1
|
Antonini A, Harris SL, Stryker MP. Neurotrophin NT-4/5 Promotes Structural Changes in Neurons of the Developing Visual Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572693. [PMID: 38187745 PMCID: PMC10769316 DOI: 10.1101/2023.12.20.572693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Current hypotheses on the mechanisms underlying the development and plasticity of the ocular dominance system through competitive interactions between pathways serving the two eyes strongly suggest the involvement of neurotrophins and their high affinity receptors. In the cat, infusion of the tyrosine kinase B ligand (trkB), neurotrophin-4/5 (NT-4/5), abolishes ocular dominance plasticity that follows monocular deprivation (Gillespie et al., 2000), while tyrosine kinase A and C ligands (trkA and trkC) do not have this effect. One interpretation of this finding is that NT-4/5 causes overgrowth and sprouting of thalamocortical and/or corticocortical terminals, leading to promiscuous neuronal connections which override the experience-dependent fine tuning of connections based on correlated activity. The present study tested whether neurons in cortical regions infused with NT-4/5 showed anatomical changes compatible with this hypothesis. Cats at the peak of the critical period received chronic infusion NT-4/5 into visual cortical areas 17/18 via an osmotic minipump. Visual cortical neurons were labeled in fixed slices using the DiOlistics methods (Gan et al., 2000) and analyzed in confocal microscopy. Infusion of NT-4/5 induced a significant increase of spine-like processes on primary dendrites and a distinctive sprouting of protuberances from neuronal somata in all layers. The increase of neuronal membrane was paralleled by an increase in density of the presynaptic marker synaptophysin in infused areas, suggesting an increase in the numbers of synapses. A contingent of these newly formed synapses may feed into inhibitory circuits, as suggested by an increase of GAD-65 immunostaining in NT-4/5 affected areas. These anatomical changes are consistent with the physiological changes in such animals, suggesting that excess trkB neurotrophin can stimulate the formation of promiscuous connections during the critical period.
Collapse
Affiliation(s)
- Antonella Antonini
- Kavli Center for Fundamental Neuroscience, Department of Physiology, University of California, San Francisco, California 94158
| | - Sheri L Harris
- Kavli Center for Fundamental Neuroscience, Department of Physiology, University of California, San Francisco, California 94158
| | - Michael P Stryker
- Kavli Center for Fundamental Neuroscience, Department of Physiology, University of California, San Francisco, California 94158
| |
Collapse
|
2
|
Schwartz BA, Wang W, Bao S. Pharmacological DNA Demethylation Weakens Inhibitory Synapses in the Auditory Cortex and Re-opens the Critical Period for Frequency Map Plasticity. Neuroscience 2020; 440:239-248. [PMID: 32512139 DOI: 10.1016/j.neuroscience.2020.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
The critical period is a time of maximal plasticity within the cortex. The progression of the critical period is marked by experience-dependent transcriptional alterations in cortical neurons, which in turn shifts the excitatory-inhibitory balance in the brain, and accordingly reduces plasticity. Epigenetic mechanisms, such as DNA methylation, control the transcriptional state of neurons, and have been shown to be dynamically regulated during the critical period. Here we show that adult animals have a significantly higher concentration of DNA methylation than critical period animals. Pharmacological reduction of DNA methylation in adult animals re-establishes critical period auditory map plasticity. Furthermore, the reduction of DNA methylation in adult animals, reverted intrinsic characteristics of inhibitory synapses to an immature state. Our data suggest that accumulation of DNA methylation during the critical period confers a mature phenotype to cortical neurons, which in turn, facilitates the reduction in plasticity seen after the critical period.
Collapse
Affiliation(s)
- Benjamin A Schwartz
- Neuroscience Program, University of Arizona, Tucson, AZ 85724, United States
| | - Weihua Wang
- Departments of Physiology, University of Arizona, Tucson, AZ 85724, United States
| | - Shaowen Bao
- Neuroscience Program, University of Arizona, Tucson, AZ 85724, United States; Departments of Physiology, University of Arizona, Tucson, AZ 85724, United States.
| |
Collapse
|
3
|
Brain-Derived Neurotrophic Factor Has a Transsynaptic Trophic Effect on Neural Activity in an Adult Forebrain Circuit. J Neurosci 2019; 40:1226-1231. [PMID: 31857358 DOI: 10.1523/jneurosci.2375-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 11/21/2022] Open
Abstract
While hormone-driven plasticity in the adult brain is well studied, the underlying cellular and molecular mechanisms are less well understood. One example of this is seasonal plasticity in the avian brain, where song nuclei exhibit hormonally driven changes in response to changing photoperiod and circulating sex steroid hormones. Hormone receptor activation in song nucleus HVC (proper name) elicits a robust change in activity in target nucleus RA (robust nucleus of the arcopallium), but the molecular signal responsible for this is unknown. This study addressed whether brain-derived neurotrophic factor (BDNF) mediates a transsynaptic effect from HVC to RA in male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii). In situ hybridization confirmed an increase in BDNF expression in HVC neurons of birds switched to a long-day (LD) photoperiod plus systemically elevated testosterone (T) levels, compared with short-day (SD) conditions. BDNF expression was virtually absent in RA neurons of SD birds, increasing to barely detectable levels in a small subset of cells in LD+T birds. Infusion of BDNF protein adjacent to the RA of SD birds caused an increase in the spontaneous neuron firing rate. Conversely, the infusion of ANA12, a specific antagonist of the tyrosine-related kinase B (TrkB) for BDNF, prevented the increase in RA neuron firing rate in LD+T birds. These results indicate that BDNF is sufficient, and TrkB receptor activation is necessary, for the transsynaptic trophic effect exerted by HVC on RA. The dramatic change in the activity of RA neurons during the breeding season provides a clear example of transsynaptic BDNF effects in the adult brain in a functionally relevant circuit.SIGNIFICANCE STATEMENT Sex steroid hormones drive changes in brain circuits in all vertebrates, both within specific neurons and on their synaptic targets. Such changes can lead to profound changes in behavior, but little is known about the precise molecular mechanisms that underlie this process. We addressed this question in a seasonally breeding songbird and found that the trophic effects of one forebrain song nucleus on its target are mediated transsynaptically by the neurotrophin BDNF. This suggests that, in addition to their role in development, neurotrophins have critical roles in adult brain plasticity.
