel mechanism fine-tuning neuronal excitability. However, the participating receptors and underlying mechanisms are not fully understood. P2X(4) receptor is widely found in neurons that express GABA(C) rho1 receptor. Thus, we co-expressed P2X(4) and rho1 receptors in HEK293 cells and, using patch-clamp recording, examined whether they have mutual functional inhibition. Currents evoked by simultaneous application of ATP and GABA (I(ATP+GABA)) were significantly smaller compared to the addition of I(ATP) and I(GABA). Furthermore, I(ATP) were strongly suppressed during rho1 receptor activation. Similarly, I(GABA) were greatly attenuated during P2X(4) receptor activation. Such mutual inhibition was absent in cells only expressing P2X(4) or rho1 receptor. Taken together, these functional data support negative cross-talk between P2X(4) and rho1 receptors.
Collapse
|
42
|
Kim DS, Ross SE, Trimarchi JM, Aach J, Greenberg ME, Cepko CL. Identification of molecular markers of bipolar cells in the murine retina. J Comp Neurol 2008; 507:1795-810. [PMID: 18260140 PMCID: PMC2665264 DOI: 10.1002/cne.21639] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Retinal bipolar neurons serve as relay interneurons that connect rod and cone photoreceptor cells to amacrine and ganglion cells. They exhibit diverse morphologies essential for correct routing of photoreceptor cell signals to specific postsynaptic amacrine and ganglion cells. The development and physiology of these interneurons have not been completely defined molecularly. Despite previous identification of genes expressed in several bipolar cell subtypes, molecules that mark each bipolar cell type still await discovery. In this report, novel genetic markers of murine bipolar cells were found. Candidates were initially generated by using microarray analysis of single bipolar cells and mining of retinal serial analysis of gene expression (SAGE) data. These candidates were subsequently tested for expression in bipolar cells by RNA in situ hybridization. Ten new molecular markers were identified, five of which are highly enriched in their expression in bipolar cells within the adult retina. Double-labeling experiments using probes for previously characterized subsets of bipolar cells were performed to identify the subtypes of bipolar cells that express the novel markers. Additionally, the expression of bipolar cell genes was analyzed in Bhlhb4 knockout retinas, in which rod bipolar cells degenerate postnatally, to delineate further the identity of bipolar cells in which novel markers are found. From the analysis of Bhlhb4 mutant retinas, cone bipolar cell gene expression appears to be relatively unaffected by the degeneration of rod bipolar cells. Identification of molecular markers for the various subtypes of bipolar cells will lead to greater insights into the development and function of these diverse interneurons.
Collapse
Affiliation(s)
- Douglas S Kim
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
43
|
GABAC receptor subunit mRNA expression in the rat superior colliculus is regulated by calcium channels, neurotrophins, and GABAC receptor activity. ACTA ACUST UNITED AC 2008; 35:251-66. [PMID: 18392729 DOI: 10.1007/s11068-008-9020-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 01/18/2008] [Accepted: 01/28/2008] [Indexed: 11/27/2022]
Abstract
The distribution of mRNA for the rho2 subunit of the GABA(C) receptor is much broader in organotypic SC cultures than in vivo, suggesting that GABA(C) receptor expression is regulated by environmental factors. Electrophysiological recordings indicate that neurons in SC cultures have functional GABA(C) receptors, although these receptors exhibited smaller conductance than in vivo, probably due to increased rho2 subunit expression. Adding cortical input, treatment with various neuromodulators, and blocking neuronal activity with TTX failed to affect the expression of rho2 subunits. Electrophysiological recordings revealed the presence of spontaneous Ca(2+) currents in SC cultures and preventing these, by treatment with blockers of L-type Ca(2+) channels, caused rho2 mRNA expression to decline to in vivo levels. In contrast, rho1 subunit mRNA levels remained unchanged, indicating that the two subunits are independently regulated. Surprisingly, both tonic activation and blockade of GABA(C) receptors upregulated rho1/rho2 mRNA expression. Further, NGF and BDNF promoted such expression during an early postnatal time window. In vivo, expression of the rho2 mRNA in the SC, and the rho2/rho3 mRNA in the retina increased with age. Expression of the rho2 mRNA in the visual cortex, and the rho1 mRNA in the retina and SC was constant. Subunit mRNA expression was similar in dark-reared animals, indicating that visual experience has no influence. These experiments suggest that GABA(C) receptor expression in the SC is regulated during postnatal development. While visual experience seems to have no influence on GABA(C) receptor subunits, spontaneous calcium currents selectively promote rho2 expression and both rho1 and rho2 are autoregulated both by GABA(C) receptor activity and by neurotrophic factors.
