1
|
Liu Y, Chen Y, Duffy CR, VanLeuven AJ, Byers JB, Schriever HC, Ball RE, Carpenter JM, Gunderson CE, Filipov NM, Ma P, Kner PA, Lauderdale JD. Decreased GABA levels during development result in increased connectivity in the larval zebrafish tectum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612511. [PMID: 39314470 PMCID: PMC11419034 DOI: 10.1101/2024.09.11.612511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
γ-aminobutyric acid (GABA) is an abundant neurotransmitter that plays multiple roles in the vertebrate central nervous system (CNS). In the early developing CNS, GABAergic signaling acts to depolarize cells. It mediates several aspects of neural development, including cell proliferation, neuronal migration, neurite growth, and synapse formation, as well as the development of critical periods. Later in CNS development, GABAergic signaling acts in an inhibitory manner when it becomes the predominant inhibitory neurotransmitter in the brain. This behavior switch occurs due to changes in chloride/cation transporter expression. Abnormalities of GABAergic signaling appear to underlie several human neurological conditions, including seizure disorders. However, the impact of reduced GABAergic signaling on brain development has been challenging to study in mammals. Here we take advantage of zebrafish and light sheet imaging to assess the impact of reduced GABAergic signaling on the functional circuitry in the larval zebrafish optic tectum. Zebrafish have three gad genes: two gad1 paralogs known as gad1a and gad1b, and gad2. The gad1b and gad2 genes are expressed in the developing optic tectum. Null mutations in gad1b significantly reduce GABA levels in the brain and increase electrophysiological activity in the optic tectum. Fast light sheet imaging of genetically encoded calcium indicator (GCaMP)-expressing gab1b null larval zebrafish revealed patterns of neural activity that were different than either gad1b-normal larvae or gad1b-normal larvae acutely exposed to pentylenetetrazole (PTZ). These results demonstrate that reduced GABAergic signaling during development increases functional connectivity and concomitantly hyper-synchronization of neuronal networks.
Collapse
Affiliation(s)
- Yang Liu
- School of Electrical and Computer Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yongkai Chen
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - Carly R Duffy
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Ariel J VanLeuven
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - John Branson Byers
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Hannah C Schriever
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Rebecca E Ball
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Jessica M Carpenter
- Department of Physiology and Pharmacology, The University of Georgia, College of Veterinary Medicine, Athens, GA, 30602, USA
- Neuroscience Division of the Biomedical and Translational Sciences Institute, The University of Georgia, Athens, GA 30602, USA
| | - Chelsea E Gunderson
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology, The University of Georgia, College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Ping Ma
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - Peter A Kner
- School of Electrical and Computer Engineering, The University of Georgia, Athens, GA 30602, USA
| | - James D Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
- Neuroscience Division of the Biomedical and Translational Sciences Institute, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Aseyev N, Ivanova V, Balaban P, Nikitin E. Current Practice in Using Voltage Imaging to Record Fast Neuronal Activity: Successful Examples from Invertebrate to Mammalian Studies. BIOSENSORS 2023; 13:648. [PMID: 37367013 DOI: 10.3390/bios13060648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
The optical imaging of neuronal activity with potentiometric probes has been credited with being able to address key questions in neuroscience via the simultaneous recording of many neurons. This technique, which was pioneered 50 years ago, has allowed researchers to study the dynamics of neural activity, from tiny subthreshold synaptic events in the axon and dendrites at the subcellular level to the fluctuation of field potentials and how they spread across large areas of the brain. Initially, synthetic voltage-sensitive dyes (VSDs) were applied directly to brain tissue via staining, but recent advances in transgenic methods now allow the expression of genetically encoded voltage indicators (GEVIs), specifically in selected neuron types. However, voltage imaging is technically difficult and limited by several methodological constraints that determine its applicability in a given type of experiment. The prevalence of this method is far from being comparable to patch clamp voltage recording or similar routine methods in neuroscience research. There are more than twice as many studies on VSDs as there are on GEVIs. As can be seen from the majority of the papers, most of them are either methodological ones or reviews. However, potentiometric imaging is able to address key questions in neuroscience by recording most or many neurons simultaneously, thus providing unique information that cannot be obtained via other methods. Different types of optical voltage indicators have their advantages and limitations, which we focus on in detail. Here, we summarize the experience of the scientific community in the application of voltage imaging and try to evaluate the contribution of this method to neuroscience research.
