1
|
Krajewski O, Opiełka M, Urbanowicz K, Chojnowski K, Kochany P, Pawłowski K, Tomaszewska J, Peters GJ, Smoleński RT, Bełdzińska MM. Management of neurological symptoms in Lesch-Nyhan disease: A systematic review. Neurosci Biobehav Rev 2024; 165:105847. [PMID: 39117131 DOI: 10.1016/j.neubiorev.2024.105847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Lesch-Nyhan Disease (LND) is an X-linked recessive genetic disorder arising from hypoxanthine phosphoribosyltransferase 1 gene mutations, leading to a complete deficiency. LND presents a complex neurological profile characterized by generalized dystonia, motor dysfunctions and self-injurious behavior, which management is challenging. We conducted a systematic review of studies assessing the efficacy of pharmacological and non-pharmacological interventions in management of neurological symptoms in LND (PROSPERO registration number:CRD42023446513). Among 34 reviewed full-text papers; 22 studies were rated as having a high risk of bias. Considerable heterogeneity was found in studies regarding the timing of treatment implementation, adjunctive treatments and outcome assessment. Single-patient studies and clinical trials often showed contradictory results, while therapeutic failures were underreported. S-Adenosylmethionine and Deep Brain Stimulation were the most studied treatment methods and require further research to address inconsistencies. The evidence from levodopa studies underlines that optimal timing of treatment implementation should be thoroughly investigated. Standardized study design and reducing publication bias are crucial to overcome current limitations of assessing intervention efficacy in LND.
Collapse
Affiliation(s)
- Oliwier Krajewski
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Mikołaj Opiełka
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | | | - Karol Chojnowski
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-211, Poland; Department of Developmental Neurology, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Paweł Kochany
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-211, Poland; Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Kacper Pawłowski
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Jagoda Tomaszewska
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Godefridus J Peters
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-211, Poland; Cancer Center Amsterdam, Amsterdam U.M.C., VU University Medical Center (VUMC), Department of Medical Oncology, Amsterdam 1081 HV, The Netherlands
| | - Ryszard T Smoleński
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-211, Poland.
| | | |
Collapse
|
2
|
Song T, Marmur ES. RimabotulinumtoxinB: An Update. Dermatol Surg 2024; 50:S52-S57. [PMID: 39196834 DOI: 10.1097/dss.0000000000004253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
BACKGROUND Botulinum type-A toxin is a well established aesthetic and medical treatment. While the usage of type-B toxin is less common, there is a growing interest in using type-B toxin, especially in those who are treatment resistant. OBJECTIVE To evaluate the primary FDA-approved clinical applications of rimabotulinumtoxinB, along with established and emerging off-label clinical indications. MATERIAL AND METHODS Articles were reviewed from PubMed database and Food and Drug Adminstration guidelines. RESULTS Facial rhytids tend to use a higher conversion ratio between type A and type B toxin, due to type B toxin's weaker affinity to muscles and higher affinity for sweat glands. Specially, a 1:100 to 1:50 ratio was utilized for glabellar rhytids, a 1:25 to 1:50 ratio for periocular rhytids, a 1:50 to 1:66.6 ratio for cervical dystonia, a 1:20 to 1:50 ratio for hyperhidrosis, and a 1:25 to 30 ratio for sialorrhea. CONCLUSION Type B toxin has demonstrated its safety and efficacy in treating facial rhytids, cervical dystonia, sialorrhea and hyperhidrosis, with potential for novel applications under investigation. Regardless of injection location and clinical applications, dry mouth and dysphagia remained the most common side effects. Across all indications, type B toxin appeared to have a faster onset of action, a dose-dependent clinical duration, and a dose-dependent adverse effect profile.
Collapse
Affiliation(s)
- Teresa Song
- Marmur Medical, New York, New York
- Department of Dermatology, The Mount Sinai Hospital, New York, New York
| | - Ellen S Marmur
- Marmur Medical, New York, New York
- Department of Dermatology, The Mount Sinai Hospital, New York, New York
| |
Collapse
|
3
|
Konda SM, Woodward JA. A Comprehensive Review of Use of Neurotoxins for Periocular Rejuvenation. Int Ophthalmol Clin 2024; 64:51-59. [PMID: 38910505 DOI: 10.1097/iio.0000000000000528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
|
4
|
Oelke M. Strategies for Safe Transurethral Injections of Botulinum Toxin into the Bladder Wall. Toxins (Basel) 2024; 16:299. [PMID: 39057939 PMCID: PMC11280861 DOI: 10.3390/toxins16070299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Introduction: Transurethral injections into the bladder wall with botulinum toxin are an established treatment for refractory overactive bladder or detrusor overactivity. With the current injection technique, an average of approx. 18% and up to 40% of botulinum toxin is injected next to the bladder wall, potentially causing reduced efficacy or non-response. The article aims to evaluate the reasons for incorrect injections and propose strategies for complete delivery of the entire botulinum toxin fluid into the bladder wall. Material and Methods: Unstructured literature search and narrative review of the literature. Results: Incorrect injection of botulinum toxin fluid next to the bladder wall is caused by pushing the injection needle too deep and through the bladder wall. Bladder wall thickness decreases with increasing bladder filling and has a thickness of less than 2 mm beyond 100 mL in healthy individuals. Ultrasound imaging of the bladder wall before botulinum toxin injection can verify bladder wall thickness in individual patients. Patient movements during the injection therapy increase the chance of incorrect placement of the needle tip. Conclusions: Based on the literature search, it is helpful and recommended to (1) perform pretreatment ultrasound imaging of the bladder to estimate bladder wall thickness and to adjust the injection depth accordingly, (2) fill the bladder as low as possible, ideally below 100 mL, (3) use short needles, ideally 2 mm, and (4) provide sufficient anesthesia and pain management to avoid patient movements during the injection therapy.
Collapse
Affiliation(s)
- Matthias Oelke
- Hannover Medical School, Siedlerweg 10, 48599 Gronau, Germany; ; Tel.: +31-6-29-74-15-52
- Kantonsspital Frauenfeld, Spital Thurgau AG, Waldeggstr. 8A, 8500 Frauenfeld, Switzerland
| |
Collapse
|
5
|
Park SG, Lee HB, Kang S. Development of plug-and-deliverable intracellular protein delivery platforms based on botulinum neurotoxin. Int J Biol Macromol 2024; 261:129622. [PMID: 38266854 DOI: 10.1016/j.ijbiomac.2024.129622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Intracellular protein delivery systems have great potential in the fields of therapeutics development and biomedical research. However, targeted delivery, passing through the cell membrane without damaging the cells, and escaping from endosomal entrapment of endocytosed molecular cargos are major challenges of the system. Here, we present a novel intracellular protein delivery system based on modularly engineered botulinum neurotoxin type A (BoNT/A). LHNA domain, consisting of light chain and endosomal escape machinery of BoNT/A, was genetically fused with SpyCatcher (SC) and EGFR targeting affibody (EGFRAfb) to create SC-LHNA-EGFRAfb, a target-specific and protein cargo-switchable BoNT/A-based intracellular protein delivery platform. SC-LHNA-EGFRAfb was purely purified in large quantities, efficiently ligated with multiple ST-fused protein cargos individually, generating a variety of protein cargo-containing intracellular delivery complexes, and successfully delivered ligated protein cargos into the cytosol of target cells via receptor-mediated endocytosis, followed by endosomal escape and subsequent cytosolic delivery. SC-LHNA-EGFRAfb enhanced intracellular delivery efficiency of protein toxin, gelonin, by approximately 100-fold, highlighting the crucial roles of EGFRAfb and LHNA domain as a targeting ligand and an endosomal escape machinery, respectively, in the delivery process. The BoNT-based plug-and-deliverable intracellular protein delivery system has the potential to expand its applications in protein therapeutics and manipulating cellular processes.
Collapse
Affiliation(s)
- Seong Guk Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun Bin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
6
|
Li S, Peng S, Chen F, Zeng B, Zhang Z, Zhang Z. The application and therapeutic effect of botulinum toxin type a (BTX-A) in the treatment of patients with pain after cancer treatment: a systematic review and meta-analysis. Int J Surg 2024; 110:1215-1223. [PMID: 37994715 PMCID: PMC10871579 DOI: 10.1097/js9.0000000000000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/05/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Botulinum toxin type A (BTX-A) is a potential treatment for cancer pain. This study aimed to analyze the effectiveness and safety of BTX-A in the treatment of pain after cancer treatment. PATIENTS AND METHODS Systematic searches of PubMed, Cochrane Library, and Embase databases were conducted. Randomized controlled trials evaluating the efficacy and safety of BTX-A compared with either placebo or active treatment in patients with pain after cancer treatment were included. The outcomes included pain intensity, quality of life, and adverse events. RESULTS This systematic review included four studies of which two were included in the meta-analysis. Compared with a placebo, BTX-A injection in patients with pain after cancer treatment had a clinically meaningful reduction in self-reported pain post-treatment [mean difference=-1.79 (95% CI: -2.14--1.43), P <0.00001, I ²=0%]. CONCLUSION This systematic review and meta-analysis demonstrated that BTX-A is safe and effective for pain relief in patients with pain after cancer treatment.