Collapse
|
44
|
Abstract
The expression of GABA(C) receptors has long been regarded as a specific property of bipolar cells in the inner retina where they control the information transfer from bipolar to retinal ganglion cells. A number of recent anatomical and physiological studies, however, have provided evidence that GABA(C) receptors are also expressed in many brain structures apart from the retina. The presence of GABA(C) receptors in many GABAergic neurons suggests that this receptor type may be involved in the regulation of local inhibition. This chapter focuses on the distribution of GABA(C) receptors and their possible function in various brain areas.
Collapse
Affiliation(s)
- Matthias Schmidt
- Allgemeine Zoologie and Neurobiologie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| |
Collapse
|
45
|
Frazao R, Nogueira MI, Wässle H. Colocalization of synaptic GABA(C)-receptors with GABA (A)-receptors and glycine-receptors in the rodent central nervous system. Cell Tissue Res 2007; 330:1-15. [PMID: 17610086 DOI: 10.1007/s00441-007-0446-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
Fast inhibition in the nervous system is preferentially mediated by GABA- and glycine-receptors. Two types of ionotropic GABA-receptor, the GABA(A)-receptor and GABA(C)-receptor, have been identified; they have specific molecular compositions, different sensitivities to GABA, different kinetics, and distinct pharmacological profiles. We have studied, by immunocytochemistry, the synaptic localization of glycine-, GABA(A)-, and GABA(C)-receptors in rodent retina, spinal cord, midbrain, and brain-stem. Antibodies specific for the alpha1 subunit of the glycine-receptor, the gamma2 subunit of the GABA(A)-receptor, and the rho subunits of the GABA(C)-receptor have been applied. Using double-immunolabeling, we have determined whether these receptors are expressed at the same postsynaptic sites. In the retina, no such colocalization was observed. However, in the spinal cord, we found the colocalization of glycine-receptors with GABA(A)- or GABA(C)-receptors and the colocalization of GABA(A)- and GABA(C)-receptors in approximately 25% of the synapses. In the midbrain and brain-stem, GABA(A)- and GABA(C)-receptors were colocalized in 10%-15% of the postsynaptic sites. We discuss the possible expression of heteromeric (hybrid) receptors assembled from GABA(A)- and GABA(C)-receptor subunits. Our results suggest that GABA(A)- and GABA(C)-receptors are colocalized in a minority of synapses of the central nervous system.
Collapse
Affiliation(s)
- Renata Frazao
- Neuroanatomie, Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, 60528, Frankfurt/Main, Germany
| | | | | |
Collapse
|
46
|
Kneussel M, Loebrich S. Trafficking and synaptic anchoring of ionotropic inhibitory neurotransmitter receptors. Biol Cell 2007; 99:297-309. [PMID: 17504238 DOI: 10.1042/bc20060120] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neurotransmitter receptors are subject to microtubule-based transport between intracellular organelles and the neuronal plasma membrane. Receptors that arrive at plasma membrane compartments diffuse laterally within the plane of the cellular surface. To achieve immobilization at their sites of action, cytoplasmic receptor residues bind to submembrane proteins, which are coupled to the underlying cytoskeleton by multiprotein scaffolds. GABA(A)Rs (gamma-aminobutyric type A receptors) and GlyRs (glycine receptors) are the major inhibitory receptors in the central nervous system. At inhibitory postsynaptic sites, all GlyRs and the majority of GABA(A)Rs directly or indirectly couple to gephyrin, a multimeric PSD (postsynaptic density) component. In addition to cluster formations at axo-dendritic contacts, individual GABA(A)R subtypes also anchor and concentrate at extrasynaptic positions, either through association with gephyrin or direct interaction with the ERM (ezrin/radixin/moesin) family protein radixin. In addition to their role in diffusion trapping of surface receptors, scaffold components also undergo rapid exchange to/from and between postsynaptic specializations, leading to a dynamic equilibrium of receptor-scaffold complexes. Moreover, scaffold components serve as adaptor proteins that mediate specificity in intracellular transport complexes. In the present review, we discuss the dynamic delivery, stabilization and removal of inhibitory receptors at synaptic sites.
