1
|
Gonzalez E, Pitre FE, Pagé AP, Marleau J, Guidi Nissim W, St-Arnaud M, Labrecque M, Joly S, Yergeau E, Brereton NJB. Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination. MICROBIOME 2018; 6:53. [PMID: 29562928 PMCID: PMC5863371 DOI: 10.1186/s40168-018-0432-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/02/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND One method for rejuvenating land polluted with anthropogenic contaminants is through phytoremediation, the reclamation of land through the cultivation of specific crops. The capacity for phytoremediation crops, such as Salix spp., to tolerate and even flourish in contaminated soils relies on a highly complex and predominantly cryptic interacting community of microbial life. METHODS Here, Illumina HiSeq 2500 sequencing and de novo transcriptome assembly were used to observe gene expression in washed Salix purpurea cv. 'Fish Creek' roots from trees pot grown in petroleum hydrocarbon-contaminated or non-contaminated soil. All 189,849 assembled contigs were annotated without a priori assumption as to sequence origin and differential expression was assessed. RESULTS The 839 contigs differentially expressed (DE) and annotated from S. purpurea revealed substantial increases in transcripts encoding abiotic stress response equipment, such as glutathione S-transferases, in roots of contaminated trees as well as the hallmarks of fungal interaction, such as SWEET2 (Sugars Will Eventually Be Exported Transporter). A total of 8252 DE transcripts were fungal in origin, with contamination conditions resulting in a community shift from Ascomycota to Basidiomycota genera. In response to contamination, 1745 Basidiomycota transcripts increased in abundance (the majority uniquely expressed in contaminated soil) including major monosaccharide transporter MST1, primary cell wall and lamella CAZy enzymes, and an ectomycorrhiza-upregulated exo-β-1,3-glucanase (GH5). Additionally, 639 DE polycistronic transcripts from an uncharacterised Enterobacteriaceae species were uniformly in higher abundance in contamination conditions and comprised a wide spectrum of genes cryptic under laboratory conditions but considered putatively involved in eukaryotic interaction, biofilm formation and dioxygenase hydrocarbon degradation. CONCLUSIONS Fungal gene expression, representing the majority of contigs assembled, suggests out-competition of white rot Ascomycota genera (dominated by Pyronema), a sometimes ectomycorrhizal (ECM) Ascomycota (Tuber) and ECM Basidiomycota (Hebeloma) by a poorly characterised putative ECM Basidiomycota due to contamination. Root and fungal expression involved transcripts encoding carbohydrate/amino acid (C/N) dialogue whereas bacterial gene expression included the apparatus necessary for biofilm interaction and direct reduction of contamination stress, a potential bacterial currency for a role in tripartite mutualism. Unmistakable within the metatranscriptome is the degree to which the landscape of rhizospheric biology, particularly the important but predominantly uncharacterised fungal genetics, is yet to be discovered.
Collapse
Affiliation(s)
- E Gonzalez
- Canadian Center for Computational Genomics, McGill University and Genome Quebec Innovation Center, Montréal, H3A 1A4, Canada
- Department of Human Genetics, McGill University, Montreal, H3A 1B1, Canada
| | - F E Pitre
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - A P Pagé
- Aquatic and Crop Resource Development (ACRD), National Research Council Canada, Montréal, QC, H4P 2R2, Canada
| | - J Marleau
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
| | - W Guidi Nissim
- Department of Agri-food and Environmental Science, University of Florence, Viale delle Idee, Sesto Fiorentino, FI, Italy
| | - M St-Arnaud
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - M Labrecque
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - S Joly
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - E Yergeau
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - N J B Brereton
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada.