Collapse
|
4
|
Castrén E, Antila H. Neuronal plasticity and neurotrophic factors in drug responses. Mol Psychiatry 2017; 22:1085-1095. [PMID: 28397840 PMCID: PMC5510719 DOI: 10.1038/mp.2017.61] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 02/07/2023]
Abstract
Neurotrophic factors, particularly brain-derived neurotrophic factor (BDNF) and other members of the neurotrophin family, are central mediators of the activity-dependent plasticity through which environmental experiences, such as sensory information are translated into the structure and function of neuronal networks. Synthesis, release and action of BDNF is regulated by neuronal activity and BDNF in turn leads to trophic effects such as formation, stabilization and potentiation of synapses through its high-affinity TrkB receptors. Several clinically available drugs activate neurotrophin signaling and neuronal plasticity. In particular, antidepressant drugs rapidly activate TrkB signaling and gradually increase BDNF expression, and the behavioral effects of antidepressants are mediated by and dependent on BDNF signaling through TrkB at least in rodents. These findings indicate that antidepressants, widely used drugs, effectively act as TrkB activators. They further imply that neuronal plasticity is a central mechanism in the action of antidepressant drugs. Indeed, it was recently discovered that antidepressants reactivate a state of plasticity in the adult cerebral cortex that closely resembles the enhanced plasticity normally observed during postnatal critical periods. This state of induced plasticity, known as iPlasticity, allows environmental stimuli to beneficially reorganize networks abnormally wired during early life. iPlasticity has been observed in cortical as well as subcortical networks and is induced by several pharmacological and non-pharmacological treatments. iPlasticity is a new pharmacological principle where drug treatment and rehabilitation cooperate; the drug acts permissively to enhance plasticity and rehabilitation provides activity to guide the appropriate wiring of the plastic network. Optimization of iPlastic drug treatment with novel means of rehabilitation may help improve the efficacy of available drug treatments and expand the use of currently existing drugs into new indications.
Collapse
|
5
|
Cai S, Fischer QS, He Y, Zhang L, Liu H, Daw NW, Yang Y. GABAB receptor-dependent bidirectional regulation of critical period ocular dominance plasticity in cats. PLoS One 2017; 12:e0180162. [PMID: 28662175 PMCID: PMC5491141 DOI: 10.1371/journal.pone.0180162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/09/2017] [Indexed: 01/05/2023] Open
Abstract
Gama amino butyric acid (GABA) inhibition plays an important role in the onset and offset of the critical period for ocular dominance (OD) plasticity in the primary visual cortex. Previous studies have focused on the involvement of GABAA receptors, while the potential contribution of GABAB receptors to OD plasticity has been neglected. In this study, the GABAB receptor antagonist SCH50911 or agonist baclofen was infused into the primary visual cortex of cats concurrently with a period of monocular deprivation (MD). Using single-unit recordings we found that the OD shift induced by four days of MD during the critical period was impaired by infusion of the antagonist SCH50911, but enhanced by infusion of the agonist baclofen. In contrast, seven days of MD in adult cats did not induce any significant OD shift, even when combined with the infusion of SCH50911 or baclofen. Together, these findings indicate that an endogenous GABAB receptor-mediated inhibition contributes to juvenile, but not adult, OD plasticity.
Collapse
Affiliation(s)
- Shanshan Cai
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Quentin S. Fischer
- Department of Ophthalmology and Visual Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yu He
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Li Zhang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hanxiao Liu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Nigel W. Daw
- Department of Ophthalmology and Visual Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yupeng Yang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Department of Ophthalmology and Visual Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
6
|
Falsini B, Chiaretti A, Rizzo D, Piccardi M, Ruggiero A, Manni L, Soligo M, Dickmann A, Federici M, Salerni A, Timelli L, Guglielmi G, Lazzareschi I, Caldarelli M, Galli-Resta L, Colosimo C, Riccardi R. Nerve growth factor improves visual loss in childhood optic gliomas: a randomized, double-blind, phase II clinical trial. ACTA ACUST UNITED AC 2016; 139:404-14. [PMID: 26767384 DOI: 10.1093/brain/awv366] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/26/2015] [Indexed: 11/15/2022]
Abstract
Paediatric optic pathway gliomas are low-grade brain tumours characterized by slow progression and invalidating visual loss. Presently there is no strategy to prevent visual loss in this kind of tumour. This study evaluated the effects of nerve growth factor administration in protecting visual function in patients with optic pathway glioma-related visual impairment. A prospective randomized double-blind phase II clinical trial was conducted in 18 optic pathway glioma patients, aged from 2 to 23 years, with stable disease and severe visual loss. Ten patients were randomly assigned to receive a single 10-day course of 0.5 mg murine nerve growth factor as eye drops, while eight patients received placebo. All patients were evaluated before and after treatment, testing visual acuity, visual field, visual-evoked potentials, optic coherence tomography, electroretinographic photopic negative response, and magnetic resonance imaging. Post-treatment evaluations were repeated at 15, 30, 90, and 180 days Brain magnetic resonance imaging was performed at baseline and at 180 days. Treatment with nerve growth factor led to statistically significant improvements in objective electrophysiological parameters (electroretinographic photopic negative response amplitude at 180 days and visual-evoked potentials at 30 days), which were not observed in placebo-treated patients. Furthermore, in patients in whom visual fields could still be measured, visual field worsening was only observed in placebo-treated cases, while three of four nerve growth factor-treated subjects showed significant visual field enlargement. This corresponded to improved visually guided behaviour, as reported by the patients and/or the caregivers. There was no evidence of side effects related to nerve growth factor treatment. Nerve growth factor eye drop administration appears a safe, easy and effective strategy for the treatment of visual loss associated with optic pathway gliomas.
