1
|
Moriyama Y, Hasuzawa N, Nomura M. María Teresa Miras Portugal: a pioneer for vesicular nucleotide storage. Purinergic Signal 2024; 20:93-98. [PMID: 36525101 PMCID: PMC10997567 DOI: 10.1007/s11302-022-09912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Chromaffin granules are secretory granules present in adrenal medulla chromaffin cells. They contain high contents of catecholamines and nucleotides and have been regarded as a model system for the study of vesicular transmitter uptake and release. In 1988, Dr. María Teresa Miras Portugal, when studying catecholamine biosynthesis, detected a novel group of nucleotides, the diadenosine polyphosphates, in the adrenal chromaffin granules. Based on this finding, she unraveled the existence of diadenosine polyphosphate-mediated chemical transmission, leading to a paradigm shift in the field of purinergic signaling. She is also a pioneer in the studies on vesicular nucleotide storage. First, María Teresa and her group characterized nucleotide transport in chromaffin granules and synaptic vesicles using fluorescent nucleotide derivatives such as 1, N6-ethenoadenosine triphosphates. Then, they revealed the presence of a hypothetical vesicular nucleotide transporter with unique properties in terms of substrate specificity. In this article, we will describe her contributions to vesicular nucleotide storage and the foundations she laid for future studies.
Collapse
Affiliation(s)
- Yoshinori Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan.
| | - Nao Hasuzawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
2
|
Končekova J, Kotorova K, Gottlieb M, Bona M, Bonova P. Remote Ischaemic Preconditioning Accelerates Brain to Blood Glutamate Efflux via EAATs-mediated Transport. Neurochem Res 2023; 48:3560-3570. [PMID: 37528283 PMCID: PMC10584753 DOI: 10.1007/s11064-023-04002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023]
Abstract
Remote ischaemic conditioning (RIC) becomes an attractive strategy for the endogenous stimulation of mechanisms protecting neurons against ischaemia. Although the processes underlying the RIC are not clearly understood, the homeostasis of glutamate seems to play an important role. The present study is focused on the investigation of the brain to blood efflux of glutamate in a condition mimicking ischaemia-mediated excitotoxicity and remote ischaemic preconditioning (RIPC). The animals were pre-treated with a hind-limb tourniquet one hour before the intraventricular administration of glutamate and its release was monitored as the concentration of glutamate/glutathione in blood and liquor for up to 1 h. The transport mediated by excitatory amino acid transporters (EAATs) was verified by their inhibition with Evans Blue intraventricular co-administration. RIPC mediated the efflux of glutamate exceeding from CSF to blood in the very early stage of intoxication. As a consequence, the blood level of glutamate rose in a moment. EAATs inhibition confirmed the active role of glutamate transporters in this process. In the blood, elevated levels of glutamate served as a relevant source of antioxidant glutathione for circulating cells in RIPC-treated individuals. All of those RIPC-mediated recoveries in processes of glutamate homeostasis reflect the improvement of oxidative stress, suggesting glutamate-accelerated detoxication to be one of the key mechanisms of RIPC-mediated neuroprotection.
Collapse
Affiliation(s)
- Jana Končekova
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01 Slovak Republic
| | - Klaudia Kotorova
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01 Slovak Republic
| | - Miroslav Gottlieb
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01 Slovak Republic
| | - Martin Bona
- Department of Medical Physiology, Faculty of Medicine, University of Pavol Jozef Safarik, Košice, 040 01 Slovak Republic
| | - Petra Bonova
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01 Slovak Republic
| |
Collapse
|
3
|
Smeralda W, Since M, Corvaisier S, Fayolle D, Cardin J, Duprey S, Jourdan JP, Cullin C, Malzert-Freon A. A Biomimetic Multiparametric Assay to Characterise Anti-Amyloid Drugs. Int J Mol Sci 2023; 24:16982. [PMID: 38069305 PMCID: PMC10707238 DOI: 10.3390/ijms242316982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most widespread form of senile dementia worldwide and represents a leading socioeconomic problem in healthcare. Although it is widely debated, the aggregation of the amyloid β peptide (Aβ) is linked to the onset and progression of this neurodegenerative disease. Molecules capable of interfering with specific steps in the fibrillation process remain of pharmacological interest. To identify such compounds, we have set up a small molecule screening process combining multiple experimental methods (UV and florescence spectrometry, ITC, and ATR-FTIR) to identify and characterise potential modulators of Aβ1-42 fibrillation through the description of the biochemical interactions (molecule-membrane Aβ peptide). Three known modulators, namely bexarotene, Chicago sky blue and indomethacin, have been evaluated through this process, and their modulation mechanism in the presence of a biomembrane has been described. Such a well-adapted physico-chemical approach to drug discovery proves to be an undeniable asset for the rapid characterisation of compounds of therapeutic interest for Alzheimer's disease. This strategy could be adapted and transposed to search for modulators of other amyloids such as tau protein.