Collapse
Affiliation(s)
- Shuzhai Li
- Department of Anesthesiology, The First People’s Hospital of Chenzhou, The Chenzhou Affiliated Hospital
| | - Shixuan Peng
- Department of Oncology, Graduate Collaborative Training Base of The First People’s Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang
| | - Fuchun Chen
- School of Basic Medical Science, Xiangnan University, Chenzhou, Hunan, People’s Republic of China
| | - Bin Zeng
- Department of Anesthesiology, The First People’s Hospital of Chenzhou, The Chenzhou Affiliated Hospital
| | - Zhen Zhang
- Department of Anesthesiology, The First People’s Hospital of Chenzhou, The Chenzhou Affiliated Hospital
| | - Zhiming Zhang
- Department of Anesthesiology, The First People’s Hospital of Chenzhou, The Chenzhou Affiliated Hospital
| |
Collapse
|
7
|
Hosseindoost S, Askari Rad M, Inanloo SH, Rahimi M, Dehghan S, Orandi A, Dehpour AR, Majedi H. The analgesic effects of botulinum neurotoxin by modulating pain-related receptors; A literature review. Mol Pain 2024; 20:17448069241275099. [PMID: 39093638 PMCID: PMC11339750 DOI: 10.1177/17448069241275099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Botulinum neurotoxins (BoNTs), produced by Clostridium botulinum, have been used for the treatment of various central and peripheral neurological conditions. Recent studies have suggested that BoNTs may also have a beneficial effect on pain conditions. It has been hypothesized that one of the mechanisms underlying BoNTs' analgesic effects is the inhibition of pain-related receptors' transmission to the neuronal cell membrane. BoNT application disrupts the integration of synaptic vesicles with the cellular membrane, which is responsible for transporting various receptors, including pain receptors such as TRP channels, calcium channels, sodium channels, purinergic receptors, neurokinin-1 receptors, and glutamate receptors. BoNT also modulates the opioidergic system and the GABAergic system, both of which are involved in the pain process. Understanding the cellular and molecular mechanisms underlying these effects can provide valuable insights for the development of novel therapeutic approaches for pain management. This review aims to summarize the experimental evidence of the analgesic functions of BoNTs and discuss the cellular and molecular mechanisms by which they can act on pain conditions by inhibiting the transmission of pain-related receptors.
Collapse
Affiliation(s)
- Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziyar Askari Rad
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Inanloo
- Department of Urology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Rahimi
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Orandi
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Majedi
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Nguyen B, Perez SM, Tosti A. Botulinum Toxin for Scalp Conditions: A Systematic Review. Dermatol Surg 2023; 49:1023-1026. [PMID: 37556465 DOI: 10.1097/dss.0000000000003895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
BACKGROUND Many reports have described the use of botulinum toxin (BTX) in the treatment of scalp conditions, but no studies have synthesized these collective findings. OBJECTIVE We conducted a systematic review to summarize the scalp conditions for which treatment with BTX has been described. METHODS We searched PubMed/MEDLINE and Scopus for articles in English published before November 1, 2022, using the keywords "hair" or "scalp" and BTX-related search terms. Articles that described patients who received injections of BTX for the management of scalp conditions were included. RESULTS Twenty-four original articles (12 case reports, 9 clinical trials, and 3 case series) were identified that described 309 patients with a scalp condition treated with BTX. Androgenetic alopecia, craniofacial hyperhidrosis, and scalp hyperseborrhea had the most robust data supporting the clinical efficacy of BTX. CONCLUSION The current quality of evidence is highly variable and, for many conditions, limited to small observational studies. Botulinum toxin may be a promising therapeutic option for patients with various scalp conditions, but future studies are needed to better understand its efficacy and safety.
Collapse
Affiliation(s)
- Betty Nguyen
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
- University of California Riverside School of Medicine, Riverside, California
| | - Sofia M Perez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Antonella Tosti
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
9
|
Ishihara H, Otani Y, Tanaka K, Miyajima H, Ngo HX, Fujitani M. Blocking insulin-like growth factor 1 receptor signaling pathway inhibits neuromuscular junction regeneration after botulinum toxin-A treatment. Cell Death Dis 2023; 14:609. [PMID: 37717026 PMCID: PMC10505167 DOI: 10.1038/s41419-023-06128-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Botulinum toxin-A (BTX) administration into muscle is an established treatment for conditions with excessive muscle contraction. However, botulinum therapy has short-term effectiveness, and high-dose injection of BTX could induce neutralizing antibodies against BTX. Therefore, prolonging its effects could be beneficial in a clinical situation. Insulin-like growth factor-1 receptor (IGF1R) and its ligands, insulin-like growth factor (IGF) -I and II, regulate the physiological and pathological processes of the nervous system. It has been suggested that IGF1R is involved in the process after BTX administration, but the specific regeneration mechanism remains unclear. Therefore, this study aimed to determine how inhibition of IGF1R signaling pathway affects BTX-induced muscle paralysis. The results showed that anti-IGF1R antibody administration inhibited the recovery from BTX-induced neurogenic paralysis, and the synaptic components at the neuromuscular junction (NMJ), mainly post-synaptic components, were significantly affected by the antibody. In addition, the wet weight or frequency distribution of the cross-sectional area of the muscle fibers was regulated by IGF1R, and sequential antibody administration following BTX treatment increased the number of Pax7+-satellite cells in the gastrocnemius (GC) muscle, independent of NMJ recovery. Moreover, BTX treatment upregulated mammalian target of rapamycin (mTOR)/S6 kinase signaling pathway, HDAC4, Myog, Fbxo32/MAFbx/Atrogin-1 pathway, and transcription of synaptic components, but not autophagy. Finally, IGF1R inhibition affected only mTOR/S6 kinase translational signaling in the GC muscle. In conclusion, the IGF1R signaling pathway is critical for NMJ regeneration via specific translational signals. IGF1R inhibition could be highly beneficial in clinical practice by decreasing the number of injections and total dose of BTX due to the prolonged duration of the effect.
Collapse
Affiliation(s)
- Hiroki Ishihara
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
- Department of Rehabilitation, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Yoshinori Otani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Kazuki Tanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
- Department of Rehabilitation, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Hisao Miyajima
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Huy Xuan Ngo
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan.
| |
Collapse
|
10
|
Hefter H, Schomaecker I, Schomaecker M, Ürer B, Brauns R, Rosenthal D, Albrecht P, Samadzadeh S. Lessons about Botulinum Toxin A Therapy from Cervical Dystonia Patients Drawing the Course of Disease: A Pilot Study. Toxins (Basel) 2023; 15:431. [PMID: 37505701 PMCID: PMC10467134 DOI: 10.3390/toxins15070431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
AIM OF THE STUDY To compare the course of severity of cervical dystonia (CD) before and after long-term botulinum toxin (BoNT) therapy to detect indicators for a good or poor clinical outcome. PATIENTS AND METHODS A total of 74 outpatients with idiopathic CD who were continuously treated with BoNT and who had received at least three injections were consecutively recruited. Patients had to draw the course of severity of CD from the onset of symptoms until the onset of BoNT therapy (CoDB graph), and from the onset of BoNT therapy until the day of recruitment (CoDA graph) when they received their last BoNT injection. Mean duration of treatment was 9.6 years. Three main types of CoDB and four main types of CoDA graphs could be distinguished. The demographic and treatment-related data of the patients were extracted from the patients' charts. RESULTS The best outcome was observed in those patients who had experienced a clear, rapid response in the beginning. These patients had been treated with the lowest doses and with a low number of BoNT preparation switches. The worst outcome was observed in those 17 patients who had drawn a good initial improvement, followed by a secondary worsening. These secondary nonresponders had been treated with the highest initial and actual doses and with frequent BoNT preparation switches. A total of 12 patients were primary nonresponders and did not experience any improvement at all. No relation between the CoDB and CoDA graphs could be detected. Primary and secondary nonresponses were observed for all three CoDB types. The use of initial high doses as a relevant risk factor for the later development of a secondary nonresponse was confirmed. CONCLUSIONS Patients' drawings of their course of disease severity helps to easily detect "difficult to treat" primary and secondary nonresponders to BoNT on the one hand, but also to detect "golden responders" on the other hand.
Collapse
Affiliation(s)
- Harald Hefter
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany (P.A.); (S.S.)
| | - Isabelle Schomaecker
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany (P.A.); (S.S.)
| | - Max Schomaecker
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany (P.A.); (S.S.)
| | - Beyza Ürer
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany (P.A.); (S.S.)
| | - Raphaela Brauns
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany (P.A.); (S.S.)
| | - Dietmar Rosenthal
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany (P.A.); (S.S.)
| | - Philipp Albrecht
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany (P.A.); (S.S.)
- Department of Neurology, Maria Hilf Clinics, 41063 Moenchengladbach, Germany
| | - Sara Samadzadeh
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany (P.A.); (S.S.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, 13125 Berlin, Germany
- Department of Regional Health Research and Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
- Department of Neurology, Slagelse Hospital, 4200 Slagelse, Denmark
| |
Collapse
|
11
|
Erro R, Picillo M, Pellecchia MT, Barone P. Improving the Efficacy of Botulinum Toxin for Cervical Dystonia: A Scoping Review. Toxins (Basel) 2023; 15:391. [PMID: 37368692 DOI: 10.3390/toxins15060391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Cervical dstonia (CD) is a chronic disorder with a significant detrimental impact on quality of life, requiring long-term treatment. Intramuscular injections of botulinum neurotoxin (BoNT) every 12 to 16 weeks have become the first-line option for CD. Despite the remarkable efficacy of BoNT as a treatment for CD, a significantly high proportion of patients report poor outcomes and discontinue the treatment. The reasons that drive sub-optimal response or treatment failure in a proportion of patients include but are not limited to inappropriate muscle targets and/or BoNT dosing, improper method of injections, subjective feeling of inefficacy, and the formation of neutralizing antibodies against the neurotoxin. The current review aims to complement published research focusing on the identification of the factors that might explain the failure of BoNT treatment in CD, highlighting possible solutions to improve its outcomes. Thus, the use of the new phenomenological classification of cervical dystonia known as COL-CAP might improve the identification of the muscle targets, but more sensitive information might come from the use of kinematic or scintigraphic techniques and the use of electromyographic or ultrasound guidance might ensure the accuracy of the injections. Suggestions are made for the development of a patient-centered model for the management of cervical dystonia and to emphasize that unmet needs in the field are to increase awareness about the non-motor spectrum of CD, which might influence the perception of the efficacy from BoNT injections, and the development of dedicated rehabilitation programs for CD that might enhance its effectiveness.