Collapse
Affiliation(s)
- Benedetto Falsini
- 1 Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Chiaretti
- 2 Paediatric Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Daniela Rizzo
- 2 Paediatric Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marco Piccardi
- 1 Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Ruggiero
- 2 Paediatric Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luigi Manni
- 3 Institute of Translational Pharmacology, CNR, 00142 Rome, Italy
| | - Marzia Soligo
- 3 Institute of Translational Pharmacology, CNR, 00142 Rome, Italy
| | - Anna Dickmann
- 1 Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Matteo Federici
- 1 Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Annabella Salerni
- 1 Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Gaspare Guglielmi
- 5 Pharmacy Gemelli Hospital, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ilaria Lazzareschi
- 2 Paediatric Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Massimo Caldarelli
- 6 Paediatric Neurosurgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Cesare Colosimo
- 8 Institute of Radiology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Riccardo Riccardi
- 2 Paediatric Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
7
|
Willoughby CL, Fleuriet J, Walton MM, Mustari MJ, McLoon LK. Adaptation of slow myofibers: the effect of sustained BDNF treatment of extraocular muscles in infant nonhuman primates. Invest Ophthalmol Vis Sci 2015; 56:3467-83. [PMID: 26030102 DOI: 10.1167/iovs.15-16852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We evaluated promising new treatment options for strabismus. Neurotrophic factors have emerged as a potential treatment for oculomotor disorders because of diverse roles in signaling to muscles and motor neurons. Unilateral treatment with sustained release brain-derived neurotrophic factor (BDNF) to a single lateral rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop in correlation with extraocular muscle (EOM) changes during the critical period for development of binocularity. METHODS The lateral rectus muscles of one eye in two infant macaques were treated with sustained delivery of BDNF for 3 months. Eye alignment was assessed using standard photographic methods. Muscle specimens were analyzed to examine the effects of BDNF on the density, morphology, and size of neuromuscular junctions, as well as myofiber size. Counts were compared to age-matched controls. RESULTS No change in eye alignment occurred with BDNF treatment. Compared to control muscle, neuromuscular junctions on myofibers expressing slow myosins had a larger area. Myofibers expressing slow myosin had larger diameters, and the percentage of myofibers expressing slow myosins increased in the proximal end of the muscle. Expression of BDNF was examined in control EOM, and observed to have strongest immunoreactivity outside the endplate zone. CONCLUSIONS We hypothesize that the oculomotor system adapted to sustained BDNF treatment to preserve normal alignment. Our results suggest that BDNF treatment preferentially altered myofibers expressing slow myosins. This implicates BDNF signaling as influencing the slow twitch properties of EOM.
Collapse
Affiliation(s)
- Christy L Willoughby
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Jérome Fleuriet
- Washington National Primate Research Center, Seattle, Washington, United States 4Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Mark M Walton
- Washington National Primate Research Center, Seattle, Washington, United States
| | - Michael J Mustari
- Washington National Primate Research Center, Seattle, Washington, United States 4Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Linda K McLoon
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
8
|
Effects of digesting chondroitin sulfate proteoglycans on plasticity in cat primary visual cortex. J Neurosci 2013; 33:234-43. [PMID: 23283337 DOI: 10.1523/jneurosci.2283-12.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Monocular deprivation (MD) during a critical period of postnatal development produces significant changes in the anatomy and physiology of the visual cortex, and the deprived eye becomes amblyopic. Extracellular matrix molecules have a major role in restricting plasticity such that the ability to recover from MD decreases with age. Chondroitin sulfate proteoglycans (CSPGs) act as barriers to cell migration and axon growth. Previous studies showing that degradation of CSPGs by the bacterial enzyme chondroitinase can restore plasticity in the adult rat visual cortex suggest a potential treatment for amblyopia. Here MD was imposed in cats from the start of the critical period until 3.5 months of age. The deprived eye was reopened, the functional architecture of the visual cortex was assessed by optical imaging of intrinsic signals, and chondroitinase was injected into one hemisphere. Imaging was repeated 1 and 2 weeks postinjection, and visually evoked potentials (VEPs) and single-cell activity were recorded. Immunohistochemistry showed that digestion of CSPGs had been successful. After 2 weeks of binocular exposure, some recovery of deprived-eye responses occurred when chondroitinase had been injected into the hemisphere contralateral to that eye; when injected into the ipsilateral hemisphere, no recovery was seen. Deprived-eye VEPs were no larger in the injected hemisphere than in the opposite hemisphere. The small number of neurons dominated by the deprived eye exhibited poor tuning characteristics. These results suggest that despite structural effects of chondroitinase in adult cat V1, plasticity was not sufficiently restored to enable significant functional recovery of the deprived eye.
Collapse
|
9
|
Abstract
Brain development in neurodevelopmental disorders has been considered to comprise a sequence of critical periods, and abnormalities occurring during early development have been considered irreversible in adulthood. However, findings in mouse models of neurodevelopmental disorders, including fragile X, Rett syndrome, Down syndrome, and neurofibromatosis type I suggest that it is possible to reverse certain molecular, electrophysiological, and behavioral deficits associated with these disorders in adults by genetic or pharmacological manipulations. Furthermore, recent studies have suggested that critical period-like plasticity can be reactivated in the adult brain by environmental manipulations or by pharmacotherapy. These studies open up a tantalizing possibility that targeted pharmacological treatments in combination with regimes of training or rehabilitation might alleviate or reverse the symptoms of neurodevelopmental disorders even after the end of critical developmental periods. Even though translation from animal experimentation to clinical practice is challenging, these results suggest a rational basis for treatment of neurodevelopmental disorders in adulthood.
