1
|
Atkinson E, Dickman R. Growth factors and their peptide mimetics for treatment of traumatic brain injury. Bioorg Med Chem 2023; 90:117368. [PMID: 37331175 DOI: 10.1016/j.bmc.2023.117368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability in adults, caused by a physical insult damaging the brain. Growth factor-based therapies have the potential to reduce the effects of secondary injury and improve outcomes by providing neuroprotection against glutamate excitotoxicity, oxidative damage, hypoxia, and ischemia, as well as promoting neurite outgrowth and the formation of new blood vessels. Despite promising evidence in preclinical studies, few neurotrophic factors have been tested in clinical trials for TBI. Translation to the clinic is not trivial and is limited by the short in vivo half-life of the protein, the inability to cross the blood-brain barrier and human delivery systems. Synthetic peptide mimetics have the potential to be used in place of recombinant growth factors, activating the same downstream signalling pathways, with a decrease in size and more favourable pharmacokinetic properties. In this review, we will discuss growth factors with the potential to modulate damage caused by secondary injury mechanisms following a traumatic brain injury that have been trialled in other indications including spinal cord injury, stroke and neurodegenerative diseases. Peptide mimetics of nerve growth factor (NGF), hepatocyte growth factor (HGF), glial cell line-derived growth factor (GDNF), brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) will be highlighted, most of which have not yet been tested in preclinical or clinical models of TBI.
Collapse
Affiliation(s)
- Emily Atkinson
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; UCL Centre for Nerve Engineering, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Rachael Dickman
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
2
|
Regan SL, Williams MT, Vorhees CV. Latrophilin-3 disruption: Effects on brain and behavior. Neurosci Biobehav Rev 2021; 127:619-629. [PMID: 34022279 DOI: 10.1016/j.neubiorev.2021.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/22/2022]
Abstract
Latrophilin-3 (LPHN3), a G-protein-coupled receptor belonging to the adhesion subfamily, is a regulator of synaptic function and maintenance in brain regions that mediate locomotor activity, attention, and memory for location and path. Variants of LPHN3 are associated with increased risk for attention deficit hyperactivity disorder (ADHD) in some patients. Here we review the role of LPHN3 in the central nervous system (CNS). We describe synaptic localization of LPHN3, its trans-synaptic binding partners, links to neurodevelopmental disorders, animal models of Lphn3 disruption in different species, and evidence that LPHN3 is involved in cognition as well as activity and attention. The evidence shows that LPHN3 plays a more significant role in neuroplasticity than previously appreciated.
Collapse
Affiliation(s)
- Samantha L Regan
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Michael T Williams
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Charles V Vorhees
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| |
Collapse
|
3
|
NCAM Mimetic Peptides: Potential Therapeutic Target for Neurological Disorders. Neurochem Res 2018; 43:1714-1722. [DOI: 10.1007/s11064-018-2594-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/27/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
|
4
|
NCAM function in the adult brain: lessons from mimetic peptides and therapeutic potential. Neurochem Res 2013; 38:1163-73. [PMID: 23494903 DOI: 10.1007/s11064-013-1007-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/01/2013] [Accepted: 02/18/2013] [Indexed: 01/22/2023]
Abstract
Neural cell adhesion molecules (NCAMs) are complexes of transmembranal proteins critical for cell-cell interactions. Initially recognized as key players in the orchestration of developmental processes involving cell migration, cell survival, axon guidance, and synaptic targeting, they have been shown to retain these functions in the mature adult brain, in relation to plastic processes and cognitive abilities. NCAMs are able to interact among themselves (homophilic binding) as well as with other molecules (heterophilic binding). Furthermore, they are the sole molecule of the central nervous system undergoing polysialylation. Most interestingly polysialylated and non-polysialylated NCAMs display opposite properties. The precise contributions each of these characteristics brings in the regulations of synaptic and cellular plasticity in relation to cognitive processes in the adult brain are not yet fully understood. With the aim of deciphering the specific involvement of each interaction, recent developments led to the generation of NCAM mimetic peptides that recapitulate identified binding properties of NCAM. The present review focuses on the information such advances have provided in the understanding of NCAM contribution to cognitive function.