Collapse
Affiliation(s)
- Nikolay Aseyev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Violetta Ivanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Pavel Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Evgeny Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| |
Collapse
|
3
|
Novales Flamarique I, Wachowiak M. Functional segregation of retinal ganglion cell projections to the optic tectum of rainbow trout. J Neurophysiol 2015; 114:2703-17. [PMID: 26334009 DOI: 10.1152/jn.00440.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/01/2015] [Indexed: 11/22/2022] Open
Abstract
The interpretation of visual information relies on precise maps of retinal representation in the brain coupled with local circuitry that encodes specific features of the visual scenery. In nonmammalian vertebrates, the main target of ganglion cell projections is the optic tectum. Although the topography of retinotectal projections has been documented for several species, the spatiotemporal patterns of activity and how these depend on background adaptation have not been explored. In this study, we used a combination of electrical and optical recordings to reveal a retinotectal map of ganglion cell projections to the optic tectum of rainbow trout and characterized the spatial and chromatic distribution of ganglion cell fibers coding for increments (ON) and decrements (OFF) of light. Recordings of optic nerve activity under various adapting light backgrounds, which isolated the input of different cone mechanisms, yielded dynamic patterns of ON and OFF input characterized by segregation of these two fiber types. Chromatic adaptation decreased the sensitivity and response latency of affected cone mechanisms, revealing their variable contributions to the ON and OFF responses. Our experiments further demonstrated restricted input from a UV cone mechanism to the anterolateral optic tectum, in accordance with the limited presence of UV cones in the dorsotemporal retina of juvenile rainbow trout. Together, our findings show that retinal inputs to the optic tectum of this species are not homogeneous, exhibit highly dynamic activity patterns, and are likely determined by a combination of biased projections and specific retinal cell distributions and their activity states.
Collapse
Affiliation(s)
- Iñigo Novales Flamarique
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Biology, University of Victoria, Victoria, British Columbia, Canada; and Marine Biological Laboratory, Woods Hole, Massachusetts
| | | |
Collapse
|
4
|
Ben-Tov M, Kopilevich I, Donchin O, Ben-Shahar O, Giladi C, Segev R. Visual receptive field properties of cells in the optic tectum of the archer fish. J Neurophysiol 2013; 110:748-59. [DOI: 10.1152/jn.00094.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The archer fish is well known for its extreme visual behavior in shooting water jets at prey hanging on vegetation above water. This fish is a promising model in the study of visual system function because it can be trained to respond to artificial targets and thus to provide valuable psychophysical data. Although much behavioral data have indeed been collected over the past two decades, little is known about the functional organization of the main visual area supporting this visual behavior, namely, the fish optic tectum. In this article we focus on a fundamental aspect of this functional organization and provide a detailed analysis of receptive field properties of cells in the archer fish optic tectum. Using extracellular measurements to record activities of single cells, we first measure their retinotectal mapping. We then determine their receptive field properties such as size, selectivity for stimulus direction and orientation, tuning for spatial frequency, and tuning for temporal frequency. Finally, on the basis of all these measurements, we demonstrate that optic tectum cells can be classified into three categories: orientation-tuned cells, direction-tuned cells, and direction-agnostic cells. Our results provide an essential basis for future investigations of information processing in the archer fish visual system.