Collapse
|
10
|
Seibt J, Dumoulin MC, Aton SJ, Coleman T, Watson A, Naidoo N, Frank MG. Protein synthesis during sleep consolidates cortical plasticity in vivo. Curr Biol 2012; 22:676-82. [PMID: 22386312 DOI: 10.1016/j.cub.2012.02.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/16/2012] [Accepted: 02/07/2012] [Indexed: 01/12/2023]
Abstract
Sleep consolidates experience-dependent brain plasticity, but the precise cellular mechanisms mediating this process are unknown [1]. De novo cortical protein synthesis is one possible mechanism. In support of this hypothesis, sleep is associated with increased brain protein synthesis [2, 3] and transcription of messenger RNAs (mRNAs) involved in protein synthesis regulation [4, 5]. Protein synthesis in turn is critical for memory consolidation and persistent forms of plasticity in vitro and in vivo [6, 7]. However, it is unknown whether cortical protein synthesis in sleep serves similar functions. We investigated the role of protein synthesis in the sleep-dependent consolidation of a classic form of cortical plasticity in vivo (ocular dominance plasticity, ODP; [8, 9]) in the cat visual cortex. We show that intracortical inhibition of mammalian target of rapamycin (mTOR)-dependent protein synthesis during sleep abolishes consolidation but has no effect on plasticity induced during wakefulness. Sleep also promotes phosphorylation of protein synthesis regulators (i.e., 4E-BP1 and eEF2) and the translation (but not transcription) of key plasticity related mRNAs (ARC and BDNF). These findings show that sleep promotes cortical mRNA translation. Interruption of this process has functional consequences, because it abolishes the consolidation of experience in the cortex.
Collapse
Affiliation(s)
- Julie Seibt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6074, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Removing brakes on adult brain plasticity: from molecular to behavioral interventions. J Neurosci 2010; 30:14964-71. [PMID: 21068299 DOI: 10.1523/jneurosci.4812-10.2010] [Citation(s) in RCA: 387] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adult brain plasticity, although possible, remains more restricted in scope than during development. Here, we address conditions under which circuit rewiring may be facilitated in the mature brain. At a cellular and molecular level, adult plasticity is actively limited. Some of these "brakes" are structural, such as perineuronal nets or myelin, which inhibit neurite outgrowth. Others are functional, acting directly upon excitatory-inhibitory balance within local circuits. Plasticity in adulthood can be induced either by lifting these brakes through invasive interventions or by exploiting endogenous permissive factors, such as neuromodulators. Using the amblyopic visual system as a model, we discuss genetic, pharmacological, and environmental removal of brakes to enable recovery of vision in adult rodents. Although these mechanisms remain largely uncharted in the human, we consider how they may provide a biological foundation for the remarkable increase in plasticity after action video game play by amblyopic subjects.
Collapse
|
12
|
Yoshii A, Constantine-Paton M. Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol 2010; 70:304-22. [PMID: 20186705 DOI: 10.1002/dneu.20765] [Citation(s) in RCA: 342] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a prototypic neurotrophin that regulates diverse developmental events from the selection of neural progenitors to the terminal dendritic differentiation and connectivity of neurons. We focus here on activity-dependent synaptic regulation by BDNF and its receptor, full length TrkB. BDNF-TrkB signaling is involved in transcription, translation, and trafficking of proteins during various phases of synaptic development and has been implicated in several forms of synaptic plasticity. These functions are carried out by a combination of the three signaling cascades triggered when BDNF binds TrkB: The mitogen-activated protein kinase (MAPK), the phospholipase Cgamma (PLC PLCgamma), and the phosphatidylinositol 3-kinase (PI3K) pathways. MAPK and PI3K play crucial roles in both translation and/or trafficking of proteins induced by synaptic activity, whereas PLCgamma regulates intracellular Ca(2+) that can drive transcription via cyclic AMP and a protein kinase C. Conversely, the abnormal regulation of BDNF is implicated in various developmental and neurodegenerative diseases that perturb neural development and function. We will discuss the current state of understanding BDNF signaling in the context of synaptic development and plasticity with a focus on the postsynaptic cell and close with the evidence that basic mechanisms of BDNF function still need to be understood to effectively treat genetic disruptions of these pathways that cause devastating neurodevelopmental diseases.
Collapse
Affiliation(s)
- Akira Yoshii
- McGovern Institute for Brain Research, Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | |
Collapse
|
13
|
Prakash N, Frostig RD. What has intrinsic signal optical imaging taught us about NGF-induced rapid plasticity in adult cortex and its relationship to the cholinergic system? Mol Imaging Biol 2008; 7:14-21. [PMID: 15912271 DOI: 10.1007/s11307-005-0956-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intrinsic signal optical imaging (ISI) is a high-resolution functional brain mapping technique that is being used to further our understanding of the neocortex and its interaction with drugs. Recent studies using combination ISI and in vivo pharmacology have advanced our insight into the actions of both acetylcholine and neurotrophins on inducing rapid and large-scale cortical plasticity. In particular, it appears that acetylcholine (ACh), nicotinic ACh receptors, nerve growth factor (NGF), and NGF receptors (TrkA and p75) are involved in an important feedback loop between the basal forebrain cholinergic system (BFCS) and the neocortex. Specifically, recent data suggest that NGF expressed in the cortex may act on multiple time scales on the BFCS: acutely to increase BFCS release of acetylcholine, intermediately to induce sprouting of BFCS axons, and long-term to change gene expression of BFCS neurons. In this article, advances in understanding the links in vivo between the BFCS, neocortex, nicotinic ACh receptors, and NGF are reviewed.