Collapse
Affiliation(s)
- Willy Smeralda
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| | - Marc Since
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| | - Sophie Corvaisier
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| | - Dimitri Fayolle
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| | - Julien Cardin
- CIMAP, ENSICAEN, UNICAEN, UMR6252 CNRS, CEA, Normandie Université, 6 Bd du Maréchal Juin, 14050 Caen, France; (J.C.); (S.D.)
| | - Sylvain Duprey
- CIMAP, ENSICAEN, UNICAEN, UMR6252 CNRS, CEA, Normandie Université, 6 Bd du Maréchal Juin, 14050 Caen, France; (J.C.); (S.D.)
| | - Jean-Pierre Jourdan
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
- Pharmacie à Usage Intérieur, Centre Hospitalier de Vire, Normandie, 14504 Vire, France
| | | | - Aurélie Malzert-Freon
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| |
Collapse
|
4
|
Inhibition of Vesicular Glutamate Transporters (VGLUTs) with Chicago Sky Blue 6B Before Focal Cerebral Ischemia Offers Neuroprotection. Mol Neurobiol 2023; 60:3130-3146. [PMID: 36802054 PMCID: PMC10122628 DOI: 10.1007/s12035-023-03259-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/07/2023] [Indexed: 02/21/2023]
Abstract
Brain ischemia is one of the leading causes of death and long-term disability in the world. Interruption of the blood supply to the brain is a direct stimulus for many pathological events. The massive vesicular release of glutamate (Glu) after ischemia onset induces excitotoxicity, which is a potent stress on neurons. Loading of presynaptic vesicles with Glu is the first step of glutamatergic neurotransmission. Vesicular glutamate transporters 1, 2, and 3 (VGLUT1, 2, and 3) are the main players involved in filling presynaptic vesicles with Glu. VGLUT1 and VGLUT2 are expressed mainly in glutamatergic neurons. Therefore, the possibility of pharmacological modulation to prevent ischemia-related brain damage is attractive. In this study, we aimed to determine the effect of focal cerebral ischemia on the spatiotemporal expression of VGLUT1 and VGLUT2 in rats. Next, we investigated the influence of VGLUT inhibition with Chicago Sky Blue 6B (CSB6B) on Glu release and stroke outcome. The effect of CSB6B pretreatment on infarct volume and neurological deficit was compared with a reference model of ischemic preconditioning. The results of this study indicate that ischemia upregulated the expression of VGLUT1 in the cerebral cortex and in the dorsal striatum 3 days after ischemia onset. The expression of VGLUT2 was elevated in the dorsal striatum and in the cerebral cortex 24 h and 3 days after ischemia, respectively. Microdialysis revealed that pretreatment with CSB6B significantly reduced the extracellular Glu concentration. Altogether, this study shows that inhibition of VGLUTs might be a promising therapeutic strategy for the future.
Collapse
|
5
|
Donoso MV, Hernández F, Barra R, Huidobro-Toro JP. Nanomolar clodronate induces adenosine accumulation in the perfused rat mesenteric bed and mesentery-derived endothelial cells. Front Pharmacol 2023; 13:1031223. [PMID: 36744214 PMCID: PMC9895365 DOI: 10.3389/fphar.2022.1031223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
The vesicular nucleotide transporter (VNUT) is critical for sympathetic co-transmission and purinergic transmission maintenance. To examine this proposal, we assessed whether the bisphosphonate clodronate, claimed as a potent in vitro VNUT blocker, modified spontaneous and/or the electrically evoked overflow of ATP/metabolites and NA from mesentery sympathetic perivascular nerve terminals. Additionally, in primary endothelial cell cultures derived from this tissue, we also evaluated whether clodronate interfered with ATP/metabolite cell outflow and metabolism of N6-etheno adenosine 5'-triphosphate (eATP), N6-etheno adenosine (eADO), and adenosine deaminase enzyme activity. Rat mesenteries were perfused in the absence or presence of .01-1,000 nM clodronate, 1-1,000 nM Evans blue (EB), and 1-10 µM DIDS; tissue perfusates were collected to determine ATP/metabolites and NA before, during, and after perivascular electrical nerve terminal depolarization. An amount of 1-1,000 nM clodronate did not modify the time course of ATP or NA overflow elicited by nerve terminal depolarization, and only 10 nM clodronate significantly augmented perfusate adenosine. Electrical nerve terminal stimulation increased tissue perfusion pressure that was significantly reduced only by 10 nM clodronate [90.0 ± 18.6 (n = 8) to 35.0 ± 10.4 (n = 7), p = .0277]. As controls, EB, DIDS, or reserpine treatment reduced the overflow of ATP/metabolites and NA in a concentration-dependent manner elicited by nerve terminal depolarization. Moreover, mechanical stimulation of primary endothelial cell cultures from the rat mesentery added with 10 or 100 nM clodronate increased adenosine in the cell media. eATP was metabolized by endothelial cells to the same extent with and without 1-1,000 nM clodronate, suggesting the bisphosphonate did not interfere with nucleotide ectoenzyme metabolism. In contrast, extracellular eADO remained intact, indicating that this nucleoside is neither metabolized nor transported intracellularly. Furthermore, only 10 nM clodronate inhibited (15.5%) adenosine metabolism to inosine in endothelial cells as well as in a commercial crude adenosine deaminase enzyme preparation (12.7%), and both effects proved the significance (p < .05). Altogether, present data allow inferring that clodronate inhibits adenosine deaminase activity in isolated endothelial cells as in a crude extract preparation, a finding that may account for adenosine accumulation following clodronate mesentery perfusion.