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Via Allende 43, 84081 Baronissi, SA, Italy
| | - Marina Picillo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Via Allende 43, 84081 Baronissi, SA, Italy
| | - Maria Teresa Pellecchia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Via Allende 43, 84081 Baronissi, SA, Italy
| | - Paolo Barone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Via Allende 43, 84081 Baronissi, SA, Italy
| |
Collapse
|
12
|
Pușcașu C, Zanfirescu A, Negreș S. Recent Progress in Gels for Neuropathic Pain. Gels 2023; 9:gels9050417. [PMID: 37233008 DOI: 10.3390/gels9050417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Neuropathic pain is a complex and debilitating condition that affects millions of people worldwide. While several treatment options are available, they often have limited efficacy and are associated with adverse effects. In recent years, gels have emerged as a promising option for the treatment of neuropathic pain. Inclusion of various nanocarriers, such as cubosomes and niosomes, into gels results in pharmaceutical forms with higher drug stability and increased drug penetration into tissues compared to products currently marketed for the treatment of neuropathic pain. Furthermore, these compounds usually provide sustained drug release and are biocompatible and biodegradable, which makes them a safe option for drug delivery. The purpose of this narrative review was to provide a comprehensive analysis of the current state of the field and identify potential directions for future research in the development of effective and safe gels for the treatment of neuropathic pain, ultimately improving the quality of life for patients suffering from neuropathic pain.
Collapse
Affiliation(s)
- Ciprian Pușcașu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Anca Zanfirescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Simona Negreș
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
13
|
Hu JC, Hsu LN, Lee WC, Chuang YC, Wang HJ. Role of Urological Botulinum Toxin-A Injection for Overactive Bladder and Voiding Dysfunction in Patients with Parkinson's Disease or Post-Stroke. Toxins (Basel) 2023; 15:166. [PMID: 36828479 PMCID: PMC9965145 DOI: 10.3390/toxins15020166] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
Botulinum toxin A (BoNT-A) paralyzes muscle by blocking acetylcholine release at the synaptic junction. BoNT-A has shown its therapeutic effects in neurological disorders such as Parkinson's disease (PD) and post-stroke spasticity. A high proportion of patients with PD and post-stroke develop neurogenic detrusor overactivity (nDO) and then develop urinary incontinence and overactive bladder (OAB) symptoms. This study aimed to disclose the safety and efficacy of BoNT-A injection in treating bladder and voiding dysfunction in PD and post-stroke patients by reviewing the current evidence. At present, intradetrusor injection of BoNT-A is a Food and Drug Administration (FDA)-approved third-line therapy for nDO and idiopathic OAB. Although intradetrusor injection of onaBoNT-A 200 U is already approved for nDO treatment, most researchers would like to manage PD and post-stroke patients by using onaBoNT-A 100 U intradetrusor injection to achieve long-term efficacy and reduce adverse effects. However, in contrast to its inclusion in the International Continence Society guidelines for PD treatment, the clinical use of BoNT-A for post-stroke patients is limited to experimental use due to the development of urinary retention in about one-fifth of patients. For treating urethral pseudodyssynergia, half of patients may respond to onaBoNT-A 100 U urethral injection. However, refinement is needed to reduce unwanted urinary incontinence.
Collapse
Affiliation(s)
- Ju-Chuan Hu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Lin-Nei Hsu
- Department of Urology, An Nan Hospital, China Medical University, Tainan City 833, Taiwan
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 807, Taiwan
| | - Yao-Chi Chuang
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 807, Taiwan
- Center for Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 807, Taiwan
| | - Hung-Jen Wang
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 807, Taiwan
- Center for Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
14
|
Rady NA, Bahgat MM, Abdel-Hamid AM. Promising minimally invasive treatment modalities for symptomatic temporomandibular joint disc displacement with reduction: a randomized controlled clinical trial. BMC Oral Health 2022; 22:547. [PMID: 36456937 PMCID: PMC9714147 DOI: 10.1186/s12903-022-02579-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Pain and clicking are the primary complaints in patients suffering from temporomandibular joint disc displacement with reduction (DDwR), negatively affecting the patients' quality of life, making the treatment essential. This prospective randomized controlled trial (RCT) was conducted to evaluate the effectiveness of botulinum toxin type-A (BTX-A) and low level laser therapy (LLLT) in comparison to anterior repositioning appliance (ARA) for the treatment of DDwR. METHODS A total of 27 patients were randomly allocated to 3 groups; ARA (control group), BTX-A, and LLLT; with 9 patients each. All patients were evaluated before and 3 months after the treatment using a visual analogue scale (VAS) and magnetic resonance imaging (MRI). RESULTS At 3 months follow-up, all groups showed a significant reduction in pain assessed by VAS (P = 0.007). Measured on MRI, there was a significant improvement in disc position and joint space index (JSI) in BTX-A group (P < 0.001, P = 0.011) and LLLT group (P = 0.002, P = 0.017) in comparison to the control group (P = 0.087, P = 0.066) respectively. As for time of recovery, a statistically significant difference was observed in BTX-A group (P < 0.001) and LLLT (P < 0.001) group in comparison to ARA group, which showed the most prolonged duration for reduction of DDwR symptoms. CONCLUSION We concluded that BTX-A and LLLT could be considered effective alternative treatment modalities to ARA regarding reducing joint pain, clicking, and improving disc position in patients with symptomatic DDwR. TRIAL REGISTRATION This prospective double-blinded RCT has been registered at ClinicalTrials.gov with identification number: NCT05194488, 18/1/2022.
Collapse
Affiliation(s)
- Nermeen A. Rady
- grid.7155.60000 0001 2260 6941Prosthodontics Department, Faculty of Dentistry, Alexandria University, Azarita, 21526 Alexandria Egypt
| | - Mariam M. Bahgat
- grid.7155.60000 0001 2260 6941Prosthodontics Department, Faculty of Dentistry, Alexandria University, Azarita, 21526 Alexandria Egypt
| | - Ahmed M. Abdel-Hamid
- grid.7155.60000 0001 2260 6941Prosthodontics Department, Faculty of Dentistry, Alexandria University, Azarita, 21526 Alexandria Egypt
| |
Collapse
|
15
|
Gardner AP, Barbieri JT, Pellett S. How Botulinum Neurotoxin Light Chain A1 Maintains Stable Association with the Intracellular Neuronal Plasma Membrane. Toxins (Basel) 2022; 14:toxins14120814. [PMID: 36548711 PMCID: PMC9783275 DOI: 10.3390/toxins14120814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Botulinum neurotoxin serotype A (BoNT/A) is the most potent protein toxin for humans and is utilized as a therapy for numerous neurologic diseases. BoNT/A comprises a catalytic Light Chain (LC/A) and a Heavy Chain (HC/A) and includes eight subtypes (BoNT/A1-/A8). Previously we showed BoNT/A potency positively correlated with stable localization on the intracellular plasma membrane and identified a low homology domain (amino acids 268-357) responsible for LC/A1 stable co-localization with SNAP-25 on the plasma membrane, while LC/A3 was present in the cytosol of Neuro2A cells. In the present study, steady-state- and live-imaging of a cytosolic LC/A3 derivative (LC/A3V) engineered to contain individual structural elements of the A1 LDH showed that a 59 amino acid region (275-334) termed the MLD was sufficient to direct LC/A3V from the cytosol to the plasma membrane co-localized with SNAP-25. Informatics and experimental validation of the MLD-predicted R1 region (an α-helix, residues 275-300) and R2 region (a loop, α-helix, loop, residues 302-334) both contribute independent steps to the stable co-localization of LC/A1 with SNAP-25 on the plasma membrane of Neuro-2A cells. Understanding how these structural elements contribute to the overall association of LC/A1 on the plasma membrane may identify the molecular basis for the LC contribution of BoNT/A1 to high potency.
Collapse
Affiliation(s)
- Alexander P. Gardner
- Microbiology and Immunology, Medical College, Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Joseph T. Barbieri
- Microbiology and Immunology, Medical College, Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Correspondence: (J.T.B.); (S.P.)
| | - Sabine Pellett
- Department of Bacteriology, Microbial Sciences Building, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
- Correspondence: (J.T.B.); (S.P.)
| |
Collapse
|
16
|
Botulinum Toxin Intervention in Cerebral Palsy-Induced Spasticity Management: Projected and Contradictory Effects on Skeletal Muscles. Toxins (Basel) 2022; 14:toxins14110772. [PMID: 36356022 PMCID: PMC9692445 DOI: 10.3390/toxins14110772] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Spasticity, following the neurological disorder of cerebral palsy (CP), describes a pathological condition, the central feature of which is involuntary and prolonged muscle contraction. The persistent resistance of spastic muscles to stretching is often followed by structural and mechanical changes in musculature. This leads to functional limitations at the respective joint. Focal injection of botulinum toxin type-A (BTX-A) is effectively used to manage spasticity and improve the quality of life of the patients. By blocking acetylcholine release at the neuromuscular junction and causing temporary muscle paralysis, BTX-A aims to reduce spasticity and hereby improve joint function. However, recent studies have indicated some contradictory effects such as increased muscle stiffness or a narrower range of active force production. The potential of these toxin- and atrophy-related alterations in worsening the condition of spastic muscles that are already subjected to changes should be further investigated and quantified. By focusing on the effects of BTX-A on muscle biomechanics and overall function in children with CP, this review deals with which of these goals have been achieved and to what extent, and what can await us in the future.
Collapse
|
17
|
Abstract
AB toxins are protein virulence factors secreted by many bacterial pathogens, contributing to the pathogenicity of the cognate bacteria. AB toxins consist of two functionally distinct components: the enzymatic "A" component for pathogenicity and the receptor-binding "B" component for toxin delivery. Consistently, unlike other virulence factors such as effectors, AB toxins do not require additional systems to deliver them to the target host cells. Target host cells are located in the infection site and/or located distantly from infected host cells. The first part of this review discusses the structural and functional features of single-peptide and multiprotein AB toxins in the context of host-microbe interactions, using several well-characterized examples. The second part of this review discusses toxin neutralization strategies, as well as applications of AB toxins relevant to developing intervention strategies against diseases.