Collapse
Affiliation(s)
- Neal Prakash
- Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095-6975, USA
| | | |
Collapse
|
14
|
TrkB kinase is required for recovery, but not loss, of cortical responses following monocular deprivation. Nat Neurosci 2008; 11:497-504. [PMID: 18311133 DOI: 10.1038/nn2068] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 02/08/2008] [Indexed: 02/07/2023]
Abstract
Changes in visual cortical responses that are induced by monocular visual deprivation are a widely studied example of competitive, experience-dependent neural plasticity. It has been thought that the deprived-eye pathway will fail to compete against the open-eye pathway for limited amounts of brain-derived neurotrophic factor, which acts on TrkB and is needed to sustain effective synaptic connections. We tested this model by using a chemical-genetic approach in mice to inhibit TrkB kinase activity rapidly and specifically during the induction of cortical plasticity in vivo. Contrary to the model, TrkB kinase activity was not required for any of the effects of monocular deprivation. When the deprived eye was re-opened during the critical period, cortical responses to it recovered. This recovery was blocked by TrkB inhibition. These findings suggest a more conventional trophic role for TrkB signaling in the enhancement of responses or growth of new connections, rather than a role in competition.
Collapse
|
15
|
Kanold PO, Shatz CJ. Subplate neurons regulate maturation of cortical inhibition and outcome of ocular dominance plasticity. Neuron 2006; 51:627-38. [PMID: 16950160 DOI: 10.1016/j.neuron.2006.07.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 05/11/2006] [Accepted: 07/06/2006] [Indexed: 11/26/2022]
Abstract
Synaptic plasticity during critical periods of development requires intact inhibitory circuitry. We report that subplate neurons are needed both for maturation of inhibition and for the proper sign of ocular dominance (OD) plasticity. Removal of subplate neurons prevents the developmental upregulation of genes involved in mature, fast GABAergic transmission in cortical layer 4, including GABA receptor subunits and KCC2, and thus prevents the switch to a hyperpolarizing effect of GABA. To understand the implications of these changes, a realistic circuit model was formulated. Simulations predicted that without subplate neurons, monocular deprivation (MD) paradoxically favors LGN axons representing the deprived (less active) eye, exactly what was then observed experimentally. Simulations also account for published results showing that OD plasticity requires mature inhibition. Thus, subplate neurons regulate molecular machinery required to establish an adult balance of excitation and inhibition in layer 4, and thereby influence the outcome of OD plasticity.
Collapse
Affiliation(s)
- Patrick O Kanold
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
16
|
Taha SA, Stryker MP. Molecular substrates of plasticity in the developing visual cortex. PROGRESS IN BRAIN RESEARCH 2005; 147:103-14. [PMID: 15581700 DOI: 10.1016/s0079-6123(04)47008-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ocular dominance plasticity may be the paradigmatic in vivo model of activity-dependent plasticity. More than four decades of intense research has delineated the network-level rules that govern synaptic change in this model. The recent characterization of a murine model for ocular dominance plasticity has facilitated rapid progress on a new front, extending our understanding of the molecular mechanisms underlying ocular dominance plasticity. In this review, we highlight recent advances in this research effort, focusing in particular on signaling pathways mediating shifts in ocular dominance, and mechanisms underlying the timing of the critical period.
Collapse
Affiliation(s)
- Sharif A Taha
- Department of Neurology, University of California at San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
17
|
Liao DS, Krahe TE, Prusky GT, Medina AE, Ramoa AS. Recovery of Cortical Binocularity and Orientation Selectivity After the Critical Period for Ocular Dominance Plasticity. J Neurophysiol 2004; 92:2113-21. [PMID: 15102897 DOI: 10.1152/jn.00266.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cortical binocularity is abolished by monocular deprivation (MD) during a critical period of development lasting from approximately postnatal day (P) 35 to P70 in ferrets. Although this is one of the best-characterized models of neural plasticity and amblyopia, very few studies have examined the requirements for recovery of cortical binocularity and orientation selectivity of deprived eye responses. Recent studies indicating that different mechanisms regulate loss and recovery of binocularity raise the possibility that different sensitive periods characterize loss and recovery of deprived eye responses. In this report, we have examined whether the potential for recovery of binocularity and orientation selectivity is restricted to the critical period. Quantitative single unit recordings revealed recovery of cortical binocularity and full recovery of orientation selectivity of deprived eye responses following prolonged periods of MD (i.e., >3 wk) starting at P49, near the peak of plasticity. Surprisingly, recovery was present when binocular vision was restored after the end of the critical period for ocular dominance plasticity, as late as P83. In contrast, ferrets that had never received visual experience through the deprived eye failed to recover binocularity even though normal binocular vision was restored at P50, halfway through the critical period. Collectively, these results indicate that there is potential for recovery of cortical binocularity and deprived eye orientation selectivity after the end of the critical period for ocular dominance plasticity.
