1
|
Costa-Gutierrez SB, Lami MJ, Santo MCCD, Zenoff AM, Vincent PA, Molina-Henares MA, Espinosa-Urgel M, de Cristóbal RE. Plant growth promotion by Pseudomonas putida KT2440 under saline stress: role of eptA. Appl Microbiol Biotechnol 2020; 104:4577-4592. [PMID: 32221691 DOI: 10.1007/s00253-020-10516-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/11/2020] [Accepted: 03/01/2020] [Indexed: 01/22/2023]
Abstract
New strategies to improve crop yield include the incorporation of plant growth-promoting bacteria in agricultural practices. The non-pathogenic bacterium Pseudomonas putida KT2440 is an excellent root colonizer of crops of agronomical importance and has been shown to activate the induced systemic resistance of plants in response to certain foliar pathogens. In this work, we have analyzed additional plant growth promotion features of this strain. We show it can tolerate high NaCl concentrations and determine how salinity influences traits such as the production of indole compounds, siderophore synthesis, and phosphate solubilization. Inoculation with P. putida KT2440 significantly improved seed germination and root and stem length of soybean and corn plants under saline conditions compared to uninoculated plants, whereas the effects were minor under non-saline conditions. Also, random transposon mutagenesis was used for preliminary identification of KT2440 genes involved in bacterial tolerance to saline stress. One of the obtained mutants was analyzed in detail. The disrupted gene encodes a predicted phosphoethanolamine-lipid A transferase (EptA), an enzyme described to be involved in the modification of lipid A during lipopolysaccharide (LPS) biosynthesis. This mutant showed changes in exopolysaccharide (EPS) production, low salinity tolerance, and reduced competitive fitness in the rhizosphere.
Collapse
Affiliation(s)
- Stefanie B Costa-Gutierrez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | - María Jesús Lami
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | - María Carolina Caram-Di Santo
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | - Ana M Zenoff
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | - Paula A Vincent
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | | | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Ricardo E de Cristóbal
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
2
|
Nogales J, Mueller J, Gudmundsson S, Canalejo FJ, Duque E, Monk J, Feist AM, Ramos JL, Niu W, Palsson BO. High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities. Environ Microbiol 2019; 22:255-269. [PMID: 31657101 PMCID: PMC7078882 DOI: 10.1111/1462-2920.14843] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/27/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
Genome-scale reconstructions of metabolism are computational species-specific knowledge bases able to compute systemic metabolic properties. We present a comprehensive and validated reconstruction of the biotechnologically relevant bacterium Pseudomonas putida KT2440 that greatly expands computable predictions of its metabolic states. The reconstruction represents a significant reactome expansion over available reconstructed bacterial metabolic networks. Specifically, iJN1462 (i) incorporates several hundred additional genes and associated reactions resulting in new predictive capabilities, including new nutrients supporting growth; (ii) was validated by in vivo growth screens that included previously untested carbon (48) and nitrogen (41) sources; (iii) yielded gene essentiality predictions showing large accuracy when compared with a knock-out library and Bar-seq data; and (iv) allowed mapping of its network to 82 P. putida sequenced strains revealing functional core that reflect the large metabolic versatility of this species, including aromatic compounds derived from lignin. Thus, this study provides a thoroughly updated metabolic reconstruction and new computable phenotypes for P. putida, which can be leveraged as a first step toward understanding the pan metabolic capabilities of Pseudomonas.