Collapse
Affiliation(s)
- Jeongmin Song
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
18
|
Botulinum Toxin Use for Modulating Neuroimmune Cutaneous Activity in Psoriasis. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060813. [PMID: 35744076 PMCID: PMC9228985 DOI: 10.3390/medicina58060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
Psoriasis is a complex immune-mediated inflammatory disorder that generates enormous interest within the scientific communities worldwide, with new therapeutic targets being constantly identified and tested. Despite the numerous topical and systemic medications available for the treatment of psoriasis, alternative therapies are still needed for the optimal management of some patients who present with localized, resistant lesions. Novel insights into the contribution of cutaneous neurogenic inflammation in the pathogenesis of psoriasis have yielded exciting new potential roles of nerve-targeting treatments, namely botulinum toxin type A (BoNT-A), for the management of this disease. This paper aims to review the existing literature on knowledge regarding the potential role of BoNT-A in psoriasis treatment, with a focus on its ability to interfere with the immunopathogenetic aspects of psoriatic disease. Furthermore, in our paper, we are also including the first report of psoriatic lesions remission following local BoNT-A injections that were administered for treating upper limb spasticity, in a patient that concomitantly suffered from psoriasis and post-stroke spasticity.
Collapse
|
19
|
The Multispecialty Toxin: A Literature Review of Botulinum Toxin. Plast Reconstr Surg Glob Open 2022; 10:e4228. [PMID: 35402123 PMCID: PMC8987218 DOI: 10.1097/gox.0000000000004228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 11/26/2022]
Abstract
Botulinum toxin (BoNT) is a potent biological exotoxin produced from Clostridium botulinum. Although it was first used therapeutically to treat strabismus, its clinical role has since expanded rapidly over the years to include treatment of a variety of head and neck, gastrointestinal, urogenital, musculoskeletal, neurological, dermatological, and cosmetic disorders. The main purpose of this review is to provide a brief updated overview of the history, mechanism of action, and clinical applications of BoNT therapy across multiple medical specialties, including the most common adverse effects and recommended Botox dosages.
Collapse
|
20
|
Bohart Z, Cassidy C, Merrill D, Villani M, Villani R, Cappabianca L, Pitkin M. Temporary Botulinum Immobilization of Residuum Muscles for Facilitation of the Initial Ingrowth of Skin to the Porous Skin and Bone Integrated Pylon in the Technology of Direct Skeletal Attachment: Large Animal Model. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:758238. [PMID: 35891709 PMCID: PMC9312073 DOI: 10.3389/fresc.2022.758238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/07/2022] [Indexed: 12/03/2022]
Abstract
Enhancing the technology of bone-anchored limb prosthetics, we present a modified porcine model for developing an infection-free integration between the skin and a percutaneous bone implant. The deeply porous Skin and Bone Integrated Pylon (SBIP) presented an infection-free skin-implant interface both after implantation into the dorsum and after implantation into the residuum after below-knee amputation. However, deep ingrowth of skin into the porous cladding of the SBIP was achieved better in the dorsal procedure, while implantation to the residuum sometimes developed a stoma, probably due to the high mobility of the skin and soft tissues in the pig's thigh. Uncontrolled high skin mobility during the first week after implantation constituted a limitation for the porcine animal model, which we tried to address in the current study. As our previous studies showed that casting of the leg residuum did not sufficiently limit the skin's movement around the implant, we tested a modified protocol of the implantation, which included injection of botulinum toxin into the thigh muscles. During the course of the study, we identified proper botulinum toxin componentry, dosage, and the period after injections to achieve a maximal effect of immobilization of the muscles affecting skin movements. To verify the immobilization, we used kinetic data on the asymmetry of loading during gait with the Strideway System, Tekscan, Inc., Boston, MA, USA. We found that injections in the four muscles of the distal thigh of the left hind leg with MYOBLOC® (rimabotulinumtoxinB; 5,000 units/muscle) were sufficient to provide noticeable immobilization by the fourth week after the procedure. This conclusion was made based on the analysis of the dynamics of asymmetry in vertical ground reactions on the injected (left hind) and uninvolved (right hind) legs during gait over an instrumented walkway.
Collapse
Affiliation(s)
- Zachary Bohart
- Department of Orthopaedics and Physical Medicine and Rehabilitation, Tufts University School of Medicine, Boston, MA, United States
| | - Charles Cassidy
- Department of Orthopaedics and Physical Medicine and Rehabilitation, Tufts University School of Medicine, Boston, MA, United States
| | - David Merrill
- DaVinci Biomedical Research Products, Lancaster, MA, United States
| | - Mario Villani
- DaVinci Biomedical Research Products, Lancaster, MA, United States
| | - Rosanna Villani
- DaVinci Biomedical Research Products, Lancaster, MA, United States
| | - Leo Cappabianca
- DaVinci Biomedical Research Products, Lancaster, MA, United States
| | - Mark Pitkin
- Department of Orthopaedics and Physical Medicine and Rehabilitation, Tufts University School of Medicine, Boston, MA, United States
- Poly-Orth International, Sharon, MA, United States
| |
Collapse
|
21
|
Application of Nonsurgical Modalities in Improving Facial Aging. Int J Dent 2022; 2022:8332631. [PMID: 35251183 PMCID: PMC8894069 DOI: 10.1155/2022/8332631] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/16/2022] Open
Abstract
Objective. This review aims to summarize different kinds of applications of minimally invasive surgery in improving facial aging to provide a comprehensive and accurate introduction on the issue of esthetic treatment of facial skin. Overview. In the twentieth century, facial rejuvenation has become a new beauty trend. Facial cosmetology has entered a period of antiaging and rejuvenation therapies and microplastic surgery. The pursuit of beauty has promoted the development of minimally invasive plastic surgery. This review introduces the possible causes of facial aging and its related topics with a focus on facial injectable drugs, such as botulinum toxin, main filler materials (hyaluronic acid, calcium hydroxyapatite, poly L-lactic acid, collagen, autologous fat, and polymethyl methacrylate), and some current antiwrinkle technologies, such as thread lift and radiofrequency rhytidectomy. Conclusions. Despite the difference in mechanisms of action, each technique can address facial aging involving the loss of collagen, displacement and enlargement of fat, and muscle relaxation. Combinations of these treatments can provide patients with reasonable, comprehensive, and personalized treatment plans.
Collapse
|
22
|
Significant Long-Lasting Improvement after Switch to Incobotulinum Toxin in Cervical Dystonia Patients with Secondary Treatment Failure. Toxins (Basel) 2022; 14:toxins14010044. [PMID: 35051021 PMCID: PMC8779547 DOI: 10.3390/toxins14010044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/17/2021] [Accepted: 01/01/2022] [Indexed: 11/17/2022] Open
Abstract
Under continuous long-term treatment with abo- or onabotulinum toxin type A (BoNT/A), ~10 to 15% of patients with cervical dystonia (CD) will develop neutralizing antibodies and reduced responsiveness over an ~10-year treatment period. Among the botulinum neurotoxin type A preparations so far licensed for CD, incobotulinum toxin A (incoBoNT/A; Xeomin®) is the only one without complex proteins. Whether CD patients with treatment failure under abo- or onaBoNT/A may still respond to incoBoNT/A is unknown. In this cross-sectional, retrospective study, 64 CD patients with secondary treatment failure after abo- or onaBoNT/A therapy who were switched to incoBoNT/A were compared to 34 CD patients exclusively treated with incoBoNT/A. The initial clinical severity of CD, best outcome during abo- or onaBoNT/A therapy, severity at the time of switching to incoBoNT/A and severity at recruitment, as well as all corresponding doses, were analyzed. Furthermore, the impact of neutralizing antibodies (NABs) on the long-term outcome of incoBoNT/A therapy was evaluated. Patients significantly improved after the switch to incoBoNT/A (p < 0.001) but did not reach the improvement level obtained before the development of partial secondary treatment failure or that of patients who were exclusively treated with incoBoNT/A. No difference between abo- and onaBoNT/A pretreatments or between the long-term outcomes of NAB-positive and NAB-negative patients was found. The present study demonstrates significant long-term improvement after a switch to incoBoNT/A in patients with preceding secondary treatment failure after abo- or onaBoNT/A therapy and confirms the low antigenicity of incoBoNT/A.
Collapse
|
23
|
Karadag-Saygi E, Kenis-Coskun Ö, Unalan PC, Evkaya-Acar A, Giray E, Akgulle AH. Pros and cons of botulinum toxin injection therapy in cerebral palsy: A qualitative study exploring caregivers' perspective. Child Care Health Dev 2022; 48:150-158. [PMID: 34623695 DOI: 10.1111/cch.12915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND To describe and understand the experiences and beliefs of caregivers of children with cerebral palsy following botulinum toxin injection. METHODS A descriptive case study approach with focus group interviews was employed. A semi-structured questionnaire was conducted to collect data. Twenty-one caregivers of children (3-13 years old) with cerebral palsy were recruited with a maximum variation sampling strategy to gain insight through different perspectives. Qualitative analysis with verbatim transcripts was analysed using a thematic approach. FINDINGS Four themes emerged from qualitative analyses: acceptance of diagnosis, perceptions about treatment, caregivers' experiences with the health environment, and feelings and thoughts after the treatment. CONCLUSIONS This study highlights caregivers' requests for information about the possible long-term effect of botulinum toxin, as well as information and support to provide the best rehabilitation programme immediately after injection.