| |
Collapse
|
2
|
Cappellazzo G, Lanfranco L, Bonfante P. A limiting source of organic nitrogen induces specific transcriptional responses in the extraradical structures of the endomycorrhizal fungus Glomus intraradices. Curr Genet 2006; 51:59-70. [PMID: 17061094 DOI: 10.1007/s00294-006-0101-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 09/06/2006] [Accepted: 09/09/2006] [Indexed: 10/24/2022]
Abstract
The molecular bases of organic nitrogen (N) metabolism in arbuscular mycorrhizal (AM) fungi remain so far largely unexplored. To isolate genes responsive to low versus high organic N concentrations, the techniques of suppressive subtractive hybridization (SSH) and reverse Northern dot blot were performed on extraradical structures of the AM fungus Glomus intraradices grown on carrot hairy roots. This approach allowed the identification of 32 up-regulated and 2 down-regulated genes following a 48-h treatment with 2 microM of an amino acid pool (leucine, alanine, asparagine, lysine, tyrosine). The expression profile of eight genes was further confirmed by semi-quantitative and real-time RT-PCR. The majority of the sequences showed no significant similarity to proteins in databases. The other responsive genes code for putative glyoxal oxidases, transcription factors, a subunit of the 20S proteasome, a protein kinase and a Ras protein. This novel set of data indicates that G. intraradices extraradical structures perceive organic N limitation in the surrounding environment leading to a response at transcriptional level and supports the role of N as signalling molecule in AM fungi.
Collapse
Affiliation(s)
- Gilda Cappellazzo
- Dipartimento di Biologia Vegetale, Università di Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
| | | | | |
Collapse
|
3
|
Zaretsky M, Sitrit Y, Mills D, Roth-Bejerano N, Kagan-Zur V. Differential expression of fungal genes at preinfection and mycorrhiza establishment between Terfezia boudieri isolates and Cistus incanus hairy root clones. THE NEW PHYTOLOGIST 2006; 171:837-45. [PMID: 16918554 DOI: 10.1111/j.1469-8137.2006.01791.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Changes in gene expression by isolates of Terfezia boudieri during mycorrhization with Cistus incanus hairy roots were followed. Four fungus-hairy root clone combinations were cultivated under two sets of conditions, in which the root and the fungus were separated by a cellophane sheet or were allowed physical contact. One of the combinations produced endomycorrhizas, the other three solely ectomycorrhizas. Fragments isolated by cDNA-AFLP analysis from cellophane-separated cultures (preinfection) were used to identify differentially expressed genes by reverse Northern analysis. Genes showing no homology to known sequences constituted the largest group under both growth conditions. Some fungal genes were expressed transiently, while others exhibited altered expression patterns as conditions changed from individually growing through the preinfection stage to mycorrhizas. Genes expressed exclusively under combinations allowing either ectomycorrhiza or endomycorrhiza under a particular condition were detected. Our results point, for the first time, to some of the genes that might be involved in determining the type of association that will be formed: ecto- or endomycorrhiza.
Collapse
Affiliation(s)
- Marianna Zaretsky
- Department of Life Sciences, Ben Gurion University, POB 653, Beer Sheva, Israel
| | | | | | | | | |
Collapse
|
4
|
Wright DP, Johansson T, Le Quéré A, Söderström B, Tunlid A. Spatial patterns of gene expression in the extramatrical mycelium and mycorrhizal root tips formed by the ectomycorrhizal fungus Paxillus involutus in association with birch (Betula pendula) seedlings in soil microcosms. THE NEW PHYTOLOGIST 2005; 167:579-96. [PMID: 15998408 DOI: 10.1111/j.1469-8137.2005.01441.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Functional compartmentation of the extramatrical mycelium of ectomycorrhizal (ECM) fungi is considered important for the operation of ECM associations, although the molecular basis is poorly characterized. Global gene expression profiles of mycelium colonizing an ammonium sulphate ((NH4)2SO4) nutrient patch, rhizomorphs and ECM root tips of the Betula pendula-Paxillus involutus association were compared by cDNA microarray analysis. The expression profiles of rhizomorphs and nutrient patch mycelium were similar to each other but distinctly different from that of mycorrhizal tips. Statistical analyses revealed 337 of 1075 fungal genes differentially regulated among these three tissues. Clusters of genes exhibiting distinct expression patterns within specific tissues were identified. Genes implicated in the glutamine synthetase/glutamate synthase (GS/GOGAT) and urea cycles, and the provision of carbon skeletons for ammonium assimilation via beta-oxidation and the glyoxylate cycle, were highly expressed in rhizomorph and nutrient patch mycelium. Genes implicated in vesicular transport, cytoskeleton organization and morphogenesis and protein degradation were also differentially expressed. Differential expression of genes among the extramatrical mycelium and mycorrhizal tips indicates functional specialization of tissues forming ECM associations.
Collapse
Affiliation(s)
- Derek P Wright
- Department of Microbial Ecology, Ecology Building, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
| | | | | | | | | |
Collapse
|