Collapse
|
5
|
Jain M, Vélez JI, Acosta MT, Palacio LG, Balog J, Roessler E, Pineda D, Londoño AC, Palacio JD, Arbelaez A, Lopera F, Elia J, Hakonarson H, Seitz C, Freitag CM, Palmason H, Meyer J, Romanos M, Walitza S, Hemminger U, Warnke A, Romanos J, Renner T, Jacob C, Lesch KP, Swanson J, Castellanos FX, Bailey-Wilson JE, Arcos-Burgos M, Muenke M. A cooperative interaction between LPHN3 and 11q doubles the risk for ADHD. Mol Psychiatry 2012; 17:741-7. [PMID: 21606926 PMCID: PMC3382263 DOI: 10.1038/mp.2011.59] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In previous studies of a genetic isolate, we identified significant linkage of attention deficit hyperactivity disorder (ADHD) to 4q, 5q, 8q, 11q and 17p. The existence of unique large size families linked to multiple regions, and the fact that these families came from an isolated population, we hypothesized that two-locus interaction contributions to ADHD were plausible. Several analytical models converged to show significant interaction between 4q and 11q (P<1 × 10(-8)) and 11q and 17p (P<1 × 10(-6)). As we have identified that common variants of the LPHN3 gene were responsible for the 4q linkage signal, we focused on 4q-11q interaction to determine that single-nucleotide polymorphisms (SNPs) harbored in the LPHN3 gene interact with SNPs spanning the 11q region that contains DRD2 and NCAM1 genes, to double the risk of developing ADHD. This interaction not only explains genetic effects much better than taking each of these loci effects by separated but also differences in brain metabolism as depicted by proton magnetic resonance spectroscopy data and pharmacogenetic response to stimulant medication. These findings not only add information about how high order genetic interactions might be implicated in conferring susceptibility to develop ADHD but also show that future studies of the effects of genetic interactions on ADHD clinical information will help to shape predictive models of individual outcome.
Collapse
Affiliation(s)
- M Jain
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - J I Vélez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - M T Acosta
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - L G Palacio
- Neurosciences Group, University of Antioquia, Medellín, Colombia
| | - J Balog
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - E Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - D Pineda
- Neurosciences Group, University of Antioquia, Medellín, Colombia
| | - A C Londoño
- Neurosciences Group, University of Antioquia, Medellín, Colombia
| | - J D Palacio
- Neurosciences Group, University of Antioquia, Medellín, Colombia
| | - A Arbelaez
- Neurosciences Group, University of Antioquia, Medellín, Colombia
| | - F Lopera
- Neurosciences Group, University of Antioquia, Medellín, Colombia
| | - J Elia
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - H Hakonarson
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - C Seitz
- Department of Child and Adolescent Psychiatry, Saarland University Hospital, Homburg, Saar, Germany
| | - C M Freitag
- Department of Child and Adolescent Psychiatry, Saarland University Hospital, Homburg, Saar, Germany
| | - H Palmason
- Graduate School for Psychobiology, Division of Neuro-Behavioral Genetics, University of Trier, Trier, Germany
| | - J Meyer
- Graduate School for Psychobiology, Division of Neuro-Behavioral Genetics, University of Trier, Trier, Germany
| | - M Romanos
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - S Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - U Hemminger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - A Warnke
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - J Romanos
- Department of Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - T Renner
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany,Department of Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany,Molecular and Psychobiology, University of Würzburg, Würzburg, Germany
| | - C Jacob
- Department of Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - K-P Lesch
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany,Department of Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany,Molecular and Psychobiology, University of Würzburg, Würzburg, Germany
| | - J Swanson
- UCI Child Development Center, University of California, Irvine, CA, USA
| | | | - J E Bailey-Wilson
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - M Arcos-Burgos
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA,Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35, Room 1B-209, Bethesda, MD 20892-3717, USA. E-mails: and
| | - M Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA,Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35, Room 1B-209, Bethesda, MD 20892-3717, USA. E-mails: and
| |
Collapse
|
6
|
Synthetic NCAM-derived ligands of the fibroblast growth factor receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:355-72. [PMID: 20017033 DOI: 10.1007/978-1-4419-1170-4_22] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
|
8
|
|
9
|
Hansen SM, Li S, Bock E, Berezin V. WITHDRAWN: Synthetic NCAM-derived Ligands of the Fibroblast Growth Factor Receptor. Neurochem Res 2008. [PMID: 18427984 DOI: 10.1007/s11064-008-9707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2008] [Indexed: 10/22/2022]
|
10
|
Sathuluri RR, Yamamura S, Tamiya E. Microsystems technology and biosensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008; 109:285-350. [PMID: 17999038 DOI: 10.1007/10_2007_078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This review addresses the recent developments in miniaturized microsystems or lab-on-a-chip devices for biosensing of different biomolecules: DNA, proteins, small molecules, and cells, especially at the single-molecule and single-cell level. In order to sense these biomolecules with sensitivity we have fabricated chip devices with respect to the biomolecule to be analyzed. The details of the fabrication are also dealt with in this review. We mainly developed microarray and microfluidic chip devices for DNA, protein, and cell analyses. In addition, we have introduced the porous anodic alumina layer chip with nanometer scale and gold nanoparticles for label-free sensing of DNA and protein interactions. We also describe the use of microarray and microfluidic chip devices for cell-based assays and single-cell analysis in drug discovery research.