Collapse
Affiliation(s)
- Evrim Karadag-Saygi
- Department of Physical Medicine and Rehabilitation, Marmara University School of Medicine, Istanbul, Turkey
| | - Özge Kenis-Coskun
- Department of Physical Medicine and Rehabilitation, Marmara University School of Medicine, Istanbul, Turkey
| | - Pemra C Unalan
- Department of Family Medicine, Marmara University School of Medicine, Istanbul, Turkey
| | - Ayca Evkaya-Acar
- Department of Physiotherapy and Rehabilitation, Istanbul Medeniyet University Faculty of Health Science, Istanbul, Turkey
| | - Esra Giray
- Department of Physical Medicine and Rehabilitation, Fatih Sultan Mehmet Research and Training Hospital, Istanbul, Turkey
| | - Ahmet Hamdi Akgulle
- Department of Orthopaedic Surgery and Traumatology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
24
|
Gardner A, Tepp WH, Bradshaw M, Barbieri JT, Pellett S. Resolution of Two Steps in Botulinum Neurotoxin Serotype A1 Light Chain Localization to the Intracellular Plasma Membrane. Int J Mol Sci 2021; 22:11115. [PMID: 34681775 PMCID: PMC8539409 DOI: 10.3390/ijms222011115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/27/2022] Open
Abstract
Botulinum neurotoxin serotype A (BoNT/A) is the most potent protein toxin to humans. BoNT/A light chain (LC/A) cleavage of the membrane-bound SNAP-25 has been well-characterized, but how LC/A traffics to the plasma membrane to target SNAP-25 is unknown. Of the eight BoNT/A subtypes (A1-A8), LC/A3 has a unique short duration of action and low potency that correlate to the intracellular steady state of LC/A, where LC/A1 is associated with the plasma membrane and LC/A3 is present in the cytosol. Steady-state and live imaging of LC/A3-A1 chimeras identified a two-step process where the LC/A N terminus bound intracellular vesicles, which facilitated an internal α-helical-rich domain to mediate LC/A plasma membrane association. The propensity of LC/A variants for membrane association correlated with enhanced BoNT/A potency. Understanding the basis for light chain intracellular localization provides insight to mechanisms underlying BoNT/A potency, which can be extended to applications as a human therapy.
Collapse
Affiliation(s)
- Alexander Gardner
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA;
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA; (W.H.T.); (M.B.)
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA; (W.H.T.); (M.B.)
| | - Joseph T. Barbieri
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA;
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA; (W.H.T.); (M.B.)
| |
Collapse
|
25
|
Immunogenicity of Botulinum Toxin Formulations: Potential Therapeutic Implications. Adv Ther 2021; 38:5046-5064. [PMID: 34515975 PMCID: PMC8478757 DOI: 10.1007/s12325-021-01882-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022]
Abstract
Botulinum neurotoxins (BoNTs) are proteins produced by bacteria of the Clostridium family. Upon oral ingestion, BoNT causes the neuroparalytic syndrome botulism. There are seven serotypes of BoNT (serotypes A-G); BoNT-A and BoNT-B are the botulinum toxin serotypes utilized for therapeutic applications. Treatment with BoNT injections is used to manage chronic medical conditions across multiple indications. As with other biologic drugs, immunogenicity after long-term treatment with BoNT formulations may occur, and repeated use can elicit antibody formation leading to clinical nonresponsiveness. Thus, approaching BoNT treatment of chronic conditions with therapeutic formulations that minimize stimulating the host immune response while balancing patient responsiveness to therapy is ideal. Immunogenicity is a clinical limitation in many settings that use biologic drugs for treatment, and clinically relevant immunogenicity reduction has been achieved through engineering smaller protein constructs and reducing unnecessary formulation components. A similar approach has influenced the evolution of BoNT formulations. Three BoNT-A products and one BoNT-B product have been approved by the Food and Drug Administration (FDA) for therapeutic use: onabotulinumtoxinA, abobotulinumtoxinA, incobotulinumtoxinA, and rimabotulinumtoxinB; a fourth BoNT-A product, daxibotulinumtoxinA, is currently under regulatory review. Additionally, prabotulinumtoxinA is a BoNT-A product that has been approved for aesthetic indications but not therapeutic use. Here, we discuss the preclinical and clinical immunogenicity data that exist within the scientific literature and provide a perspective for considering immunogenicity as a key factor in choice of BoNT formulation.
Collapse
|
26
|
Thaker H, Zhang S, Diamond DA, Dong M. Beyond botulinum neurotoxin A for chemodenervation of the bladder. Curr Opin Urol 2021; 31:140-146. [PMID: 33394765 DOI: 10.1097/mou.0000000000000843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Botulinum neurotoxin A (BoNT/A), or Botox, is a popular option for overactive bladder (OAB) and neurogenic bladder (NGB) with or without incontinence. This review aims to discuss the clinical outcomes of BoNT in adult and pediatric bladder conditions, and introduces the potential benefit of novel, engineered neurotoxins beyond BoNT/A. RECENT FINDINGS A large volume of evidence supports the use of Botox for OAB (to reduce urgency, frequency and incontinence episodes), and for NGB (to decrease incontinence and improve bladder capacity and detrusor pressures). Botox is now also Food & Drug Administration (FDA)-approved for pediatric neurogenic detrusor overactivity. However, urinary retention, diminished response over time and treatment failures are prevalent issues with Botox. Modifying natural BoNTs or forming chimeric toxins are alternatives to BoNT/A that may have higher efficacy and lower side-effect profile. One example is BoNT/BMY-WW. This novel engineered toxin binds to a more commonly expressed synaptotagmin receptor, with potentially more potent paralytic effect and less capacity for systemic diffusion. SUMMARY Novel engineered neurotoxins may be the next frontier in OAB and NGB therapy.
Collapse
Affiliation(s)
- Hatim Thaker
- Department of Urology, Boston Children's Hospital, Harvard Medical School
| | - Sicai Zhang
- Department of Urology, Boston Children's Hospital, Harvard Medical School.,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - David A Diamond
- Department of Urology, Boston Children's Hospital, Harvard Medical School
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Harvard Medical School.,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Rinzin K, Hoang MP, Seresirikachorn K, Snidvongs K. Botulinum toxin for chronic rhinitis: A systematic review and meta-analysis. Int Forum Allergy Rhinol 2021; 11:1538-1548. [PMID: 33956405 DOI: 10.1002/alr.22813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Botulinum toxin type A (BTX-A) is a potential treatment for chronic rhinitis. This study aimed to assess the effectiveness and safety of BTX-A in treating patients with chronic rhinitis. METHODS Systematic searches of MEDLINE, Scopus, and EMBASE databases were performed. Randomized controlled trials (RCTs) that assessed the efficacy of BTX-A in allergic rhinitis and/or nonallergic rhinitis patients, compared with either placebo or active treatment, were included. The outcomes were total nasal symptom (TNSS), disease-specific quality of life (QOL), and adverse events. RESULTS Nine RCTs (340 patients) met the eligibility criteria. Compared with placebo, the ≤ 12-week effects favored BTX-A injection on TNSS (standardized mean difference [SMD] -2.22, 95% confidence interval [CI] -3.27 to -1.17, p < 0.01, four RCTs). Beneficial effects > 12 weeks over placebo (MD -9.69, 95% CI -11.29 to -8.09, p < 0.01, one RCT) were demonstrated up to 24 weeks. However, the benefits were not shown on nasal congestion and individual nasal symptoms. Compared with active comparators (triamcinolone injection, ipratropium bromide, and cetirizine), there was no difference in the < 12-week effect between groups on TNSS. There was no difference between BTX-A and cetirizine on QOL (one RCT). The > 12-week effects on TNSS and individual nasal symptoms favored BTX-A over triamcinolone injection (one RCT). The risk ratio of adverse events favored BTX-A over cetirizine (one RCT). CONCLUSIONS BTX-A improved TNSS and QOL in patients with chronic rhinitis. These effects were demonstrated up to 24 weeks post treatment. BTX-A was safe, well tolerated, and may be considered in patients who are refractory to current standard-of-care therapies.
Collapse
Affiliation(s)
- Kencho Rinzin
- Department of Otolaryngology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Endoscopic Nasal and Sinus Surgery Excellent Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Minh P Hoang
- Department of Otolaryngology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Endoscopic Nasal and Sinus Surgery Excellent Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Department of Otolaryngology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Kachorn Seresirikachorn
- Department of Otolaryngology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Endoscopic Nasal and Sinus Surgery Excellent Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kornkiat Snidvongs
- Department of Otolaryngology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Endoscopic Nasal and Sinus Surgery Excellent Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
28
|
Hefter H, Hartmann CJ, Kahlen U, Samadzadeh S, Rosenthal D, Moll M. Clinical Improvement After Treatment With IncobotulinumtoxinA (XEOMIN®) in Patients With Cervical Dystonia Resistant to Botulinum Toxin Preparations Containing Complexing Proteins. Front Neurol 2021; 12:636590. [PMID: 33633680 PMCID: PMC7900567 DOI: 10.3389/fneur.2021.636590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/14/2021] [Indexed: 12/27/2022] Open
Abstract
This study investigated the clinical long-term effect of incobotulinumtoxinA (incoBoNT/A) in 33 cervical dystonia (CD) patients who had developed partial secondary therapy failure (PSTF) under previous long-term botulinum toxin (BoNT) treatment. Patients were treated four times every 12 weeks with incoBoNT/A injections. Physicians assessed treatment efficacy using the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) at the baseline visit, week 12 and 48. Patients rated quality of life of CD with the Craniocervical Dystonia Questionnaire (CDQ-24). Titres of neutralizing antibodies(NAB) were determined at start of the study and after 48 weeks. All patients had experienced significant and progressive worsening of symptoms in the last 6 months of previous BoNT treatment. Repeated incoBoNT/A injections resulted in a significant reduction in mean TWSTRS at week 12 and 48. Patients' rating of quality of life was highly correlated with TWSTRS but did not change significantly over 48 weeks. During the 48 weeks -period of incoBoNT/A treatment NAB titres decreased in 32.2%, did not change in 45.2%, and only increased in 22.6% of the patients. Thus, repeated treatment with the low dose of 200 MU incoBoNT/A over 48 weeks provided a beneficial clinical long-term effect in PSTF and did not booster titres of NAB.