Collapse
Affiliation(s)
- David S Liao
- Dept. of Anatomy and Neurobiology, Virginia Commonwealth Univ. School of Medicine, 1101 E. Marshall St., Sanger Hall Rm. 12-042, Richmond VA 23298-0709, USA
| | | | | | | | | |
Collapse
|
18
|
Schmidt KE, Singer W, Galuske RAW. Processing Deficits in Primary Visual Cortex of Amblyopic Cats. J Neurophysiol 2004; 91:1661-71. [PMID: 14668297 DOI: 10.1152/jn.00878.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Early esotropic squint frequently results in permanent visual deficits in one eye, referred to as strabismic amblyopia. The neurophysiological substrate corresponding to these deficits is still a matter of investigation. Electrophysiological evidence is available for disturbed neuronal interactions in both V1 and higher cortical areas. In this study, we investigated the modulation of responses in cat V1 to gratings at different orientations and spatial frequencies (SFs; 0.1–2.0 cycles/°) with optical imaging of intrinsic signals. Maps evoked by both eyes were well modulated at most spatial frequencies. The layout of the maps resembled that of normal cats, and iso-orientation domains tended to cross adjacent ocular dominance borders preferentially at right angles. Visually evoked potentials (VEPs) were recorded at SFs ranging from 0.1 to 3.5 cycles/° and revealed a consistently weaker eye for the majority of squinting cats. At each SF, interocular differences in VEP amplitudes corresponded well with differences in orientation response and selectivity in the maps. At 0.7–1.3 cycles/°, population orientation selectivity was significantly lower for the weaker eye in cats with VEP differences compared with those with no VEP amplitude differences. In addition, the cutoff SF, above which gratings no longer induced orientation maps, was lower for the weaker eye (≥1.0 cycles/°). These data reveal a close correlation between the loss of visual acuity in amblyopia as assessed by VEPs and the modulation of neuronal activation as seen by optical imaging of intrinsic signals. Furthermore, the results indicate that amblyopia is associated with altered intracortical processing already in V1.
Collapse
|
19
|
Abstract
Fetal alcohol syndrome is a major cause of learning and sensory deficits. These disabilities may result from disruption of neocortex development and plasticity. Alcohol exposure during the third trimester equivalent of human gestation may have especially severe and long-lasting consequences on learning and sensory processing, because this is when the functional properties and connectivity of neocortical neurons start to develop. To address this issue, we used the monocular deprivation model of neural plasticity, which shares many common mechanisms with learning. Ferrets were exposed to ethanol (3.5 mg/kg, i.p.) on alternate days for 3 weeks starting on postnatal day (P) 10. Animals were then monocularly deprived at the peak of ocular dominance plasticity after a prolonged alcohol-free period (15-20 d). Quantitative single-unit electrophysiology revealed that alcohol exposure disrupted ocular dominance plasticity while preserving robust visual responses. Moreover, optical imaging of intrinsic signals revealed that the reduction in visual cortex area driven by the deprived eye was much less pronounced in ethanol-treated than in control animals. Alcohol exposure starting at a later age (P20) did not disrupt ocular dominance plasticity, indicating that timing of exposure is crucial for the effects on visual plasticity. In conclusion, alcohol exposure during a brief period of development impairs ocular dominance plasticity at a later age. This model provides a novel approach to investigate the consequences of fetal alcohol exposure and should contribute to elucidate how alcohol disrupts neural plasticity.
Collapse
|
20
|
Ichisaka S, Katoh-Semba R, Hata Y, Ohshima M, Kameyama K, Tsumoto T. Activity-dependent change in the protein level of brain-derived neurotrophic factor but no change in other neurotrophins in the visual cortex of young and adult ferrets. Neuroscience 2003; 117:361-71. [PMID: 12614676 DOI: 10.1016/s0306-4522(02)00771-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neurotrophins are suggested to play a role in activity-dependent plasticity of visual cortex during the critical period of postnatal development. Thus, the concentration of neurotrophins in the cortex is expected to change with development and/or with alteration in neuronal activities. To test this, we measured protein levels of nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5 in visual cortex of young (postnatal day 38-46, at the peak of the critical period) and adult ferrets with two-site enzyme-immunoassay systems. Measurements were carried out also in somatosensory cortex, hippocampus and cerebellum as control. With development the level of brain-derived neurotrophic factor did not significantly change, while those of the other neurotrophins changed in the visual cortex. A blockade of visual inputs for 24 h by an injection of tetrodotoxin into both eyes significantly decreased brain-derived neurotrophic factor protein level in the visual cortex, but not in the other regions in both young and adult ferrets. On the other hand, no significant decrease was seen in the protein level of the other neurotrophins in the visual cortex of young and adult ferrets. A monocular injection of tetrodotoxin in young ferrets resulted in the reduction of brain-derived neurotrophic factor by approximately half that by binocular injection. The degree of the decrease in the contralateral cortex to the injected eye was significantly larger than that in the ipsilateral cortex, reflecting that the contralateral eye is dominantly represented in the cortex in ferrets. Blockade of cortical neuronal activities by a GABA(A) receptor agonist led to a remarkable reduction of brain-derived neurotrophic factor protein in the visual cortex. These results suggest that the level of brain-derived neurotrophic factor protein in visual cortex is regulated by activities of cortical neurons.
Collapse
Affiliation(s)
- S Ichisaka
- Division of Neurophysiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
The mammalian cerebral cortex requires the proper formation of exquisitely precise circuits to function correctly. These neuronal circuits are assembled during development by the formation of synaptic connections between hundreds of thousands of differentiating neurons. Although the development of the cerebral cortex has been well described anatomically, the cellular and molecular mechanisms that guide neuronal differentiation and formation of connections are just beginning to be understood. Moreover, despite evidence that coordinated patterns of activity underlie reorganization of brain circuits during critical periods of development, the molecular signals that translate activity into structural and functional changes in connections remain unknown. Recently, the neurotrophins have emerged as attractive candidates not only for regulating neuronal differentiation in the developing brain, but also for mediating activity-dependent synaptic plasticity. The neurotrophins meet many of the criteria required for molecular signals involved in neuronal differentiation and plasticity. They are present in the cerebral cortex during development and their expression is regulated by synaptic activity. In turn, the neurotrophins themselves strongly influence both short-term synaptic plasticity and long-term potentiation and depression. In addition to their functional effects, the neurotrophins also profoundly regulate the structural changes that underlie axonal and dendritic differentiation. Finally, the neurotrophins have been implicated in mediating synaptic competition required for activity-dependent plasticity during the critical period. This chapter presents and discusses the rapidly accumulating evidence that the neurotrophins are critical for neuronal differentiation and that they may be involved in activity-dependent synaptic refinement in the developing cerebral cortex.