Collapse
Affiliation(s)
- Matthias Kneussel
- Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universität Hamburg, Falkenried 94, Germany.
| | | |
Collapse
|
47
|
Ulrich M, Seeber S, Becker CM, Enz R. Tax1-binding protein 1 is expressed in the retina and interacts with the GABA(C) receptor rho1 subunit. Biochem J 2007; 401:429-36. [PMID: 16999686 PMCID: PMC1820818 DOI: 10.1042/bj20061036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Macromolecular signalling complexes that link neurotransmitter receptors to functionally and structurally associated proteins play an important role in the regulation of neurotransmission. Thus the identification of proteins binding to neurotransmitter receptors describes molecular mechanisms of synaptic signal transduction. To identify interacting proteins of GABA(C) (where GABA is gamma-aminobutyric acid) receptors in the retina, we used antibodies specific for GABA(C) receptor rho1-3 subunits. Analysis of immunoprecipitated proteins by MALDI-TOF MS (matrix-assisted laser-desorption ionization-time-of-flight MS) identified the liver regeneration-related protein 2 that is identical with amino acids 253-813 of the Tax1BP1 (Tax1-binding protein 1). A C-terminal region of Tax1BP1 bound to an intracellular domain of the rho1 subunit, but not to other subunits of GABA(C), GABA(A) or glycine receptors. Confocal laser-scanning microscopy demonstrated co-localization of Tax1BP1 and rho1 in clusters at the cell membrane of transfected cells. Furthermore, Tax1BP1 and GABA(C) receptors were co-expressed in both synaptic layers of the retina, indicating that Tax1BP1 is a component of GABA(C) receptor-containing signal complexes.
Collapse
Affiliation(s)
- Melanie Ulrich
- Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Silke Seeber
- Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Cord-Michael Becker
- Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Ralf Enz
- Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
48
|
Oltedal L, Mørkve SH, Veruki ML, Hartveit E. Patch-clamp investigations and compartmental modeling of rod bipolar axon terminals in an in vitro thin-slice preparation of the mammalian retina. J Neurophysiol 2006; 97:1171-87. [PMID: 17167059 DOI: 10.1152/jn.01010.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To extend the usefulness of rod bipolar cells for studies of chemical synaptic transmission, we have performed electrophysiological recordings from rod bipolar axon terminals in an in vitro slice preparation of the rat retina. Whole cell recordings from axon terminals and cell bodies were used to investigate the passive membrane properties of rod bipolar cells and analyzed with a two-compartment equivalent electrical circuit model developed by Mennerick et al. For both terminal- and soma-end recordings, capacitive current decays were well fitted by biexponential functions. Computer simulations of simplified models of rod bipolar cells demonstrated that estimates of the capacitance of the axon terminal compartment can depend critically on the recording location, with terminal-end recordings giving the best estimates. Computer simulations and whole cell recordings demonstrated that terminal-end recordings can yield more accurate estimates of the peak amplitude and kinetic properties of postsynaptic currents generated at the axon terminals due to increased electrotonic filtering of these currents when recorded at the soma. Finally, we present whole cell and outside-out patch recordings from axon terminals with responses evoked by GABA and glycine, spontaneous inhibitory postsynaptic currents, voltage-gated Ca(2+) currents, and depolarization-evoked reciprocal synaptic responses, verifying that the recorded axon terminals are involved in normal pre- and postsynaptic relationships. These results demonstrate that axon terminals of rod bipolar cells are directly accessible to whole cell and outside-out patch recordings, extending the usefulness of this preparation for detailed studies of pre- and postsynaptic mechanisms of synaptic transmission in the CNS.