Collapse
Affiliation(s)
- Harald Hefter
- Department of Neurology, University of Düsseldorf, Düsseldorf, Germany
| | | | - Ulrike Kahlen
- Department of Neurology, University of Düsseldorf, Düsseldorf, Germany
| | - Sara Samadzadeh
- Department of Neurology, University of Düsseldorf, Düsseldorf, Germany
| | - Dietmar Rosenthal
- Department of Neurology, University of Düsseldorf, Düsseldorf, Germany
| | - Marek Moll
- Department of Neurology, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
29
|
Choudhury S, Baker MR, Chatterjee S, Kumar H. Botulinum Toxin: An Update on Pharmacology and Newer Products in Development. Toxins (Basel) 2021; 13:58. [PMID: 33466571 PMCID: PMC7828686 DOI: 10.3390/toxins13010058] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Since its introduction as a treatment for strabismus, botulinum toxin (BoNT) has had a phenomenal journey and is now recommended as first-line treatment for focal dystonia, despite short-term clinical benefits and the risks of adverse effects. To cater for the high demand across various medical specialties, at least six US Food and Drug Administration (FDA)-approved formulations of BoNT are currently available for diverse labelled indications. The toxo-pharmacological properties of these formulations are not uniform and thus should not be used interchangeably. Synthetic BoNTs and BoNTs from non-clostridial sources are not far from clinical use. Moreover, the study of mutations in naturally occurring toxins has led to modulation in the toxo-pharmacokinetic properties of BoNTs, including the duration and potency. We present an overview of the toxo-pharmacology of conventional and novel BoNT preparations, including those awaiting imminent translation from the laboratory to the clinic.
Collapse
Affiliation(s)
- Supriyo Choudhury
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata 700017, India; (S.C.); (S.C.)
| | - Mark R. Baker
- Departments of Neurology and Clinical Neurophysiology, Royal Victoria Infirmary, Queen Victoria Rd, Newcastle upon Tyne NE1 4LP, UK;
- Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Suparna Chatterjee
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata 700017, India; (S.C.); (S.C.)
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata 700020, India
| | - Hrishikesh Kumar
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata 700017, India; (S.C.); (S.C.)
| |
Collapse
|
30
|
The Extreme Ends of the Treatment Response Spectrum to Botulinum Toxin in Cervical Dystonia. Toxins (Basel) 2020; 13:toxins13010022. [PMID: 33396548 PMCID: PMC7824374 DOI: 10.3390/toxins13010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022] Open
Abstract
Background: The response to BoNT is not uniform; a broad spectrum of responses and side-effects usually occurs. This study aimed to show special cervical dystonia cases with therapy response very different to normal treatment course which indicate the extreme ends of therapy spectrum. Patients: Clinical data and course of treatment of five long-term treated patients with cervical dystonia out of therapy response norms are presented: a patient who was supersensitive to standard dose and has required dose adjustment to lower dose of BoNT; one patient who worsened under a standard dose, but responded excellently to twice the standard dose; one insensitive patient who responded poorly for years to a dose well above the standard dose, but responded when dose was further increased; and two patients with a totally different response pattern to BoNT/A preparation 1, but the development of a neutralizing antibody induced secondary treatment failure in both cases and a totally different response after switch to BoNT/A preparation 2. Conclusions: These five patients indicate that the response of a patient to a BoNT preparation may be unexpected. Therefore, cautious onset of BoNT therapy is recommended as well as consequent dose adjustment later on and even switch to another BoNT/A preparation when a patient has already developed NABs against BoNT/A.
Collapse
|
31
|
Schote AB, Schiel F, Schmitt B, Winnikes U, Frank N, Gross K, Croyé MA, Tarragon E, Bekhit A, Bobbili DR, May P, Schick C, Meyer J. Genome-wide linkage analysis of families with primary hyperhidrosis. PLoS One 2020; 15:e0244565. [PMID: 33378362 PMCID: PMC7773265 DOI: 10.1371/journal.pone.0244565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
Primary focal hyperhidrosis (PFH, OMIM %144110) is a genetically influenced condition characterised by excessive sweating. Prevalence varies between 1.0-6.1% in the general population, dependent on ethnicity. The aetiology of PFH remains unclear but an autosomal dominant mode of inheritance, incomplete penetrance and variable phenotypes have been reported. In our study, nine pedigrees (50 affected, 53 non-affected individuals) were included. Clinical characterisation was performed at the German Hyperhidrosis Centre, Munich, by using physiological and psychological questionnaires. Genome-wide parametric linkage analysis with GeneHunter was performed based on the Illumina genome-wide SNP arrays. Haplotypes were constructed using easyLINKAGE and visualised via HaploPainter. Whole-exome sequencing (WES) with 100x coverage in 31 selected members (24 affected, 7 non-affected) from our pedigrees was achieved by next generation sequencing. We identified four genome-wide significant loci, 1q41-1q42.3, 2p14-2p13.3, 2q21.2-2q23.3 and 15q26.3-15q26.3 for PFH. Three pedigrees map to a shared locus at 2q21.2-2q23.3, with a genome-wide significant LOD score of 3.45. The chromosomal region identified here overlaps with a locus at chromosome 2q22.1-2q31.1 reported previously. Three families support 1q41-1q42.3 (LOD = 3.69), two families share a region identical by descent at 2p14-2p13.3 (LOD = 3.15) and another two families at 15q26.3 (LOD = 3.01). Thus, our results point to considerable genetic heterogeneity. WES did not reveal any causative variants, suggesting that variants or mutations located outside the coding regions might be involved in the molecular pathogenesis of PFH. We suggest a strategy based on whole-genome or targeted next generation sequencing to identify causative genes or variants for PFH.
Collapse
Affiliation(s)
- Andrea B. Schote
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Florian Schiel
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Benedikt Schmitt
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Ulrike Winnikes
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Nicole Frank
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Katharina Gross
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Marie-Anne Croyé
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Ernesto Tarragon
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Adam Bekhit
- Institute for Medical Biometry, Epidemiology and Medical Informatics, Saarland University, Homburg, Germany
| | - Dheeraj Reddy Bobbili
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Megeno, Esch-sur-Alzette, Luxembourg
| | - Patrick May
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Jobst Meyer
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| |
Collapse
|
32
|
Botulinum Toxin A: A Review of Potential Uses in Treatment of Female Urogenital and Pelvic Floor Disorders. Ochsner J 2020; 20:400-409. [PMID: 33408578 PMCID: PMC7755545 DOI: 10.31486/toj.19.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Botulinum toxin is an injectable neuromodulator that inhibits transmission between peripheral nerve endings and muscle fibers, resulting in muscle paralysis. Botulinum toxin type A is the most common form of botulinum toxin used in clinical practice. Methods: In this review, we examine the mechanism of action, formulations, common clinical use in the genital-urinary tract, and potential clinical use in pelvic floor disorders of botulinum toxin type A. Results: Several aspects of botulinum toxin A make it a favorable therapeutic tool, including its accessibility, its longevity, and its impermanence and reversibility of resultant chemodenervation in a relatively short and safe manner. Although botulinum toxin A has well-established efficacy in treating refractory overactive bladder and neurogenic detrusor overactivity, its use in pelvic floor disorders is still in its infancy. Conclusion: The efficacy of botulinum toxin A for treating pelvic pain, voiding dysfunction, muscle pain and dysfunction, and certain colorectal-related pain issues shows promise but requires additional rigorous evaluation.
Collapse
|
33
|
Expression, Purification, and Verification of Recombinant Botulinum Neurotoxin Type A Binding Domain: A Comparison Between X33 and PichiaPink Strains of Pichia pastoris. Jundishapur J Nat Pharm Prod 2020. [DOI: 10.5812/jjnpp.80447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: An effective method to develop a safe vaccine against botulism is to utilize molecular biology techniques to produce recombinant antigens, which provoke the immune response in the recipient organism. A suggested antigen is a specific recombinant fragment of the botulinum neurotoxin (BoNT), which elicits the predictable immune response and does not have any toxic effects. In this study, the binding domain of the heavy chain of BoNT serotype A, which is the responsible subunit for binding to the receptor(s) of presynaptic membranes in neuromuscular junctions, is the selected fragment of this toxin to be recombinantly produced. Objectives: In order to prevent a severe syndrome such as Botulism, developing efficient vaccines against it is a necessity. Efforts have been made to accomplish this throughout time; however, some have discontinued due to the risks and unreliability of their production and usage. Methods: The encoding gene of BoNT/A-Hc was cloned into two different strains of Pichia pastoris, which were compared to each other based on the yield of the recombinant product. Results: The results demonstrated that the expression of recombinant BoNT/A-Hc by PichiaPink strain was successful, and the achieved recombinant BoNT/A-Hc was subsequently purified and then verified by using the specific antibody and analytical methods. Conclusions: In contrast, the expression results from the X-33 strain were not significant.
Collapse
|
34
|
Samadzadeh S, Ürer B, Brauns R, Rosenthal D, Lee JI, Albrecht P, Hefter H. Clinical Implications of Difference in Antigenicity of Different Botulinum Neurotoxin Type A Preparations: Clinical Take-Home Messages from Our Research Pool and Literature. Toxins (Basel) 2020; 12:toxins12080499. [PMID: 32759685 PMCID: PMC7472361 DOI: 10.3390/toxins12080499] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/16/2023] Open
Abstract
The three different botulinum toxin type A (BoNT/A) preparations being licensed in Europe and the U.S. differ in protein content, which seems to be a major factor influencing the antigenicity of BoNT/A. In the present study, several arguments out of our research pool were collected to demonstrate that the clinical response and antigenicity were different for the three BoNT/A preparations: some results of (1) a cross-sectional study on clinical outcome and antibody formation of 212 patients with cervical dystonia (CD) being treated between 2 and 22 years; 2) another cross-sectional study on the clinical aspects and neutralizing antibody (NAB) induction of 63 patients having developed partial secondary treatment under abobotulinum (aboBoNT/A) onabotulinumtoxin (onaBoNT/A) who were switched to incobotulinumtoxin (incoBoNT/A) in comparison to 32 patients being exclusively treated with incoBoNT/A. These results imply that (1) the presence of NAB cannot be concluded from the course of treatment, that (2) an increase in the dose and variability of outcome with treatment duration indicates the ongoing induction of NABs over time, that (3) the higher protein load of BoNT/A goes along with a higher incidence and prevalence of NAB induction and that (4) the best response to a BoNT/A is also dependent on the protein load of the preparation.