Collapse
Affiliation(s)
- Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Joshua Mueller
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Francisco J Canalejo
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Estrella Duque
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Jonathan Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Juan Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Wei Niu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Sigida EN, Fedonenko YP, Shashkov AS, Zdorovenko EL, Ignatov VV, Knirel YA. Structural studies of the O-specific polysaccharide from detergent degrading bacteria Pseudomonas putida TSh-18. Carbohydr Res 2017; 448:1-5. [DOI: 10.1016/j.carres.2017.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
|
4
|
Whitney JC, Chou S, Russell AB, Biboy J, Gardiner TE, Ferrin MA, Brittnacher M, Vollmer W, Mougous JD. Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J Biol Chem 2013; 288:26616-24. [PMID: 23878199 DOI: 10.1074/jbc.m113.488320] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteria employ type VI secretion systems (T6SSs) to facilitate interactions with prokaryotic and eukaryotic cells. Despite the widespread identification of T6SSs among Gram-negative bacteria, the number of experimentally validated substrate effector proteins mediating these interactions remains small. Here, employing an informatics approach, we define novel families of T6S peptidoglycan glycoside hydrolase effectors. Consistent with the known intercellular self-intoxication exhibited by the T6S pathway, we observe that each effector gene is located adjacent to a hypothetical open reading frame encoding a putative periplasmically localized immunity determinant. To validate our sequence-based approach, we functionally investigate a representative family member from the soil-dwelling bacterium Pseudomonas protegens. We demonstrate that this protein is secreted in a T6SS-dependent manner and that it confers a fitness advantage in growth competition assays with Pseudomonas putida. In addition, we determined the 1.4 Å x-ray crystal structure of this effector in complex with its cognate immunity protein. The structure reveals the effector shares highest overall structural similarity to a glycoside hydrolase family associated with peptidoglycan N-acetylglucosaminidase activity, suggesting that T6S peptidoglycan glycoside hydrolase effector families may comprise significant enzymatic diversity. Our structural analyses also demonstrate that self-intoxication is prevented by the immunity protein through direct occlusion of the effector active site. This work significantly expands our current understanding of T6S effector diversity.
Collapse
|
5
|
Duque E, de la Torre J, Bernal P, Molina-Henares MA, Alaminos M, Espinosa-Urgel M, Roca A, Fernández M, de Bentzmann S, Ramos JL. Identification of reciprocal adhesion genes in pathogenic and non-pathogenicPseudomonas. Environ Microbiol 2012; 15:36-48. [DOI: 10.1111/j.1462-2920.2012.02732.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Nishiyama E, Ohtsubo Y, Nagata Y, Tsuda M. Identification of Burkholderia multivorans ATCC 17616 genes induced in soil environment by in vivo expression technology. Environ Microbiol 2010; 12:2539-58. [DOI: 10.1111/j.1462-2920.2010.02227.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
English MM, Coulson TJD, Horsman SR, Patten CL. Overexpression of hns in the plant growth-promoting bacterium Enterobacter cloacae UW5 increases root colonization. J Appl Microbiol 2009; 108:2180-90. [PMID: 19951377 DOI: 10.1111/j.1365-2672.2009.04620.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Plant growth-promoting rhizobacteria (PGPR) introduced into soil often do not compete effectively with indigenous micro-organisms for plant colonization. The aim of this study was to identify novel genes that are important for root colonization by the PGPR Enterobacter cloacae UW5. METHODS AND RESULTS A library of transposon mutants of Ent. cloacae UW5 was screened for mutants with altered ability to colonize canola roots using a thermal asymmetric interlaced (TAIL)-PCR-based approach. A PCR fragment from one mutant was reproducibly amplified at greater levels from genomic DNA extracted from mutant pools recovered from seedling roots 6 days after seed inoculation compared to that from the cognate inoculum cultures. Competition assays confirmed that the purified mutant designated Ent. cloacae J28 outcompetes the wild-type strain on roots but not in liquid cultures. In Ent. cloacae J28, the transposon is inserted upstream of the hns gene. Quantitative RT-PCR showed that transposon insertion increased expression of hns on roots. CONCLUSIONS These results indicate that increased expression of hns in Ent. cloacae enhances competitive colonization of roots. SIGNIFICANCE AND IMPACT OF THE STUDY A better understanding of the genes involved in plant colonization will contribute to the development of PGPR that can compete more effectively in agricultural soils.