Collapse
Affiliation(s)
- Mor Ben-Tov
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Ivgeny Kopilevich
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Opher Donchin
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ohad Ben-Shahar
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- Department of Computer Science, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; and
| | - Chen Giladi
- Department of Physics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Ronen Segev
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| |
Collapse
|
5
|
Weigel S, Luksch H. Spatiotemporal analysis of electrically evoked activity in the chicken optic tectum: a VSDI study. J Neurophysiol 2011; 107:640-8. [PMID: 22031774 DOI: 10.1152/jn.00541.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The midbrain is an important processing area for sensory information in vertebrates. The optic tectum and its mammalian counterpart, the superior colliculus, receive multimodal, topographic information and contain a sensory map that plays a role in spatial attention and orientation movements. Many studies have investigated the tectal circuitry by cytochemistry and by characterization of particular cell types. However, only a few studies have investigated network activation throughout the depth of the tectum. Our study provides the first data on spatiotemporal activity profiles in the depth and width of the avian optic tectum. We used an optical imaging approach with voltage-sensitive dyes to investigate population responses at a high temporal and spatial resolution. With the necessary caution due to cell extension across several layers, we can thus link our findings tentatively with the general layout of the avian optic tectum. Single electrical stimuli in the retinorecipient layers 1-4 evoked a complex optical response pattern with two components: a short, strong transient response and a weaker persistent response that lasted several hundred milliseconds. The response started in layer 5 and spread within this layer before it propagated into deeper layers. This is in line with neuroanatomical and earlier physiological data. Analysis of temporal sequence and pharmacological manipulations revealed that these responses were mainly driven by postsynaptic activation. Thus tectal network responses to patterned input can be studied by voltage-sensitive dye imaging.
Collapse
Affiliation(s)
- Stefan Weigel
- Technische Universität München, Freising-Weihenstephan, Germany.
| | | |
Collapse
|
6
|
Vokoun CR, Jackson MB, Basso MA. Circuit dynamics of the superior colliculus revealed by in vitro voltage imaging. Ann N Y Acad Sci 2011; 1233:41-7. [PMID: 21950974 DOI: 10.1111/j.1749-6632.2011.06166.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The superior colliculus (SC) is well known for its involvement in the conversion of sensory stimuli into motor commands. This sensorimotor integration is made possible by the collective activity of multiple neuronal connections throughout the SC. Still, the majority of SC research focuses on in vivo extracellular recordings of behaving monkeys or in vitro patch-clamp recordings from lower mammals. Here, we discuss the results of an in vitro voltage-imaging technique in which population activity across the rodent SC circuitry was visualized to bridge the gap between single-cell recordings and whole-animal behavior. The high temporal and spatial resolution of the voltage-imaging technique allowed us to visualize patterns of activity following stimulation at discrete laminae. Stimulation within either the superficial or intermediate layer showed recruitment of disparate SC circuitry. These results provide insight into the circuit dynamics and neuronal populations that underlie behavior.
Collapse
Affiliation(s)
- Corinne R Vokoun
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
7
|
Robles E, Smith SJ, Baier H. Characterization of genetically targeted neuron types in the zebrafish optic tectum. Front Neural Circuits 2011; 5:1. [PMID: 21390291 PMCID: PMC3046383 DOI: 10.3389/fncir.2011.00001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 02/02/2011] [Indexed: 01/20/2023] Open
Abstract
The optically transparent larval zebrafish is ideally suited for in vivo analyses of neural circuitry controlling visually guided behaviors. However, there is a lack of information regarding specific cell types in the major retinorecipient brain region of the fish, the optic tectum. Here we report the characterization of three previously unidentified tectal cell types that are specifically labeled by dlx5/6 enhancer elements. In vivo laser-scanning microscopy in conjunction with ex vivo array tomography revealed that these neurons differ in their morphologies, synaptic connectivity, and neurotransmitter phenotypes. The first type is an excitatory bistratified periventricular interneuron that forms a dendritic arbor in the retinorecipient stratum fibrosum et griseum superficiale (SFGS) and an axonal arbor in the stratum griseum centrale (SGC). The second type, a GABAergic non-stratified periventricular interneuron, extends a bushy arbor containing both dendrites and axons into the SGC and the deepest sublayers of the SFGS. The third type is a GABAergic periventricular projection neuron that extends a dendritic arbor into the SGC and a long axon to the torus semicircularis, medulla oblongata, and anterior hindbrain. Interestingly, the same axons form en passant synapses within the deepest neuropil layer of the tectum, the stratum album centrale. This approach revealed several novel aspects of tectal circuitry, including: (1) a glutamatergic mode of transmission from the superficial, retinorecipient neuropil layers to the deeper, output layers, (2) the presence of interneurons with mixed dendrite/axon arbors likely involved in local processing, and (3) a heretofore unknown GABAergic tectofugal projection to midbrain and hindbrain. These observations establish a framework for studying the morphological and functional differentiation of neural circuits in the zebrafish visual system.