Collapse
Affiliation(s)
- Leif Oltedal
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | | | | |
Collapse
|
49
|
Eggers ED, Lukasiewicz PD. Receptor and transmitter release properties set the time course of retinal inhibition. J Neurosci 2006; 26:9413-25. [PMID: 16971525 PMCID: PMC6674600 DOI: 10.1523/jneurosci.2591-06.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Synaptic inhibition is determined by the properties of postsynaptic receptors, neurotransmitter release, and clearance, but little is known about how these factors shape sensation-evoked inhibition. The retina is an ideal system to investigate inhibition because it can be activated physiologically with light, and separate inhibitory pathways can be assayed by recording from rod bipolar cells that possess distinct glycine, GABA(A), and GABA(C) receptors (R). We show that receptor properties differentially shape spontaneous IPSCs, whereas both transmitter release and receptor properties shape light-evoked (L) IPSCs. GABA(C)R-mediated IPSCs decayed the slowest, whereas glycineR- and GABA(A)R-mediated IPSCs decayed more rapidly. Slow GABA(C)Rs determined the L-IPSC decay, whereas GABA(A)Rs and glycineRs, which mediated rapid onset responses, determined the start of the L-IPSC. Both fast and slow inhibitory inputs distinctly shaped the output of rod bipolar cells. The slow GABA(C)Rs truncated glutamate release, making the A17 amacrine cell L-EPSCs more transient, whereas the fast GABA(A)R and glycineRs reduced the initial phase of glutamate release, limiting the peak amplitude of the L-EPSC. Estimates of transmitter release time courses suggested that glycine release was more prolonged than GABA release. The time course of GABA release activating GABA(C)Rs was slower than that activating GABA(A)Rs, consistent with spillover activation of GABA(C)Rs. Thus, both postsynaptic receptor and transmitter release properties shape light-evoked inhibition in retina.
Collapse
MESH Headings
- Amacrine Cells/drug effects
- Amacrine Cells/metabolism
- Animals
- Female
- Glutamic Acid/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Neural Pathways/cytology
- Neural Pathways/drug effects
- Neural Pathways/metabolism
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Neurotransmitter Agents/metabolism
- Neurotransmitter Agents/pharmacology
- Photic Stimulation
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptors, GABA/drug effects
- Receptors, GABA/metabolism
- Receptors, Glycine/drug effects
- Receptors, Glycine/metabolism
- Receptors, Neurotransmitter/agonists
- Receptors, Neurotransmitter/antagonists & inhibitors
- Receptors, Neurotransmitter/metabolism
- Retina/cytology
- Retina/drug effects
- Retina/metabolism
- Retinal Bipolar Cells/drug effects
- Retinal Bipolar Cells/metabolism
- Synaptic Membranes/drug effects
- Synaptic Membranes/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Time Factors
- Vision, Ocular/drug effects
- Vision, Ocular/physiology
Collapse
Affiliation(s)
- Erika D. Eggers
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri 63110
| | - Peter D. Lukasiewicz
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri 63110
| |
Collapse
|
50
|
Palmer MJ. Functional segregation of synaptic GABAA and GABAC receptors in goldfish bipolar cell terminals. J Physiol 2006; 577:45-53. [PMID: 17008372 PMCID: PMC2000669 DOI: 10.1113/jphysiol.2006.119560] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The transmission of light responses to retinal ganglion cells is regulated by inhibitory input from amacrine cells to bipolar cell (BC) synaptic terminals. GABA(A) and GABA(C) receptors in BC terminals mediate currents with different kinetics and are likely to have distinct functions in limiting BC output; however, the synaptic properties and localization of the receptors are currently poorly understood. By recording endogenous GABA receptor currents directly from BC terminals in goldfish retinal slices, I show that spontaneous GABA release activates rapid GABA(A) receptor miniature inhibitory postsynaptic currents (mIPSCs) (predominant decay time constant (tau(decay)), 1.0 ms) in addition to a tonic GABA(C) receptor current. The GABA(C) receptor antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) has no effect on the amplitude or kinetics of the rapid GABA(A) mIPSCs. In addition, inhibition of the GAT-1 GABA transporter, which strongly regulates GABA(C) receptor currents in BC terminals, fails to reveal a GABA(C) component in the mIPSCs. These data suggest that GABA(A) and GABA(C) receptors are highly unlikely to be synaptically colocalized. Using non-stationary noise analysis of the mIPSCs, I estimate that GABA(A) receptors in BC terminals have a single-channel conductance (gamma) of 17 pS and that an average of just seven receptors mediates a quantal event. From noise analysis of the tonic current, GABA(C) receptor gamma is estimated to be 4 pS. Identified GABA(C) receptor mIPSCs exhibit a slow decay (tau(decay), 54 ms) and are mediated by approximately 42 receptors. The distinct properties and localization of synaptic GABA(A) and GABA(C) receptors in BC terminals are likely to facilitate their specific roles in regulating the transmission of light responses in the retina.
Collapse
Affiliation(s)
- Mary J Palmer
- Neuroscience Group, Institute for Science and Technology in Medicine, Keele University, Keele, ST5 5BG, UK.
| |
Collapse
|