Collapse
Affiliation(s)
- M M English
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | | | | | | |
Collapse
|
8
|
Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0038-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Somers E, Vanderleyden J, Srinivasan M. Rhizosphere Bacterial Signalling: A Love Parade Beneath Our Feet. Crit Rev Microbiol 2008; 30:205-40. [PMID: 15646398 DOI: 10.1080/10408410490468786] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Plant roots support the growth and activities of a wide variety of microorganisms that may have a profound effect on the growth and/or health of plants. Among these microorganisms, a high diversity of bacteria have been identified and categorized as deleterious, beneficial, or neutral with respect to the plant. The beneficial bacteria, termed plant growth-promoting rhizobacteria (PGPR), are widely studied by microbiologists and agronomists because of their potential in plant production. Azospirillum, a genus of versatile PGPR, is able to enhance the plant growth and yield of a wide range of economically important crops in different soils and climatic regions. Plant beneficial effects of Azospirillum have mainly been attributed to the production of phytohormones, nitrate reduction, and nitrogen fixation, which have been subject of extensive research throughout the years. These elaborate studies made Azospirillum one of the best-characterized genera of PGPR. However, the genetic and molecular determinants involved in the initial interaction between Azospirillum and plant roots are not yet fully understood. This review will mainly highlight the current knowledge on Azospirillum plant root interactions, in the context of preceding and ongoing research on the association between plants and plant growth-promoting rhizobacteria.
Collapse
Affiliation(s)
- E Somers
- Centre of Microbial and Plant Genetics, K U Leuven, Heverlee, Belgium.
| | | | | |
Collapse
|
10
|
Dos Santos VAPM, Heim S, Moore ERB, Strätz M, Timmis KN. Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 2004; 6:1264-86. [PMID: 15560824 DOI: 10.1111/j.1462-2920.2004.00734.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A major challenge in microbiology is the elucidation of the genetic and ecophysiological basis of habitat specificity of microbes. Pseudomonas putida is a paradigm of a ubiquitous metabolically versatile soil bacterium. Strain KT2440, a safety strain that has become a laboratory workhorse worldwide, has been recently sequenced and its genome annotated. By drawing on both published information and on original in silico analysis of its genome, we address here the question of what genomic features of KT2440 could explain or are consistent with its ubiquity, metabolic versatility and adaptability. The genome of KT2440 exhibits combinations of features characteristic of terrestrial, rhizosphere and aquatic bacteria, which thrive in either copiotrophic or oligotrophic habitats, and suggests that P. putida has evolved and acquired functions that equip it to thrive in diverse, often inhospitable environments, either free-living, or in close association with plants. The high diversity of protein families encoded by its genome, the large number and variety of small aralogous families, insertion elements, repetitive extragenic palindromic sequences, as well as the mosaic structure of the genome (with many regions of 'atypical' composition) and the multiplicity of mobile elements, reflect a high functional diversity in P. putida and are indicative of its evolutionary trajectory and adaptation to the diverse habitats in which it thrives. The unusual wealth of determinants for high affinity nutrient acquisition systems, mono- and di-oxygenases, oxido-reductases, ferredoxins and cytochromes, dehydrogenases, sulfur metabolism proteins, for efflux pumps and glutathione-S-transfereases, and for the extensive array of extracytoplasmatic function sigma factors, regulators, and stress response systems, constitute the genomic basis for the exceptional nutritional versatility and opportunism of P. putida , its ubiquity in diverse soil, rhizosphere and aquatic systems, and its renowned tolerance of natural and anthropogenic stresses. This metabolic diversity is also the basis of the impressive evolutionary potential of KT2440, and its utility for the experimental design of novel pathways for the catabolism of organic, particularly aromatic, pollutants, and its potential for bioremediation of soils contaminated with such compounds as well as for its application in the production of high-added value compounds.