Collapse
Affiliation(s)
- Estuardo Robles
- Department of Physiology, University of California San Francisco San Francisco, CA, USA
| | | | | |
Collapse
|
8
|
Nevin LM, Robles E, Baier H, Scott EK. Focusing on optic tectum circuitry through the lens of genetics. BMC Biol 2010; 8:126. [PMID: 20920150 PMCID: PMC2949621 DOI: 10.1186/1741-7007-8-126] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/24/2010] [Indexed: 11/10/2022] Open
Abstract
The visual pathway is tasked with processing incoming signals from the retina and converting this information into adaptive behavior. Recent studies of the larval zebrafish tectum have begun to clarify how the 'micro-circuitry' of this highly organized midbrain structure filters visual input, which arrives in the superficial layers and directs motor output through efferent projections from its deep layers. The new emphasis has been on the specific function of neuronal cell types, which can now be reproducibly labeled, imaged and manipulated using genetic and optical techniques. Here, we discuss recent advances and emerging experimental approaches for studying tectal circuits as models for visual processing and sensorimotor transformation by the vertebrate brain.
Collapse
Affiliation(s)
- Linda M Nevin
- Department of Physiology, University of California, San Francisco, 1550 4th Street, San Francisco, CA 94158-23241, USA.
| | | | | | | |
Collapse
|
9
|
Vokoun CR, Jackson MB, Basso MA. Intralaminar and interlaminar activity within the rodent superior colliculus visualized with voltage imaging. J Neurosci 2010; 30:10667-82. [PMID: 20702698 PMCID: PMC5934997 DOI: 10.1523/jneurosci.1387-10.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/21/2010] [Accepted: 06/24/2010] [Indexed: 11/21/2022] Open
Abstract
The superior colliculus (SC) is a midbrain structure that plays a role in converting sensation into action. Most SC research focuses on either in vivo extracellular recordings from behaving monkeys or patch-clamp recordings from smaller mammals in vitro. However, the activity of neuronal circuits is necessary to generate behavior, and neither of these approaches measures the simultaneous activity of large populations of neurons that make up circuits. Here, we describe experiments in which we measured changes in membrane potential across the SC map using voltage imaging of the rat SC in vitro. Our results provide the first high temporal and spatial resolution images of activity within the SC. Electrical stimulation of the SC evoked a characteristic two-component optical response containing a short latency initial-spike and a longer latency after-depolarization. Single-pulse stimulation in the superficial SC evoked a pattern of intralaminar and interlaminar spread that was distinct from the spread evoked by the same stimulus applied to the intermediate SC. Intermediate layer stimulation produced a more extensive and more ventrally located activation of the superficial layers than did stimulation in the superficial SC. Together, these results indicate the recruitment of dissimilar subpopulations of circuitry depending on the layer stimulated. Field potential recordings, pharmacological manipulations, and timing analyses indicate that the patterns of activity were physiologically relevant and largely synaptically driven. Therefore, voltage imaging is a powerful technique for the study of spatiotemporal dynamics of electrical signaling across neuronal populations, providing insight into neural circuits that underlie behavior.
