1
|
Gupta A, Hazra KG, Ramakumar V, Bera D. Late detection of a pacemaker malfunction. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2021; 44:1743-1745. [PMID: 34486126 DOI: 10.1111/pace.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/29/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Anunay Gupta
- Department of Cardiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Kashinath Ghosh Hazra
- Department of Cardiology, Rabindranath Tagore International Institute of Cardiac Sciences, Kolkata, India
| | | | - Debabrata Bera
- Department of Cardiology, Rabindranath Tagore International Institute of Cardiac Sciences, Kolkata, India
| |
Collapse
|
2
|
Gupta A, Lokhandwala Y, Rai N, Malviya A. Adenosine-A drug with myriad utility in the diagnosis and treatment of arrhythmias. J Arrhythm 2021; 37:103-112. [PMID: 33664892 PMCID: PMC7896475 DOI: 10.1002/joa3.12453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Adenosine has been used in the emergency treatment of arrhythmia for more than nine decades. However, cardiologists are often unfamiliar about its basic mechanism and various diagnostic and therapeutic uses, considering it mainly as a therapeutic drug for supraventricular tachycardia. This article discusses the role of adenosine relevant to emergency physicians, cardiologists, and electrophysiologists. Understanding of the mechanisms of adenosine and its electrophysiological effects is discussed first, followed by dosing, side effects, diagnostic, and therapeutic uses. Finally, the role of adenosine in the electrophysiology laboratory is discussed.
Collapse
Affiliation(s)
- Anunay Gupta
- Department of CardiologyVardhman Mahavir Medical College and Safdarjung HospitalDelhiIndia
| | - Yash Lokhandwala
- Department of CardiologyLokmanya Tilak Municipal General HospitalMumbaiIndia
| | - Nitish Rai
- Department of CardiologyVardhman Mahavir Medical College and Safdarjung HospitalDelhiIndia
| | - Amit Malviya
- Department of CardiologyNorth Eastern Indira Gandhi Regional Institute of Health and Medical SciencesShillongIndia
| |
Collapse
|
3
|
Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, Kudenchuk PJ, Kurz MC, Lavonas EJ, Morley PT, O’Neil BJ, Peberdy MA, Rittenberger JC, Rodriguez AJ, Sawyer KN, Berg KM, Arafeh J, Benoit JL, Chase M, Fernandez A, de Paiva EF, Fischberg BL, Flores GE, Fromm P, Gazmuri R, Gibson BC, Hoadley T, Hsu CH, Issa M, Kessler A, Link MS, Magid DJ, Marrill K, Nicholson T, Ornato JP, Pacheco G, Parr M, Pawar R, Jaxton J, Perman SM, Pribble J, Robinett D, Rolston D, Sasson C, Satyapriya SV, Sharkey T, Soar J, Torman D, Von Schweinitz B, Uzendu A, Zelop CM, Magid DJ. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020; 142:S366-S468. [DOI: 10.1161/cir.0000000000000916] [Citation(s) in RCA: 371] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Matthews GDK, Grace AA. Unmasking Adenosine: The Purinergic Signalling Molecule Critical to Arrhythmia Pathophysiology and Management. Arrhythm Electrophysiol Rev 2020; 8:240-248. [PMID: 32685154 PMCID: PMC7358948 DOI: 10.15420/aer.2019.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adenosine was identified in 1929 and immediately recognised as having a potential role in therapy for arrhythmia because of its negative chronotropic and dromotropic effects. Adenosine entered mainstream use in the 1980s as a highly effective agent for the termination of supraventricular tachycardia (SVT) involving the atrioventricular node, as well as for its ability to unmask the underlying rhythm in other SVTs. Adenosine has subsequently been found to have applications in interventional electrophysiology. While considered a safe agent because of its short half-life, adenosine may provoke arrhythmias in the form of AF, bradyarrhythmia and ventricular tachyarrhythmia. Adenosine is also associated with bronchospasm, although this may reflect irritant-induced dyspnoea rather than true obstruction. Adenosine is linked to numerous pathologies relevant to arrhythmia predisposition, including heart failure, obesity, ischaemia and the ageing process itself. This article examines 90 years of experience with adenosine in the light of new European Society of Cardiology guidelines for the management of SVT.