Collapse
Affiliation(s)
- Ramachandra Rao Sathuluri
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa, 923-1292, Japan
| | | | | |
Collapse
|
11
|
Kiryushko D, Bock E, Berezin V. Pharmacology of cell adhesion molecules of the nervous system. Curr Neuropharmacol 2007; 5:253-67. [PMID: 19305742 PMCID: PMC2644493 DOI: 10.2174/157015907782793658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/27/2007] [Accepted: 07/17/2007] [Indexed: 12/15/2022] Open
Abstract
Cell adhesion molecules (CAMs) play a pivotal role in the development and maintenance of the nervous system under normal conditions. They also are involved in numerous pathological processes such as inflammation, degenerative disorders, and cancer, making them attractive targets for drug development. The majority of CAMs are signal transducing receptors. CAM-induced intracellular signalling is triggered via homophilic (CAM-CAM) and heterophilic (CAM - other counter-receptors) interactions, which both can be targeted pharmacologically. We here describe the progress in the CAM pharmacology focusing on cadherins and CAMs of the immunoglobulin (Ig) superfamily, such as NCAM and L1. Structural basis of CAM-mediated cell adhesion and CAM-induced signalling are outlined. Different pharmacological approaches to study functions of CAMs are presented including the use of specific antibodies, recombinant proteins, and synthetic peptides. We also discuss how unravelling of the 3D structure of CAMs provides novel pharmacological tools for dissection of CAM-induced signalling pathways and offers therapeutic opportunities for a range of neurological disorders.
Collapse
Affiliation(s)
- Darya Kiryushko
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute Bld. 6.2, Blegdamsvej 3C, DK-2200, Copenhagen N, Denmark.
| | | | | |
Collapse
|
12
|
Rizhova L, Klementiev B, Cambon K, Venero C, Sandi C, Vershinina E, Vaudano E, Berezin V, Bock E. Effects of P2, a peptide derived from a homophilic binding site in the neural cell adhesion molecule on learning and memory in rats. Neuroscience 2007; 149:931-42. [DOI: 10.1016/j.neuroscience.2007.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 08/02/2007] [Accepted: 08/28/2007] [Indexed: 10/23/2022]
|
13
|
Hansen RK, Christensen C, Korshunova I, Kriebel M, Burkarth N, Kiselyov VV, Olsen M, Ostergaard S, Holm A, Volkmer H, Walmod PS, Berezin V, Bock E. Identification of NCAM-binding peptides promoting neurite outgrowth via a heterotrimeric G-protein-coupled pathway. J Neurochem 2007; 103:1396-407. [PMID: 17854387 DOI: 10.1111/j.1471-4159.2007.04894.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A combinatorial library of undecapeptides was produced and utilized for the isolation of peptide binding to the fibronectin type 3 modules (F3I-F3II) of the neural cell adhesion molecule (NCAM). The isolated peptides were sequenced and produced as dendrimers. Two of the peptides (denoted ENFIN2 and ENFIN11) were confirmed to bind to F3I-F3II of NCAM by surface plasmon resonance. The peptides induced neurite outgrowth in primary cerebellar neurons and PC12E2 cells, but had no apparent neuroprotective properties. NCAM is known to activate different intracellular pathways, including signaling through the fibroblast growth factor receptor, the Src-related non-receptor tyrosine kinase Fyn, and heterotrimeric G-proteins. Interestingly, neurite outgrowth stimulated by ENFIN2 and ENFIN11 was independent of signaling through fibroblast growth factor receptor and Fyn, but could be inhibited with pertussis toxin, an inhibitor of certain heterotrimeric G-proteins. Neurite outgrowth induced by trans-homophilic NCAM was unaffected by the peptides, whereas knockdown of NCAM completely abrogated ENFIN2- and ENFIN11-induced neuritogenesis. These observations suggest that ENFIN2 and ENFIN11 induce neurite outgrowth in an NCAM-dependent manner through G-protein-coupled signal transduction pathways. Thus, ENFIN2 and ENFIN11 may be valuable for exploring this particular type of NCAM-mediated signaling.