Collapse
Affiliation(s)
| | | | - Michele A. Basso
- Department of Physiology, and
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison Medical School, Madison, Wisconsin 53706
| |
Collapse
|
10
|
Kinoshita M, Kobayashi S, Urano A, Ito E. Neuromodulatory effects of gonadotropin-releasing hormone on retinotectal synaptic transmission in the optic tectum of rainbow trout. Eur J Neurosci 2007; 25:480-4. [PMID: 17284189 DOI: 10.1111/j.1460-9568.2006.05294.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a hypophysiotropic decapeptide that stimulates the release of gonadotropins from the pituitary. In addition, there are extra-hypothalamic GnRH neurons that project to all regions of the brain and whose function remains unknown. Here, we investigated the effects of GnRH on retinotectal synaptic transmission, the synapses of which are formed between retinal fibers and tectal periventricular neurons that express GnRH receptor mRNA. We used rainbow trout as our study model. The excitatory postsynaptic currents (EPSCs), which were evoked by electrical stimulation of the retinal fibers and recorded in periventricular neurons, were suppressed by antagonists of ionotropic glutamate receptors. EPSCs were increased by application of each of two types of GnRH (GnRH2 and GnRH3) in the trout tectum. Such facilitation lasted for at least 10 min after application of the GnRH. To our knowledge, this is the first report of GnRH modulating conventional synaptic transmission in the brain, suggesting that tectal GnRH enhances tectal sensitivity for retinal inputs. Furthermore, such long-lasting facilitation might occur across all the brain regions innervated by GnRH neurons, and GnRH might simultaneously switch neuronal activities in the brain regions relevant to reproductive behaviors.
Collapse
Affiliation(s)
- Masae Kinoshita
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
11
|
Kinoshita M, Ito E, Urano A, Ito H, Yamamoto N. Periventricular efferent neurons in the optic tectum of rainbow trout. J Comp Neurol 2006; 499:546-64. [PMID: 17029270 DOI: 10.1002/cne.21080] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The efferent connections and axonal and dendritic morphologies of periventricular neurons were examined in the optic tectum of rainbow trout to classify periventricular efferent neurons in salmonids. Among the target nuclei of tectal efferents, tracer injections to the following four structures labeled periventricular neurons: the area pretectalis pars dorsalis (APd), nucleus pretectalis superficialis pars magnocellularis (PSm), nucleus ventrolateralis of torus semicircularis (TS), and nucleus isthmi (NI). Two types of periventricular neurons were labeled by injections to the APd. One of them had an apical dendrite ramifying at the stratum fibrosum et griseum superficiale (SFGS), with an axon that bifurcated into two branches at the stratum griseum centrale (SGC), and the other had an apical dendrite ramifying at the SGC. Two types of periventricular neurons were labeled after injections to the TS. One of them had an apical dendrite ramifying at the boundary between the stratum opticum (SO) and the SFGS, and the other had dendritic branches restricted to the stratum album centrale or stratum periventriculare. Injections to the PSm and NI labeled periventricular neurons of the same type with an apical dendrite ramifying at the SO and a characteristic axon that split into superficial and deep branches projecting to the PSm and NI, respectively. This cell type also possessed axonal branches that terminated within the tectum. These results indicate that periventricular efferent neurons can be classified into at least five types that possess type-specific axonal and dendritic morphologies. We also describe other tectal neurons labeled by the present injections.
Collapse
Affiliation(s)
- Masae Kinoshita
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | |
Collapse
|
12
|
Kinoshita M, Ito E. Roles of periventricular neurons in retinotectal transmission in the optic tectum. Prog Neurobiol 2006; 79:112-21. [PMID: 16901616 DOI: 10.1016/j.pneurobio.2006.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Revised: 06/16/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
The midbrain roof is a retinorecipient region referred to as the optic tectum in lower vertebrates, and the superior colliculus in mammals. The retinal fibers projecting to the tectum transmit visual information to tectal retinorecipient neurons. Periventricular neurons are a subtype of these neurons that have their somata in the deepest layer of the teleostean tectum and apical dendrites ramifying at more superficial layers consisting of retinal fibers. The retinotectal synapses between the retinal fibers and periventricular neurons are glutamatergic, and ionotropic glutamate receptors mediate the transmission in these synapses. This transmission involves long-term potentiation, and is modulated by hormone action. Visual information processed in the periventricular neurons is transmitted to adjacent tectal cells and target nuclei of periventricular neuron axonal branches, some of which relay the visual information to other brain areas controlling behavior. We demonstrated that periventricular neurons play a principal role in visual information processing in the teleostean optic tectum; the effects of tectal output on behavior is discussed also in the present review.