Collapse
|
35
|
High Dosage of Botulinum Toxin Type A in Adult Subjects with Spasticity Following Acquired Central Nervous System Damage: Where Are We at? Toxins (Basel) 2020; 12:toxins12050315. [PMID: 32397674 PMCID: PMC7291232 DOI: 10.3390/toxins12050315] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 11/16/2022] Open
Abstract
Spasticity is a common disabling disorder in adult subjects suffering from stroke, brain injury, multiple sclerosis (MS) and spinal cord injury (SCI). Spasticity may be a disabling symptom in people during rehabilitation and botulinum toxin type A (BTX-A) has become the first-line therapy for the local form. High BTX-A doses are often used in clinical practice. Advantages and limitations are debated and the evidence is unclear. Therefore, we analysed the efficacy, safety and evidence for BTX-A high doses. Studies published from January 1989 to February 2020 were retrieved from MEDLINE/PubMed, Embase, Cochrane Central Register. Only obabotulinumtoxinA (obaBTX-A), onabotulinumtoxinA (onaBTX-A), and incobotulinumtoxinA (incoBTX-A) were considered. The term “high dosage” indicated ≥ 600 U. Thirteen studies met the inclusion criteria. Studies had variable method designs, sample sizes and aims, with only two randomised controlled trials. IncoBTX-A and onaBTX-A were injected in three and eight studies, respectively. BTX-A high doses were used predominantly in treating post-stroke spasticity. No studies were retrieved regarding treating spasticity in MS and SCI. Dosage of BTX-A up to 840 U resulted efficacious and safety without no serious adverse events (AEs). Evidence is insufficient to recommend high BTX-A use in clinical practice, but in selected patients, the benefits of high dose BTX-A may be clinically acceptable.
Collapse
|
36
|
Therapeutic Effect of Botulinum Toxin A on Sensory Bladder Disorders-From Bench to Bedside. Toxins (Basel) 2020; 12:toxins12030166. [PMID: 32182780 PMCID: PMC7150911 DOI: 10.3390/toxins12030166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
Bladder oversensitivity arises from several different conditions involving the bladder, bladder outlet, systemic or central nervous system diseases. Increase of the bladder sensation results from activation of the sensory receptors in the urothelial cells or suburothelial tissues. Medical treatment targeting the overactive bladder (OAB) or interstitial cystitis (IC) might relieve oversensitive bladder symptoms (frequency, urgency and pain) in a portion of patients, but a certain percentage of patients still need active management. Botulinum toxin A (BoNT-A) has been demonstrated to have anti-inflammatory and antinociceptive effects in bladder sensory disorders and has been shown effective in the reduction of bladder oversensitivity and the increase of functional bladder capacity. For patients with OAB, urgency and urinary incontinence improved, while in patients with IC, bladder pain could be relieved in association with reduction of bladder oversensitivity after BoNT-A intravesical injection. Histological evidence has confirmed the therapeutic mechanism and clinical efficacy of intravesical BoNT-A injection on patients with OAB or IC. Bladder oversensitivity can also be relieved with the instillation of liposome encapsulated BoNT-A or low energy show waves (LESWs), which enable the BoNT-A molecule to penetrate into the urothelium and suburothelial space without affecting the detrusor contractility. Liposome encapsulated BoNT-A or combined LESWs and BoNT-A instillation might be future treatment alternatives for bladder oversensitivity in sensory bladder disorders.
Collapse
|
37
|
Hefter H, Brauns R, Ürer B, Rosenthal D, Albrecht P. Effective long-term treatment with incobotulinumtoxin (Xeomin®) without neutralizing antibody induction: a monocentric, cross-sectional study. J Neurol 2020; 267:1340-1347. [PMID: 31960136 PMCID: PMC7184051 DOI: 10.1007/s00415-019-09681-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 11/25/2022]
Abstract
Background Among the spectrum of licensed botulinum neurotoxin preparations incobotulinumtoxin (incoBoNT/A; Xeomin®) is the only one which does not contain complex proteins. Therefore, incoBoNT/A has been suggested to have a low antigenicity, but precise estimations on incidence and prevalence of neutralizing antibody formation during long-term treatment are outstanding so far. Methods For the present cross-sectional study, 59 patients having exclusively been treated with incoBoNT/A (mono group) and 32 patients having been treated with other BoNT/A preparations less than nine times and who were then switched to at least 14 sessions of incoBoNT/A treatment (switch group) were recruited from one botulinum toxin outpatient clinic. Side effects and doses were extracted from the charts, and the efficacy of treatment was assessed by the patients using a visual analogue scale (0–100). The prevalence of neutralizing antibodies was tested by means of the mouse hemi-diaphragm assay (MHDA). Findings None of the patients in the mono and only two in the switch group had a positive MHDA-test. Across all indications and patients, mean improvement exceeded 67%. Improvement did not depend on age at onset, sex, change of dose or duration of treatment, but on disease entity. In patients with cervical dystonia, improvement was about the same in the mono and switch subgroup, but the last dose was different. Conclusions The present study confirms the low antigenicity of incoBoNT/A, which has immediate consequences for patient management, and the use of higher doses and shorter durations of reinjection intervals in botulinum toxin therapy.
Collapse
Affiliation(s)
- Harald Hefter
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | - Raphaela Brauns
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Beyza Ürer
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Dietmar Rosenthal
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Philipp Albrecht
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| |
Collapse
|
38
|
McGeachan RI, Schwarz T, Gunn-Moore DA, Marioni-Henry K. Botulinum toxin type A for the treatment of muscle contractures secondary to acute spinal cord injury in a young cat. JFMS Open Rep 2020; 6:2055116920922648. [PMID: 35145724 PMCID: PMC8822334 DOI: 10.1177/2055116920922648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Case summary A 4-month-old male entire domestic shorthair cat presented for sudden onset of right thoracic monoparesis following a fall; within 18 h, the clinical signs progressed to non-ambulatory right hemiplegia with absent sensation in the distal right thoracic limb and left hemiparesis. MRI revealed changes consistent with a C6-C7 acute non-compressive nucleus pulposus extrusion with suspected secondary C5-C7 spinal cord haemorrhage. Rehabilitation exercises were started immediately after the diagnosis of acute spinal cord trauma. Sensation in the right thoracic limb improved and, with the help of a splint applied to that limb, the cat was ambulatory on all four limbs. Unfortunately, clinical signs started to progress over the course of 10 days. The cat developed progressive discomfort on manipulation of the right elbow and carpus, and a hyperflexion of the right carpus. Radiographs revealed no skeletal abnormalities. Muscle contractures were suspected. Under general anaesthesia the triceps and flexor muscles of the carpus and digits were injected with a total of 100 U of botulinum toxin type A (BTX-A). No complications were associated with the procedure and 24 h after the injection the carpal hyperflexion resolved. Relevance and novel information The use of BTX-A to treat muscle contractures in human medicine is an established and increasingly used technique. For example, in subacute stroke patients with a non-functional arm, BTX-A forearm injection appears to prevent disabling finger stiffness, likely by minimising the development of contractures. Here, we demonstrate that intramuscular BTX-A is an effective treatment for acquired muscle contractures in a cat.
Collapse
Affiliation(s)
- Robert I McGeachan
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Hospital for Small Animals, Roslin, UK
| | - Tobias Schwarz
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Hospital for Small Animals, Roslin, UK
| | - Danièlle A Gunn-Moore
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Hospital for Small Animals, Roslin, UK
| | - Katia Marioni-Henry
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Hospital for Small Animals, Roslin, UK
| |
Collapse
|
39
|
Immunogenicity Associated with Botulinum Toxin Treatment. Toxins (Basel) 2019; 11:toxins11090491. [PMID: 31454941 PMCID: PMC6784164 DOI: 10.3390/toxins11090491] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/22/2019] [Indexed: 11/17/2022] Open
Abstract
Botulinum toxin (BoNT) has been used for the treatment of a variety of neurologic, medical and cosmetic conditions. Two serotypes, type A (BoNT-A) and type B (BoNT-B), are currently in clinical use. While considered safe and effective, their use has been rarely complicated by the development of antibodies that reduce or negate their therapeutic effect. The presence of antibodies has been attributed to shorter dosing intervals (and booster injections), higher doses per injection cycle, and higher amounts of antigenic protein. Other factors contributing to the immunogenicity of BoNT include properties of each serotype, such as formulation, manufacturing, and storage of the toxin. Some newer formulations with purified core neurotoxin devoid of accessory proteins may have lower overall immunogenicity. Several assays are available for the detection of antibodies, including both structural assays such as ELISA and mouse-based bioassays, but there is no consistent correlation between these antibodies and clinical response. Prevention and treatment of antibody-associated non-responsiveness is challenging and primarily involves the use of less immunogenic formulations of BoNT, waiting for the spontaneous disappearance of the neutralizing antibody, and switching to an immunologically alternate type of BoNT.