Collapse
Affiliation(s)
- Raino Kristian Hansen
- Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Anand R, Seiberling M, Kamtchoua T, Pokorny R. Tolerability, safety and pharmacokinetics of the FGLL peptide, a novel mimetic of neural cell adhesion molecule, following intranasal administration in healthy volunteers. Clin Pharmacokinet 2007; 46:351-8. [PMID: 17375985 DOI: 10.2165/00003088-200746040-00007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND The FG loop peptide (FGL(L)), a novel mimetic of the neural cell adhesion molecule (NCAM), is in clinical development for neurodegenerative disorders such as Alzheimer's disease. Preclinical studies in rats, dogs and monkeys have demonstrated exposure in plasma and cerebrospinal fluid after parenteral or intranasal administration of FGL(L), with no systemic toxicity. This article reports on the results of the first administration of FGL(L) in humans. OBJECTIVE To determine the tolerability, safety and pharmacokinetics of ascending, single intranasal doses of FGL(L) 25, 100 and 200mg in healthy subjects. METHODS In an 8-day, open-label, phase I study, 24 healthy male volunteers (mean age 42 [range 24-55] years) received single intranasal doses of FGL(L) (25, 100 and 200mg) in accordance with an ascending dose, sequential-cohort design. RESULTS All three intranasal doses of FGL(L) were well tolerated and there were no clinical notable abnormalities in ECG recordings, vital signs or laboratory tests. Three subjects (13%) reported five adverse events. A transient (<3 minutes) burning sensation in the nose was reported in two subjects at the 200mg dose level while runny eyes (<2 minutes) were experienced in one subject at 25mg. These events had an onset immediately following intranasal administration, and a relationship to FGL(L) was suspected. One of the latter subjects who had experienced a burning sensation in the nose also experienced dizziness, vomiting and headache with onset >2 days after single-dose administration of FGL(L); no relationship to the study drug was suspected. Quantifiable plasma concentrations of FGL(L) were observed up to 1 hour after intranasal administration of the 100mg dose and up to 4 hours after the 200mg dose (plasma FGL(L) concentrations were undetectable at all timepoints for the 25mg dose). Increasing doses of FGL(L) were associated with higher systemic exposures: mean C(max) 0.52 ng/mL and 1.38 ng/mL (100mg and 200mg, respectively); mean AUC(24) 1.27 ng x h/mL and 4.05 ng x h/mL (100mg and 200mg, respectively). CONCLUSIONS Intranasal administration of FGL(L) (25, 100 and 200mg) was well tolerated in healthy male volunteers, with no safety concerns and a pharmacokinetic profile that was generally dose related. Further studies are currently being planned to evaluate the effects of FGL(L) in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Ravi Anand
- Anand Pharma Consulting, Oberwil, Switzerland.