Collapse
Affiliation(s)
- Gareth DK Matthews
- Cambridge University NHS Foundation Trust, Cambridge, UK; Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Andrew A Grace
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK; Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Reiss AB, Grossfeld D, Kasselman LJ, Renna HA, Vernice NA, Drewes W, Konig J, Carsons SE, DeLeon J. Adenosine and the Cardiovascular System. Am J Cardiovasc Drugs 2019; 19:449-464. [PMID: 30972618 PMCID: PMC6773474 DOI: 10.1007/s40256-019-00345-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenosine is an endogenous nucleoside with a short half-life that regulates many physiological functions involving the heart and cardiovascular system. Among the cardioprotective properties of adenosine are its ability to improve cholesterol homeostasis, impact platelet aggregation and inhibit the inflammatory response. Through modulation of forward and reverse cholesterol transport pathways, adenosine can improve cholesterol balance and thereby protect macrophages from lipid overload and foam cell transformation. The function of adenosine is controlled through four G-protein coupled receptors: A1, A2A, A2B and A3. Of these four, it is the A2A receptor that is in a large part responsible for the anti-inflammatory effects of adenosine as well as defense against excess cholesterol accumulation. A2A receptor agonists are the focus of efforts by the pharmaceutical industry to develop new cardiovascular therapies, and pharmacological actions of the atheroprotective and anti-inflammatory drug methotrexate are mediated via release of adenosine and activation of the A2A receptor. Also relevant are anti-platelet agents that decrease platelet activation and adhesion and reduce thrombotic occlusion of atherosclerotic arteries by antagonizing adenosine diphosphate-mediated effects on the P2Y12 receptor. The purpose of this review is to discuss the effects of adenosine on cell types found in the arterial wall that are involved in atherosclerosis, to describe use of adenosine and its receptor ligands to limit excess cholesterol accumulation and to explore clinically applied anti-platelet effects. Its impact on electrophysiology and use as a clinical treatment for myocardial preservation during infarct will also be covered. Results of cell culture studies, animal experiments and human clinical trials are presented. Finally, we highlight future directions of research in the application of adenosine as an approach to improving outcomes in persons with cardiovascular disease.
Collapse
|
6
|
Deakin CD, Morrison LJ, Morley PT, Callaway CW, Kerber RE, Kronick SL, Lavonas EJ, Link MS, Neumar RW, Otto CW, Parr M, Shuster M, Sunde K, Peberdy MA, Tang W, Hoek TLV, Böttiger BW, Drajer S, Lim SH, Nolan JP. Part 8: Advanced life support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation 2011; 81 Suppl 1:e93-e174. [PMID: 20956032 DOI: 10.1016/j.resuscitation.2010.08.027] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Neumar RW, Otto CW, Link MS, Kronick SL, Shuster M, Callaway CW, Kudenchuk PJ, Ornato JP, McNally B, Silvers SM, Passman RS, White RD, Hess EP, Tang W, Davis D, Sinz E, Morrison LJ. Part 8: adult advanced cardiovascular life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122:S729-67. [PMID: 20956224 DOI: 10.1161/circulationaha.110.970988] [Citation(s) in RCA: 888] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The goal of therapy for bradycardia or tachycardia is to rapidly identify and treat patients who are hemodynamically unstable or symptomatic due to the arrhythmia. Drugs or, when appropriate, pacing may be used to control unstable or symptomatic bradycardia. Cardioversion or drugs or both may be used to control unstable or symptomatic tachycardia. ACLS providers should closely monitor stable patients pending expert consultation and should be prepared to aggressively treat those with evidence of decompensation.