Collapse
|
40
|
|
41
|
Milenkovic U, Campbell J, Roussel E, Albersen M. An update on emerging drugs for the treatment of erectile dysfunction. Expert Opin Emerg Drugs 2018; 23:319-330. [DOI: 10.1080/14728214.2018.1552938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- U. Milenkovic
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - J. Campbell
- Department of Surgery, Division of Urology, University of Western Ontario, London, ON, Canada
| | - E. Roussel
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - M. Albersen
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Blanshan N, Mahowald ML, Dorman C, Frizelle S, Krug HE. The analgesic effect of intraarticular OnabotulinumtoxinA in a female murine model of collagenase induced chronic degenerative monoarthritis. Toxicon 2018; 158:8-15. [PMID: 30471381 PMCID: PMC7291841 DOI: 10.1016/j.toxicon.2018.11.307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
Purpose We previously reported the efficacy of intraarticular (IA) rimabotulinumtoxinB (BoNT/B) in a murine model of chronic degenerative arthritis pain. This study aimed to measure the analgesic effects of onabotulinumtoxinA (BoNT/A) on collagenase induced chronic degenerative arthritis joint pain. Methods Chronic degenerative arthritis was produced by IA injection of 10 μl collagenase (Col) (10 IU) into the left knee of C57BL/6J female mice 4 weeks prior to pain assessment. IA BoNT/A was injected 3 days before testing. Arthritis pain was measured as evoked pain scores (EPS) and spontaneous pain behaviors with an advanced dynamic weight bearing (ADWB) device. EPS was a tally of fights and vocalizations exhibited in one minute with knee palpation. Percent body weight and percent time spent on each limb was quantified. All mice were 12 weeks old at the time of examination. Results IA Col increased EPS and reduced ADWB measures of percent weight bearing on the left hind limb compared to naïve mice. BoNT/A treatment reduced EPS and increased weight bearing on the left hind limb. The improvements were not significant compared to the Col group. There was no significant difference in time spent on the left hind limb between any treatment groups. Forelimb ADWB measures of percent weight and time in arthritic mice significantly increased compared to nonarthritic animals. Treatment with BoNT/A in the arthritic limb decreased this offloading; however, statistical analysis only showed significance in weightbearing. Conclusion IA Col monoarthritis increased evoked and spontaneous pain behaviors in female mice after four weeks. Treatment with IA BoNT/A decreased pain behaviors but only forelimb weight bearing showed a significant improvement. This led us to conclude that treatment with BoNT/A is not an effective analgesic for the treatment of chronic degenerative knee arthritis in murine models.
Collapse
Affiliation(s)
- Nicole Blanshan
- Rheumatology Department, Veterans Affairs Medical Center, Minneapolis, MN, United States.
| | - Maren L Mahowald
- Rheumatology Department, Veterans Affairs Medical Center, Minneapolis, MN, United States; Department of Medicine, University of Minnesota, Minneapolis, MN, United States.
| | - Christopher Dorman
- Rheumatology Department, Veterans Affairs Medical Center, Minneapolis, MN, United States.
| | - Sandra Frizelle
- Rheumatology Department, Veterans Affairs Medical Center, Minneapolis, MN, United States.
| | - Hollis E Krug
- Rheumatology Department, Veterans Affairs Medical Center, Minneapolis, MN, United States; Department of Medicine, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
43
|
Safety Profile of High-Dose Botulinum Toxin Type A in Post-Stroke Spasticity Treatment. Clin Drug Investig 2018; 38:991-1000. [DOI: 10.1007/s40261-018-0701-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Light Chain Diversity among the Botulinum Neurotoxins. Toxins (Basel) 2018; 10:toxins10070268. [PMID: 30004421 PMCID: PMC6070880 DOI: 10.3390/toxins10070268] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/30/2022] Open
Abstract
Botulinum neurotoxins (BoNT) are produced by several species of clostridium. There are seven immunologically unique BoNT serotypes (A⁻G). The Centers for Disease Control classifies BoNTs as 'Category A' select agents and are the most lethal protein toxins for humans. Recently, BoNT-like proteins have also been identified in several non-clostridia. BoNTs are di-chain proteins comprised of an N-terminal zinc metalloprotease Light Chain (LC) and a C-terminal Heavy Chain (HC) which includes the translocation and receptor binding domains. The two chains are held together by a disulfide bond. The LC cleaves Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The cleavage of SNAREs inhibits the fusion of synaptic vesicles to the cell membrane and the subsequent release of acetylcholine, which results in flaccid paralysis. The LC controls the catalytic properties and the duration of BoNT action. This review discusses the mechanism for LC catalysis, LC translocation, and the basis for the duration of LC action. Understanding these properties of the LC may expand the applications of BoNT as human therapies.
Collapse
|
45
|
Abstract
Botulinum toxin A is produced by anaerobic spore-forming bacteria and is used for various therapeutic and cosmetic purposes. Botulinum toxin A injections are the most popular nonsurgical procedure worldwide. Despite an increased demand for botulinum toxin A injections, the clinical pharmacology and differences in formulation of commonly available products are poorly understood. The various products available in the market are unique and vary in terms of units, chemical properties, biological activities, and weight, and are therefore not interchangeable. For safe clinical practice and to achieve optimal results, the practitioners need to understand the clinical issues of potency, conversion ratio, and safety issues (toxin spread and immunogenicity). In this paper, the basic clinical pharmacology of botulinum toxin A and differences between onabotulinum toxin A, abobotulinum toxin A, and incobotulinum toxin A are discussed.
Collapse
|
46
|
Campbell JD, Milenkovic U, Albersen M, Bivalacqua TJ. What Is the Future of Erectile Dysfunction Therapy? CURRENT SEXUAL HEALTH REPORTS 2018. [DOI: 10.1007/s11930-018-0153-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Botulinum Toxin Type A: Assessing The Effects on The Brain Stem. Aesthetic Plast Surg 2018; 42:538-545. [PMID: 29411064 DOI: 10.1007/s00266-018-1092-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/21/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND In this study, our aim is to investigate the possible effects of Botulinum toxin type A administrations in the early and late periods on the brain stem. METHODS Eighteen white New Zealand rabbits were used in this study with the subjects being divided into three groups. Group I received 0.05 mL sterile saline to the left anterior auricular muscles. Group II and III were injected with Botulinum toxin type A (Botox, Allergan) to the left anterior auricular muscles. Group II was sacrificed 5 days after application and Group III was sacrificed 12 weeks after application; brain stem tissues were then taken. The samples were examined with Caspase 3, 8, and 9 immunohistochemical stainings. RESULTS In the control group with Caspase-3 immune staining, moderate-to-strong immune reactivity was seen in a small number of neurons. In the Caspase-8 and 9 immune stainings, the immune reactive neurons were seen in greater numbers when compared with the Caspase-3 immune reactive neurons. In the early and late period, groups with Caspase-8 and 9 immune stainings, the immune reactive neurons were seen in greater numbers and in the wider area when compared with the Caspase-3 immune reactive neurons. No significant differences were recognized in the Caspase immune stainings between the early and late period groups. The results were statistically supported. CONCLUSION It was concluded that Botulinum toxin type A application did not trigger apoptosis in stem cell tissues. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
48
|
Abstract
Migraine varies in its frequency, severity, and impact; treatment should consider these variations and the patient's needs and goals. Migraine pharmacologic treatment may be acute (abortive) or preventive (prophylactic), and patients often require both. New medication devices are available or in development, including an intracutaneous, microneedle system of zolmitriptan and sumatriptan, and breath-powered powder sumatriptan intranasal treatment. Lasmiditan, a 5-HT1F receptor agonist, is in development for acute treatment, as are small molecule calcitonin gene-related peptide (CGRP) receptor antagonists (Gepants) for acute and preventive treatment. Antibodies to CGRP and its receptor are being developed for migraine prevention. All 4 treatments are effective and have, as of yet, no safety concerns.
Collapse
|
49
|
Lacroix-Desmazes S, Mouly S, Popoff MR, Colosimo C. Systematic analysis of botulinum neurotoxin type A immunogenicity in clinical studies. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.baga.2017.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Oliveira JB, Evêncio-Neto J, Baratella-Evêncio L. Histological and immunohistochemical findings of the action of botulinum toxin in salivary gland: systematic review. BRAZ J BIOL 2017; 77:251-259. [PMID: 27599097 DOI: 10.1590/1519-6984.11115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/15/2016] [Indexed: 11/21/2022] Open
Abstract
The treatment of sialorrhea is necessary for the constant risks posed by hypersalivation. A new therapeutic option comes up with the application of botulinum toxin in salivary glands. However, little is known about its mechanism of action in glandular tissue. Based on the above, this work had the objective to systematically review the literature about the action of botulinum toxin on submandibular and parotid salivary glands tissues. Electronic search was performed in databases of great relevance for this study (PubMed, SciELO, HighWire, Crossref, Scopus, Science Direct, MEDLINE, OLDMEDLINE, Serials Database, NLM Catalog, LILACS and IBECS). Inclusion and exclusion criteria for articles were established, and a total number of 14 articles were selected and used. There are few publications that clarify how the salivary gland acini behave with application of botulinum toxin. Although, the immunohistochemical findings were consistent among authors, showing weak immunoreactivity in glands treated with botulinum toxin. Histometric data are divergent, requiring more detailed studies to answer the questions about the efficacy and safety of botulinum toxin in salivary glands.
Collapse
Affiliation(s)
- J B Oliveira
- Department of Anatomy, Biological Sciences Center - CCB, Universidade Federal de Pernambuco - UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brazil
- Post-graduate Program in Bioscience Animal - PPGBA, Universidade Federal Rural de Pernambuco - UFRPE, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, CEP 52171-900, Recife, PE, Brazil
| | - J Evêncio-Neto
- Post-graduate Program in Bioscience Animal - PPGBA, Universidade Federal Rural de Pernambuco - UFRPE, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, CEP 52171-900, Recife, PE, Brazil
- Department of Animal Morphology and Physiology, Universidade Federal Rural de Pernambuco - UFRPE, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, CEP 52171-900, Recife, PE, Brazil
| | - L Baratella-Evêncio
- Department of Histology and Embryology, Biological Sciences Center - CCB, Universidade Federal de Pernambuco - UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brazil
| |
Collapse
|