| | | | | | | |
Collapse
|
15
|
|
16
|
Yang T, Yin W, Derevyanny VD, Moore LA, Longo FM. Identification of an ectodomain within the LAR protein tyrosine phosphatase receptor that binds homophilically and activates signalling pathways promoting neurite outgrowth. Eur J Neurosci 2006; 22:2159-70. [PMID: 16262654 DOI: 10.1111/j.1460-9568.2005.04403.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Elucidation of mechanisms by which receptor protein tyrosine phosphatases (PTPs) regulate neurite outgrowth will require characterization of ligand-receptor interactions and identification of ligand-induced signalling components mediating neurite outgrowth. The first identified ligand of the leucocyte common antigen-related (LAR) receptor PTP consists of a 99-residue ectodomain isoform, termed LARFN5C, which undergoes homophilic binding to LAR and promotes neurite outgrowth. We employed peptide mapping of LARFN5C to identify an active neurite-promoting domain of LAR. A peptide mimetic consisting of 37 residues (L59) and corresponding to the fifth LAR fibronectin type III (FNIII) domain prevented LARFN5C homophilic binding, demonstrated homophilic binding to itself and promoted neurite outgrowth of mouse E16-17 hippocampal neurons and of dorsal root ganglia explants. Response to L59 was partially lost when using neurons derived from LAR-deficient (-/-) mice or neurons treated with LAR siRNA, consistent with homophilic interaction of L59 with LAR. L59 neurite-promoting activity was decreased in the presence of inhibitors of Src, Trk, PLCgamma, PKC, PI3K and MAPK. L59 activated Src (a known substrate of LAR), FAK and TrkB and also activated downstream signalling intermediates including PKC, ERK, AKT and CREB. BDNF augmented the maximal neurite-promoting activity of L59, a finding consistent with the presence of shared and distinct signalling pathways activated by L59 with BDNF and L59 with TrkB. These studies are the first to identify an ectodomain of LAR (located within the fifth FNIII domain) capable of promoting neurite outgrowth and point to novel approaches for promotion of neurite outgrowth.
Collapse
Affiliation(s)
- Tao Yang
- Department of Neurology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
17
|
Secher T, Novitskaia V, Berezin V, Bock E, Glenthøj B, Klementiev B. A neural cell adhesion molecule–derived fibroblast growth factor receptor agonist, the FGL-peptide, promotes early postnatal sensorimotor development and enhances social memory retention. Neuroscience 2006; 141:1289-99. [PMID: 16784819 DOI: 10.1016/j.neuroscience.2006.04.059] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 04/19/2006] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
The neural cell adhesion molecule (NCAM) belongs to the immunoglobulin (Ig) superfamily and is composed extracellularly of five Ig-like and two fibronectin type III (F3) modules. It plays a pivotal role in neuronal development and synaptic plasticity. NCAM signals via a direct interaction with the fibroblast growth factor receptor (FGFR). A 15-amino-acid long peptide, the FG loop (FGL) peptide, that is derived from the second F3 module of NCAM has been found to activate FGFR1. We here report that the FGL peptide, when administered intranasally to newborn rats, accelerated early postnatal development of coordination skills. In adult animals s.c. administration of FGL resulted in a prolonged retention of social memory. We found that FGL rapidly penetrated into the blood and cerebrospinal fluid after both intranasal and s.c. administration and remained detectable in the fluids for up to 5 hours.
Collapse
Affiliation(s)
- T Secher
- Protein Laboratory, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
18
|
Ralets I, Østergaard S, Holm A, Køhler L, Bock E, Berezin V. Identification of neurite extension inducing peptides by means of soluble combinatorial peptide libraries. J Neurosci Methods 2004; 137:61-9. [PMID: 15196827 DOI: 10.1016/j.jneumeth.2004.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Revised: 02/04/2004] [Accepted: 02/05/2004] [Indexed: 12/19/2022]
Abstract
To identify hexapeptides capable of inducing neurite outgrowth, we used three groups of soluble combinatorial peptide libraries each consisting of 100 mixtures of hexapeptides (each mixture consisting of 10,000 individual peptides) with partially predetermined sequences (in two out of six amino acid positions). Using this approach a number of neuritogenic peptides were identified. Three selected peptides, QSGKKF, QSGPLA and QSGKQG, were found to induce neurite outgrowth from primary hippocampal neurons with potency comparable to that of growth factors. None of the peptides protected cerebellar granule neurons from cell death induced by withdrawal of potassium chloride. The approach described here suggests the feasibility to use combinatorial peptide libraries in order to identify compounds capable of modulating a specific functional response in the nervous system, without prior knowledge of a molecular target.