Collapse
Affiliation(s)
- V A P Martins Dos Santos
- Department of Environmental Microbiology, GBF - German Research Centre for Biotechnology, Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- David Davies
- Department of Biological Sciences, State University of New York, Binghamton, New York 13902, USA.
| |
Collapse
|
12
|
Llamas MA, Ramos JL, Rodríguez-Herva JJ. Transcriptional organization of the Pseudomonas putida tol-oprL genes. J Bacteriol 2003; 185:184-95. [PMID: 12486055 PMCID: PMC141831 DOI: 10.1128/jb.185.1.184-195.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins of the Tol system play a key role in the maintenance of outer membrane integrity and cell morphology in gram-negative bacteria. In Pseudomonas putida, the seven genes, orf1, tolQ, tolR, tolA, tolB, oprL, and orf2, which encode the proteins of this complex, are clustered in a 5.8-kb region of chromosomal DNA. Analysis of polar mutations, reverse transcriptase PCR assays, and transcriptional fusion constructs with a promoterless lacZ gene revealed that the genes are arranged in two operons: orf1 tolQ tolR tolA tolB and oprL orf2. We were also able to find a transcript that was initiated at the orf1 promoter and covered the two operons in a single mRNA. On the basis of the OprL protein level, we surmised that this transcript contributed only about 10 to 15% of the total OprL protein. Primer extension analysis identified the oprL orf2 operon promoter within the tolB gene, and the -10 and -35 regions exhibited some similarity to those of sigma(70)-recognized promoters. The transcription start point of orf1 was located 91 bp upstream of the orf1 start codon, and the -10/-35 region also exhibited sigma(70) -10/-35 recognition sequences. The expression from both promoters in rich and minimal media was constitutive and was very little influenced by the growth phase or iron-deficient conditions. In addition, analyses of the beta-galactosidase activities of different translational fusion constructs revealed that translation of tolA and orf2 genes was dependent on the translation of their corresponding upstream genes (tolR and oprL, respectively).
Collapse
Affiliation(s)
- María A Llamas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | | | | |
Collapse
|
13
|
van Selm S, Kolkman MAB, van der Zeijst BAM, Zwaagstra KA, Gaastra W, van Putten JPM. Organization and characterization of the capsule biosynthesis locus of Streptococcus pneumoniae serotype 9V. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1747-1755. [PMID: 12055294 DOI: 10.1099/00221287-148-6-1747] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The capsular polysaccharide (CPS) synthesis locus of Streptococcus pneumoniae serotype 9V was amplified by long-range PCR and sequenced. The locus was 17368 bp in size and contained 15 ORFs. The genetic organization of the cluster shared many features with other S. pneumoniae capsule loci, including the presence of four putative regulatory genes at the 5' end. Comparative sequence analyses allowed putative functions to be assigned to each of the gene products. The ORFs appeared to encode, besides the four regulatory genes, five glycosyltransferases, two O-acetyltransferases, an N-acetylglucosamine 2-epimerase, a glucose 6-dehydrogenase, an oligosaccharide transporter protein and a polysaccharide repeating unit polymerase. These functions covered the steps proposed in the CPS biosynthesis of serotype 9V. TLC of carbohydrate intermediates formed after incubation of bacterial membrane preparations with 14C-labelled precursors demonstrated that the fifth ORF (cps9vE) encoded a UDP-glucosyl-1-phosphate transferase. This function was confirmed with the help of a cps9vE mutant that carried a deletion of a guanine residue located adjacent to a stretch of adenines. The identification and characterization of the serotype 9V locus is a major step in unravelling the 9V capsule biosynthesis pathway and broadens the insight into the genetic diversity of the S. pneumoniae capsule loci.