Collapse
Affiliation(s)
- A Kimberley McAllister
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, California 95616, USA
| |
Collapse
|
22
|
Huberman AD, McAllister AK. Neurotrophins and visual cortical plasticity. PROGRESS IN BRAIN RESEARCH 2002; 138:39-51. [PMID: 12432761 DOI: 10.1016/s0079-6123(02)38069-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Andrew D Huberman
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95616, USA
| | | |
Collapse
|
23
|
Abstract
Diverse molecular mechanisms have been discovered that mediate the loss of responses to the deprived eye during monocular deprivation. cAMP/Ca2+ response element-binding protein (CREB) function, in particular, is thought to be essential for ocular dominance plasticity during monocular deprivation. In contrast, we have very little information concerning the molecular mechanisms of recovery from the effects of monocular deprivation, even though this information is highly relevant for understanding cortical plasticity. To test the involvement of CREB activation in recovery of responses to the deprived eye, we used herpes simplex virus (HSV) to express in the primary visual cortex a dominant-negative form of CREB (HSV-mCREB) containing a single point mutation that prevents its activation. This mutant was used to suppress CREB function intracortically during the period when normal vision was restored in two protocols for recovery from monocular deprivation: reverse deprivation and binocular vision. In the reverse deprivation model, inhibition of CREB function prevented loss of responses to the newly deprived eye but did not prevent simultaneous recovery of responses to the previously deprived eye. Full recovery of cortical binocularity after restoration of binocular vision was similarly unaffected by HSV-mCREB treatment. The HSV-mCREB injections produced strong suppression of CREB function in the visual cortex, as ascertained by both DNA binding assays and immunoblot analysis showing a decrease in the expression of the transcription factor C/EBPbeta, which is regulated by CREB. These results show a mechanistic dichotomy between loss and recovery of neural function in visual cortex; CREB function is essential for loss but not for recovery of deprived eye responses.
Collapse
|
24
|
Beaver CJ, Fischer QS, Ji Q, Daw NW. Orientation selectivity is reduced by monocular deprivation in combination with PKA inhibitors. J Neurophysiol 2002; 88:1933-40. [PMID: 12364519 DOI: 10.1152/jn.2002.88.4.1933] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that the protein kinase A (PKA) inhibitor, 8-chloroadenosine-3',5'-monophosphorothioate (Rp-8-Cl-cAMPS), abolishes ocular dominance plasticity in the cat visual cortex. Here we investigate the effect of this inhibitor on orientation selectivity. The inhibitor reduces orientation selectivity in monocularly deprived animals but not in normal animals. In other words, PKA inhibitors by themselves do not affect orientation selectivity, nor does monocular deprivation by itself, but monocular deprivation in combination with a PKA inhibitor does affect orientation selectivity. This result is found for the receptive fields in both deprived and nondeprived eyes. Although there is a tendency for the orientation selectivity in the nondeprived eye to be higher than the orientation selectivity in the deprived eye, the orientation selectivity in both eyes is considerably less than normal. The result is striking in animals at 4 wk of age. The effect of the monocular deprivation on orientation selectivity is reduced at 6 wk of age and absent at 9 wk of age, while the effect on ocular dominance shifts is less changed in agreement with previous results showing that the critical period for orientation/direction selectivity ends earlier than the critical period for ocular dominance. We conclude that closure of one eye in combination with inhibition of PKA reduces orientation selectivity during the period that orientation selectivity is still mutable and that the reduction in orientation selectivity is transferred to the nondeprived eye.
Collapse
Affiliation(s)
- Chris J Beaver
- Department of Ophthalmology and Visual Sciences, Yale University Medical School, New Haven, Connecticut 06520-8061, USA
| | | | | | | |
Collapse
|
25
|
Abstract
The visual cortex is one of the favorite models for the study of experience-dependent changes in neuronal structure and function. A number of recent investigations indicate that the neurotrophic factors of the nerve growth factor family (neurotrophins) play a pivotal role in visual cortical plasticity. Neurotrophins and their receptors are present in the cortex during the critical period for plasticity, and neurotrophin levels are regulated by electrical activity. Neurotrophins modulate synaptic transmission and patterns of neuronal connectivity in the cortex. This review summarizes the in vivo and in vitro data that demonstrate the involvement of neurotrophins in visual cortical plasticity and discusses the possible mechanisms of their action.
Collapse
Affiliation(s)
- Matteo Caleo
- Scuola Normale Superiore, Istituto di Neurofisiologia del CNR, Pisa, Italy.
| | | |
Collapse
|
26
|
Jiang B, Akaneya Y, Ohshima M, Ichisaka S, Hata Y, Tsumoto T. Brain-derived neurotrophic factor induces long-lasting potentiation of synaptic transmission in visual cortex in vivo in young rats, but not in the adult. Eur J Neurosci 2001; 14:1219-28. [PMID: 11703451 DOI: 10.1046/j.0953-816x.2001.01751.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) rapidly enhances excitatory synaptic transmission in cortical slices. To date, however, a question of how long such an action persists remains unanswered as it is hard to record synaptic responses longer than several hours in slice preparations. To address this question and to investigate possible age-dependency of the action, we analysed effects of a brief application of BDNF and nerve growth factor (NGF) on field potentials of visual cortex in rats of postnatal days 13-17 and 19-24 and in the adulthood for 10-24 h. Evoked potentials to stimulation of the lateral geniculate nucleus were recorded simultaneously from two cortical sites into which the neurotrophin and control solution were injected. An application of BDNF induced a slowly developing increase in the field potential amplitude in young rats. The amplitude attained a plateau level 3-4 h after the infusion; 139 +/- 26% (mean +/- SD) and 132 +/- 21% of the baseline in the rats at P13-17 and P19-24, respectively. This potentiation remained stable from 4 to 8 h, then gradually decreased to the baseline 15-16 h after the infusion. NGF applied in the same way did not induce potentiation. An inhibitor of BDNF receptors blocked the potentiation when it was applied immediately after the BDNF application, but was not effective about 2 h later. In the adults, BDNF did not potentiate field potentials. These results indicate that BDNF induces synaptic potentiation lasting for several hours only in the developing cortex through processes downstream of receptor activation.