Collapse
Affiliation(s)
- Igor Ralets
- Protein Laboratory, Institute of Molecular Pathology, Panum Institute Bld.6.2., Blegdamsvej 3c, DK-2200 Copenhagen N, Denmark
| | | | | | | | | | | |
Collapse
|
19
|
Berezin V, Bock E. NCAM mimetic peptides: Pharmacological and therapeutic potential. J Mol Neurosci 2004; 22:33-39. [PMID: 14742908 DOI: 10.1385/jmn:22:1-2:33] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2003] [Accepted: 08/11/2003] [Indexed: 11/11/2022]
Abstract
The neural cell adhesion molecule (NCAM) plays an important role in neuronal differentiation and synaptic plasticity, making it an attractive target for the development of drugs for the treatment of neurodegenerative disorders. NCAM binds to itself (homophilic binding) and to a series of counter-receptors, including the fibroblast growth factor receptor (FGFR), other adhesion molecules, and various extracellular matrix components (heterophilic binding). By means of combinatorial chemistry and based on the unraveling of the structure of NCAM, it has been possible to develop a number of peptides that mimic NCAM homophilic binding. These peptides interfere with cell adhesion and promote differentiation and cell survival. Recently, a peptide mimicking the heterophilic binding to FGFR has also been identified. It binds and activates the receptor, thereby modulating neurite extension and synaptic plasticity.
Collapse
Affiliation(s)
- Vladimir Berezin
- Protein Laboratory, Institute of Molecular Pathology, University of Copenhagen, Panum Institute 6.2, Blegdamsvej 3, DK-2200 Copenhagen N., Denmark.
| | | |
Collapse
|
20
|
Kiryushko D, Berezin V, Bock E. Regulators of neurite outgrowth: role of cell adhesion molecules. Ann N Y Acad Sci 2004; 1014:140-54. [PMID: 15153429 DOI: 10.1196/annals.1294.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neuronal differentiation is a fundamental event in the development of the nervous system as well as in the regeneration of damaged nervous tissue. The initiation and guidance of a neurite are accomplished by positive (permissive or attractive), negative (inhibitory or repulsive), or guiding (affecting the advance of the growth cone) signals from the extracellular space. The signals may arise from either the extracellular matrix (ECM) or the surface of other cells, or be diffusible secreted factors. Based on this classification, we briefly describe selected positive, negative, and guiding signaling cues focusing on the role of cell adhesion molecules (CAMs). CAMs not only regulate cell-cell and cell-ECM adhesion "mechanically," they also trigger intracellular signaling cascades launching neurite outgrowth. Here, we describe the structure, function, and signaling of three key CAMs found in the nervous system: N-cadherin and two Ig-CAMs, L1 and the neural cell adhesion molecule NCAM.
Collapse
Affiliation(s)
- Darya Kiryushko
- Protein Laboratory, Institute of Molecular Pathology, Panum Institute Bld. 6.2, Blegdamsvej 3C, DK-2200, Copenhagen N, Denmark
| | | | | |
Collapse
|
21
|
Meiniel A, Meiniel R, Gonçalves-Mendes N, Creveaux I, Didier R, Dastugue B. The thrombospondin type 1 repeat (TSR) and neuronal differentiation: roles of SCO-spondin oligopeptides on neuronal cell types and cell lines. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 230:1-39. [PMID: 14692680 DOI: 10.1016/s0074-7696(03)30001-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SCO-spondin is a large glycoprotein secreted by ependymal cells of the subcommissural organ. It shares functional domains called thrombospondin type 1 repeats (TSRs) with a number of developmental proteins expressed in the central nervous system, and involved in axonal pathfinding. Also, SCO-spondin is highly conserved in the chordate phylum and its multiple domain organization is probably a chordate innovation. The putative involvement of SCO-spondin in neuron/glia interaction in the course of development is assessed in various cell culture systems. SCO-spondin interferes with several developmental processes, including neuronal survival, neurite extension, neuronal aggregation, and fasciculation. The TSR motifs, and especially the WSGWSSCSVSCG sequence, are most important in these neuronal responses. Integrins and growth factor receptors may cooperate as integrative signals. We discuss the putative involvement of the subcommissural organ/Reissner's fiber complex in developmental events, as a particular extracellular signaling system.
Collapse
Affiliation(s)
- Annie Meiniel
- INSERUM UMR 384 et Laboratoire de Biochimie médicale, F-63001 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|