Collapse
Affiliation(s)
- Saskia van Selm
- Bacteriology Division, Department of Infectious Diseases and Immunology, Utrecht University, PO Box 80.165, 3508 TD Utrecht, The Netherlands1
| | | | | | - Kornelisje A Zwaagstra
- Bacteriology Division, Department of Infectious Diseases and Immunology, Utrecht University, PO Box 80.165, 3508 TD Utrecht, The Netherlands1
| | - Wim Gaastra
- Bacteriology Division, Department of Infectious Diseases and Immunology, Utrecht University, PO Box 80.165, 3508 TD Utrecht, The Netherlands1
| | - Jos P M van Putten
- Bacteriology Division, Department of Infectious Diseases and Immunology, Utrecht University, PO Box 80.165, 3508 TD Utrecht, The Netherlands1
| |
Collapse
|
14
|
Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 2002; 184:1140-54. [PMID: 11807075 PMCID: PMC134825 DOI: 10.1128/jb.184.4.1140-1154.2002] [Citation(s) in RCA: 1060] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complementary approaches were employed to characterize transitional episodes in Pseudomonas aeruginosa biofilm development using direct observation and whole-cell protein analysis. Microscopy and in situ reporter gene analysis were used to directly observe changes in biofilm physiology and to act as signposts to standardize protein collection for two-dimensional electrophoretic analysis and protein identification in chemostat and continuous-culture biofilm-grown populations. Using these approaches, we characterized five stages of biofilm development: (i) reversible attachment, (ii) irreversible attachment, (iii) maturation-1, (iv) maturation-2, and (v) dispersion. Biofilm cells were shown to change regulation of motility, alginate production, and quorum sensing during the process of development. The average difference in detectable protein regulation between each of the five stages of development was 35% (approximately 525 proteins). When planktonic cells were compared with maturation-2 stage biofilm cells, more than 800 proteins were shown to have a sixfold or greater change in expression level (over 50% of the proteome). This difference was higher than when planktonic P. aeruginosa were compared with planktonic cultures of Pseudomonas putida. Las quorum sensing was shown to play no role in early biofilm development but was important in later stages. Biofilm cells in the dispersion stage were more similar to planktonic bacteria than to maturation-2 stage bacteria. These results demonstrate that P. aeruginosa displays multiple phenotypes during biofilm development and that knowledge of stage-specific physiology may be important in detecting and controlling biofilm growth.
Collapse
Affiliation(s)
- Karin Sauer
- Center for Biofilm Engineering, Montana State University-Bozeman, Bozeman, Montana, USA
| | | | | | | | | |
Collapse
|
15
|
Sauer K, Camper AK. Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol 2001; 183:6579-89. [PMID: 11673428 PMCID: PMC95489 DOI: 10.1128/jb.183.22.6579-6589.2001] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with a surface. A switch between planktonic and sessile growth is believed to result in a phenotypic change in bacteria. In this study, a global analysis of physiological changes of the plant saprophyte Pseudomonas putida following 6 h of attachment to a silicone surface was carried out by analysis of protein profiles and by mRNA expression patterns. Two-dimensional (2-D) gel electrophoresis revealed 15 proteins that were up-regulated following bacterial adhesion and 30 proteins that were down-regulated. N-terminal sequence analyses of 11 of the down-regulated proteins identified a protein with homology to the ABC transporter, PotF; an outer membrane lipoprotein, NlpD; and five proteins that were homologous to proteins involved in amino acid metabolism. cDNA subtractive hybridization revealed 40 genes that were differentially expressed following initial attachment of P. putida. Twenty-eight of these genes had known homologs. As with the 2-D gel analysis, NlpD and genes involved in amino acid metabolism were identified by subtractive hybridization and found to be down-regulated following surface-associated growth. The gene for PotB was up-regulated, suggesting differential expression of ABC transporters following attachment to this surface. Other genes that showed differential regulation were structural components of flagella and type IV pili, as well as genes involved in polysaccharide biosynthesis. Immunoblot analysis of PilA and FliC confirmed the presence of flagella in planktonic cultures but not in 12- or 24-h biofilms. In contrast, PilA was observed in 12-h biofilms but not in planktonic culture. Recent evidence suggests that quorum sensing by bacterial homoserine lactones (HSLs) may play a regulatory role in biofilm development. To determine if similar protein profiles occurred during quorum sensing and during early biofilm formation, HSLs extracted from P. putida and pure C(12)-HSL were added to 6-h planktonic cultures of P. putida, and cell extracts were analyzed by 2-D gel profiles. Differential expression of 16 proteins was observed following addition of HSLs. One protein, PotF, was found to be down-regulated by both surface-associated growth and by HSL addition. The other 15 proteins did not correspond to proteins differentially expressed by surface-associated growth. The results presented here demonstrate that P. putida undergoes a global change in gene expression following initial attachment to a surface. Quorum sensing may play a role in the initial attachment process, but other sensory processes must also be involved in these phenotypic changes.