Collapse
Affiliation(s)
- B Jiang
- Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 Japan
| | | | | | | | | | | |
Collapse
|
27
|
Silver MA, Stryker MP. TrkB-like immunoreactivity is present on geniculocortical afferents in layer IV of kitten primary visual cortex. J Comp Neurol 2001; 436:391-8. [PMID: 11447584 PMCID: PMC2553095 DOI: 10.1002/cne.1075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exogenous administration of the neurotrophins brain-derived neurotrophic factor (BDNF) or neurotrophin-4/5 (NT-4/5), or blockade of their endogenous actions, have been reported to affect the anatomic organization and physiological responses of neurons in developing mammalian primary visual cortex. Experimental alteration of levels of these neurotrophic factors can also influence the morphology of the geniculocortical afferents that project from the lateral geniculate nucleus (LGN) to primary visual cortex. BDNF and NT-4/5 are ligands of the TrkB tyrosine kinase receptor. Although multiple populations of cortical neurons express TrkB, it is not known whether geniculocortical afferents express this receptor on their axon branches in visual cortex. We have anatomically labeled geniculocortical afferents of postnatal day 40 kittens with the anterograde neuronal tracer Phaseolus vulgaris leucoagglutinin (PHA-L) and performed double-label immunofluorescence with a panel of anti-TrkB antibodies. Confocal microscopy and object-based colocalization analysis were used to measure levels of TrkB-like immunoreactivity (IR) on geniculocortical afferents in layer IV of primary visual cortex. By using a conservative analysis involving a comparison of measured colocalization with the amount of colocalization expected based on random overlap of TrkB puncta and PHA-L--labeled afferents, 3 of 5 anti-TrkB antibodies tested showed significant colocalization with the geniculocortical axons. Results for the other two antibodies were indeterminate. The indices obtained for colocalization of TrkB and geniculocortical afferents were also compared with the equivalent index obtained for GAD65, a protein that has a similar overall expression pattern to that of TrkB but is not expressed on geniculocortical axons. This analysis indicated that TrkB was present on geniculocortical axons for all five TrkB antibodies tested. TrkB-like IR was also observed on neuronal somata in the LGN. These results indicate that TrkB receptors on geniculocortical afferents are potential mediators of the actions of BDNF and NT-4/5 in developing visual cortex.
Collapse
Affiliation(s)
- M A Silver
- W.M. Keck Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, California 94143-0444, USA
| | | |
Collapse
|
28
|
Abstract
The development of cortical layers, areas and networks is mediated by a combination of factors that are present in the cortex and are influenced by thalamic input. Electrical activity of thalamocortical afferents has a progressive role in shaping cortex. For early thalamic innervation and patterning, the presence of activity might be sufficient; for features that develop later, such as intracortical networks that mediate emergent responses of cortex, the spatiotemporal pattern of activity often has an instructive role. Experiments that route projections from the retina to the auditory pathway alter the pattern of activity in auditory thalamocortical afferents at a very early stage and reveal the progressive influence of activity on cortical development. Thus, cortical features such as layers and thalamocortical innervation are unaffected, whereas features that develop later, such as intracortical connections, are affected significantly. Surprisingly, the behavioural role of 'rewired' cortex is also influenced profoundly, indicating the importance of patterned activity for this key aspect of cortical function.
Collapse
Affiliation(s)
- M Sur
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 45 Carleton Street, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
29
|
Silver MA, Fagiolini M, Gillespie DC, Howe CL, Frank MG, Issa NP, Antonini A, Stryker MP. Infusion of nerve growth factor (NGF) into kitten visual cortex increases immunoreactivity for NGF, NGF receptors, and choline acetyltransferase in basal forebrain without affecting ocular dominance plasticity or column development. Neuroscience 2001; 108:569-85. [PMID: 11738495 PMCID: PMC2452995 DOI: 10.1016/s0306-4522(01)00391-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intracerebroventricular or intracortical administration of nerve growth factor (NGF) has been shown to block or attenuate visual cortical plasticity in the rat. In cats and ferrets, the effects of exogenous NGF on development and plasticity of visual cortex have been reported to be small or nonexistent. To determine whether locally delivered NGF affects ocular dominance column formation or the plasticity produced by monocular deprivation in cats at the height of the critical period, we infused recombinant human NGF into the primary visual cortex of kittens using an implanted cannula minipump. NGF had no effect on the normal developmental segregation of geniculocortical afferents into ocular dominance columns as determined both physiologically and anatomically. The plasticity of binocular visual cortical responses induced by monocular deprivation was also normal in regions of immunohistochemically detectable NGF infusion, as measured using intrinsic signal optical imaging and single-unit electrophysiology. Immunohistochemical analysis of the basal forebrain regions of the same animals demonstrated that the NGF infused into cortex was biologically active, producing an increase in the number of NGF-, TrkA-, p75(NTR)-, and choline acetyltransferase-positive neurons in basal forebrain nuclei in the hemisphere ipsilateral to the NGF minipump compared to the contralateral basal forebrain neurons. We conclude that NGF delivered locally to axon terminals of cholinergic basal forebrain neurons resulted in increases in protein expression at the cell body through retrograde signaling.
Collapse
Affiliation(s)
- M A Silver
- W.M. Keck Center for Integrative Neuroscience and Neuroscience Graduate Program, Department of Physiology, Box 0444, 513 Parnassus Avenue, Room S-762, University of California, San Francisco, CA 94143-0444, USA
| | | | | | | | | | | | | | | |
Collapse
|