Collapse
Affiliation(s)
- Masae Kinoshita
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | |
Collapse
|
13
|
Kinoshita M, Fukaya M, Tojima T, Kojima S, Ando H, Watanabe M, Urano A, Ito E. Retinotectal transmission in the optic tectum of rainbow trout. J Comp Neurol 2005; 484:249-59. [PMID: 15736228 DOI: 10.1002/cne.20473] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retinotectal transmission has not yet been well characterized at the cellular level in the optic tectum. To address this issue, we used a teleost, the rainbow trout, and characterized periventricular neurons as postsynaptic cells expected to receive the retinotectal inputs to the optic tectum. The somata of periventricular neurons are localized in the upper zone of the stratum periventriculare (SPV), whereas the lower zone of the SPV comprises the cell body layer of radial glial cells. Ca2+ imaging identified functional ionotropic glutamate receptors in periventricular neurons. We also cloned cDNAs encoding the NR1 subunit of N-methyl-D-aspartic acid (NMDA) receptors and the GluR2 subunit of (+/-)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) receptors, and detected their mRNAs in periventricular neurons by in situ hybridization. The presence of the receptor subunit proteins was also confirmed in the dendrites of periventricular neurons by immunoblotting and immunohistochemistry. On the other hand, radial glial cells in the lower zone of the SPV did not respond to glutamate applications, and mRNA and immunoreactivities of ionotropic glutamate receptors were not detected in glial cells. The present findings suggest that glutamatergic transmission at synapses between retinotectal afferents and periventricular neurons is mediated by the functional NMDA and AMPA receptors.
Collapse
Affiliation(s)
- Masae Kinoshita
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kinoshita M, Hosokawa T, Urano A, Ito E. Long-term potentiation in the optic tectum of rainbow trout. Neurosci Lett 2004; 370:146-50. [PMID: 15488312 DOI: 10.1016/j.neulet.2004.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 08/06/2004] [Accepted: 08/07/2004] [Indexed: 11/24/2022]
Abstract
We examined synaptic plasticity in the optic tectum of rainbow trout by extracellular recordings. We found that the field-excitatory postsynaptic potential in the retinotectal synapses was potentiated by repetitive stimuli of 1.0 Hz for 20 s to the retinotectal afferents. The long-term potentiation (LTP) developed slowly, and was maintained for at least 2 h. Applications of an antagonist for N-methyl-D-aspartic acid (NMDA) receptors or Mg2+ -free saline showed that activation of NMDA receptors was required to form the LTP beyond the induction period. The present findings indicate that presynaptic stimulation in the retinotectal synapses causes LTP mediated by NMDA receptors in the optic tectum of rainbow trout.
Collapse
Affiliation(s)
- Masae Kinoshita
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
15
|
Sato K, Momose-Sato Y. Optical detection of convergent projections in the embryonic chick NTS. Neurosci Lett 2004; 371:97-101. [PMID: 15519736 DOI: 10.1016/j.neulet.2004.08.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 08/17/2004] [Accepted: 08/19/2004] [Indexed: 11/28/2022]
Abstract
Multiple-site optical recording of neural activity was performed in the nucleus of the tractus solitarius (NTS) of the chick embryo with stimulation of the glossopharyngeal nerve (N. IX) and vagus nerve (N. X). We measured the amplitudes of the optical signals related to glutamate-mediated excitatory postsynaptic responses, and calculated the ratio of the signal evoked by simultaneous N. IX/N. X stimulation to the signal obtained after mathematical summation of the individual N. IX and N. X responses. The ratio was significantly lower than 100% in the rostral region of the NTS, in which postsynaptic responses were elicited by both N. IX and N. X stimulations. This result means that there is a convergence of visceral inputs via the N. IX and N. X in the embryonic chick NTS. The existence of the convergence suggests that the NTS performs complex integration of information from multiple sensory inputs from the early stages of embryogenesis.
Collapse
Affiliation(s)
- Katsushige Sato
- Department of Physiology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | |
Collapse
|