Collapse
|
8
|
Morrison LJ, Deakin CD, Morley PT, Callaway CW, Kerber RE, Kronick SL, Lavonas EJ, Link MS, Neumar RW, Otto CW, Parr M, Shuster M, Sunde K, Peberdy MA, Tang W, Hoek TLV, Böttiger BW, Drajer S, Lim SH, Nolan JP, Adrie C, Alhelail M, Battu P, Behringer W, Berkow L, Bernstein RA, Bhayani SS, Bigham B, Boyd J, Brenner B, Bruder E, Brugger H, Cash IL, Castrén M, Cocchi M, Comadira G, Crewdson K, Czekajlo MS, Davies SR, Dhindsa H, Diercks D, Dine CJ, Dioszeghy C, Donnino M, Dunning J, El Sanadi N, Farley H, Fenici P, Feeser VR, Foster JA, Friberg H, Fries M, Garcia-Vega FJ, Geocadin RG, Georgiou M, Ghuman J, Givens M, Graham C, Greer DM, Halperin HR, Hanson A, Holzer M, Hunt EA, Ishikawa M, Ioannides M, Jeejeebhoy FM, Jennings PA, Kano H, Kern KB, Kette F, Kudenchuk PJ, Kupas D, La Torre G, Larabee TM, Leary M, Litell J, Little CM, Lobel D, Mader TJ, McCarthy JJ, McCrory MC, Menegazzi JJ, Meurer WJ, Middleton PM, Mottram AR, Navarese EP, Nguyen T, Ong M, Padkin A, Ferreira de Paiva E, Passman RS, Pellis T, Picard JJ, Prout R, Pytte M, Reid RD, Rittenberger J, Ross W, Rubertsson S, Rundgren M, Russo SG, Sakamoto T, Sandroni C, Sanna T, Sato T, Sattur S, Scapigliati A, Schilling R, Seppelt I, Severyn FA, Shepherd G, Shih RD, Skrifvars M, Soar J, Tada K, Tararan S, Torbey M, Weinstock J, Wenzel V, Wiese CH, Wu D, Zelop CM, Zideman D, Zimmerman JL. Part 8: Advanced Life Support. Circulation 2010; 122:S345-421. [DOI: 10.1161/circulationaha.110.971051] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Rothman SA. Antiarrhythmic Drug Therapy of Supraventricular Tachycardia. Card Electrophysiol Clin 2010; 2:379-391. [PMID: 28770797 DOI: 10.1016/j.ccep.2010.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pharmacologic therapy is commonly used for the acute treatment and termination of paroxysmal supraventricular tachycardia (SVT) and continues to be an important long-term option for some patients. Drug choice depends on the correct diagnosis of the arrhythmia and an understanding of its mechanism. Pharmacologic agents commonly used in the acute and chronic treatment of SVT are reviewed along with their effect on the various types of SVT. Drugs that are well tolerated with minimal side effects are preferred over agents with perhaps more efficacy but higher risk of toxicity.
Collapse
Affiliation(s)
- Steven A Rothman
- Division of Cardiovascular Medicine, Lankenau Hospital, Suite 556, MOBE, 100 East Lancaster Avenue, Wynnewood, PA 19096, USA
| |
Collapse
|
10
|
Thanavaro JL, Thanavaro S. Clinical presentation and treatment of atrial fibrillation in Wolff-Parkinson-White syndrome. Heart Lung 2010; 39:131-6. [DOI: 10.1016/j.hrtlng.2009.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 06/15/2009] [Accepted: 06/17/2009] [Indexed: 11/26/2022]
|
11
|
Safety first — sedate and shock. CAN J EMERG MED 2009; 11:123; author reply 123. [DOI: 10.1017/s1481803500011039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Reply. CAN J EMERG MED 2009. [DOI: 10.1017/s1481803500011040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Ertan C, Atar I, Gulmez O, Atar A, Ozgul A, Aydinalp A, Müderrisoğlu H, Ozin B. Adenosine-induced ventricular arrhythmias in patients with supraventricular tachycardias. Ann Noninvasive Electrocardiol 2009; 13:386-90. [PMID: 18973496 DOI: 10.1111/j.1542-474x.2008.00245.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Adenosine is widely used for the diagnosis and the termination of supraventricular arrhythmias. There are many case reports and few series about the proarrhythmic potential of adenosine. We sought to evaluate the proarrhythmic potential of adenosine used to terminate the supraventricular arrhythmias. METHODS The records of all patients that received adenosine for the termination of supraventricular tachycardia were reviewed retrospectively and those with a continuous electrocardiographic (ECG) recording during adenosine administration were included to the study. RESULTS Our search identified 52 supraventricular episodes of 46 patients with a continuous ECG recording during adenosine administration. Following adenosine administration, premature ventricular contraction (PVC) or ventricular tachycardia (VT) developed in 22 (47.8%) patients and in 26 (50%) tachycardia episodes. No patient had a sustained VT. Nonsustained VT developed in eight (17.4%) patients. All VT episodes were polymorphic, short, and self-terminating. When the basal and demographic properties of patients with PVC or VT and those without PVT or VT were compared, there was no significant difference. CONCLUSIONS Adenosine is a quite safe and effective drug for the termination of narrow QRS complex tachycardia but it often induces nonsustained VT or PVC that are clinically insignificant in the absence of other accompanying heart disease.
Collapse
Affiliation(s)
- Cagatay Ertan
- Başkent University, School of Medicine, Department of Cardiology, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
KIM ROBERTJ, GERLING BARBARAR, KONO ALANT, GREENBERG MARKL. Precipitation of Ventricular Fibrillation by Intravenous Diltiazem and Metoprolol in a Young Patient with Occult Wolff-Parkinson-White Syndrome. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2008; 31:776-9. [DOI: 10.1111/j.1540-8159.2008.01086.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|