Collapse
Affiliation(s)
- K Sauer
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, USA
| | | |
Collapse
|
16
|
Llamas MA, Ramos JL, Rodríguez-Herva JJ. Mutations in each of the tol genes of Pseudomonas putida reveal that they are critical for maintenance of outer membrane stability. J Bacteriol 2000; 182:4764-72. [PMID: 10940016 PMCID: PMC111352 DOI: 10.1128/jb.182.17.4764-4772.2000] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The outer membrane of gram-negative bacteria functions as a permeability barrier that protects cells against a large number of antibacterial agents. OprL protein of Pseudomonas putida has been shown to be crucial to maintain the stability of this cell component (J. J. Rodríguez-Herva, M.-I. Ramos-González, and J. L. Ramos. J. Bacteriol. 178:1699-1706, 1996). In the present study we cloned and mutagenized the orf1, tolQ, tolR, tolA, and tolB genes from P. putida KT2440, which were located upstream of the oprL gene. Polar and nonpolar mutations of the P. putida tolQ, tolR, tolA, and tolB genes were generated in vitro by using the omega-Km(r) interposon, which carries two transcriptional stop signals, or a promoterless xylE cassette, lacking any transcriptional stop signal, respectively. The mutant constructs were used to inactivate, by reverse genetics procedures, the corresponding chromosomal copies of the genes. The phenotype of each mutant strain was analyzed and compared with those of the wild-type strain and the previously characterized P. putida oprL::xylE mutant. All mutant strains exhibited a similar phenotype: altered cell morphology, bleb formation at the cell surface, release of periplasmic and outer membrane proteins to the extracellular medium, increased sensitivity to a variety of compounds (i.e., EDTA, sodium dodecyl sulfate, deoxycholate, and some antibiotics), filament formation, and severely reduced cell motility. Altogether, these results demonstrate the importance of the Tol-OprL system for the maintenance of outer membrane integrity in P. putida and suggest a possible role of these proteins in assembling outer membrane components.
Collapse
Affiliation(s)
- M A Llamas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas, 18008 Granada, Spain
| | | | | |
Collapse
|
17
|
Espinosa-Urgel M, Salido A, Ramos JL. Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 2000; 182:2363-9. [PMID: 10762233 PMCID: PMC111295 DOI: 10.1128/jb.182.9.2363-2369.2000] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many agricultural uses of bacteria require the establishment of efficient bacterial populations in the rhizosphere, for which colonization of plant seeds often constitutes a critical first step. Pseudomonas putida KT2440 is a strain that colonizes the rhizosphere of a number of agronomically important plants at high population densities. To identify the functions involved in initial seed colonization by P. putida KT2440, we subjected this strain to transposon mutagenesis and screened for mutants defective in attachment to corn seeds. Eight different mutants were isolated and characterized. While all of them showed reduced attachment to seeds, only two had strong defects in their adhesion to abiotic surfaces (glass and different plastics). Sequences of the loci affected in all eight mutants were obtained. None of the isolated genes had previously been described in P. putida, although four of them showed clear similarities with genes of known functions in other organisms. They corresponded to putative surface and membrane proteins, including a calcium-binding protein, a hemolysin, a peptide transporter, and a potential multidrug efflux pump. One other showed limited similarities with surface proteins, while the remaining three presented no obvious similarities with known genes, indicating that this study has disclosed novel functions.
Collapse
Affiliation(s)
- M Espinosa-Urgel
- Department of Plant Biochemistry, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain.
| | | | | |
Collapse
|