Collapse
Affiliation(s)
- M. Verónica Donoso
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Hernández
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Rafael Barra
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - J. Pablo Huidobro-Toro
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile,Centro de Nanociencia y Nanotecnología, Universidad de Santiago de Chile, Santiago, Chile,*Correspondence: J. Pablo Huidobro-Toro,
| |
Collapse
|
6
|
Min JO, Strohäker T, Jeong BC, Zweckstetter M, Lee SJ. Chicago sky blue 6B inhibits α-synuclein aggregation and propagation. Mol Brain 2022; 15:27. [PMID: 35346306 PMCID: PMC8962151 DOI: 10.1186/s13041-022-00913-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abnormal deposition of α-synuclein aggregates in Lewy bodies and Lewy neurites is the hallmark lesion in Parkinson’s disease (PD). These aggregates, thought to be the culprit of disease pathogenesis, spread throughout the brain as the disease progresses. Agents that inhibit α-synuclein aggregation and/or spread of aggregates would thus be candidate disease-modifying drugs. Here, we found that Chicago sky blue 6B (CSB) may be such a drug, showing that it inhibits α-synuclein aggregation and cell-to-cell propagation in both in vitro and in vivo models of synucleinopathy. CSB inhibited the fibrillation of α-synuclein in a concentration-dependent manner through direct binding to the N-terminus of α-synuclein. Furthermore, both seeded polymerization and cell-to-cell propagation of α-synuclein were inhibited by CSB treatment. Notably, CSB alleviated behavioral deficits and neuropathological features, such as phospho-α-synuclein and astrogliosis, in A53T α-synuclein transgenic mice. These results indicate that CSB directly binds α-synuclein and inhibits its aggregation, thereby blocking α-synuclein cell-to-cell propagation.
Collapse
Affiliation(s)
- Joo-Ok Min
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, Republic of Korea
| | - Timo Strohäker
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Byung-Chul Jeong
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, Republic of Korea.,Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, USA
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany.,Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
7
|
Eriksen J, Li F, Stroud RM, Edwards RH. Allosteric Inhibition of a Vesicular Glutamate Transporter by an Isoform-Specific Antibody. Biochemistry 2021; 60:2463-2470. [PMID: 34319067 DOI: 10.1021/acs.biochem.1c00375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of glutamate in excitatory neurotransmission depends on its transport into synaptic vesicles by the vesicular glutamate transporters (VGLUTs). The three VGLUT isoforms exhibit a complementary distribution in the nervous system, and the knockout of each produces severe, pleiotropic neurological effects. However, the available pharmacology lacks sensitivity and specificity, limiting the analysis of both transport mechanism and physiological role. To develop new molecular probes for the VGLUTs, we raised six mouse monoclonal antibodies to VGLUT2. All six bind to a structured region of VGLUT2, five to the luminal face, and one to the cytosolic. Two are specific to VGLUT2, whereas the other four bind to both VGLUT1 and 2; none detect VGLUT3. Antibody 8E11 recognizes an epitope spanning the three extracellular loops in the C-domain that explains the recognition of both VGLUT1 and 2 but not VGLUT3. 8E11 also inhibits both glutamate transport and the VGLUT-associated chloride conductance. Since the antibody binds outside the substrate recognition site, it acts allosterically to inhibit function, presumably by restricting conformational changes. The isoform specificity also shows that allosteric inhibition provides a mechanism to distinguish between closely related transporters.
Collapse
Affiliation(s)
- Jacob Eriksen
- Departments of Neurology and Physiology, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States
| | - Fei Li
- Departments of Neurology and Physiology, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States.,Department of Biochemistry and Biophysics, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States
| | - Robert H Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States
| |
Collapse
|
8
|
Leveraging VGLUT3 Functions to Untangle Brain Dysfunctions. Trends Pharmacol Sci 2021; 42:475-490. [PMID: 33775453 DOI: 10.1016/j.tips.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) were long thought to be specific markers of glutamatergic excitatory transmission. The discovery, two decades ago, of the atypical VGLUT3 has thoroughly modified this oversimplified view. VGLUT3 is strategically expressed in discrete populations of glutamatergic, cholinergic, serotonergic, and even GABAergic neurons. Recent reports show the subtle, but critical, implications of VGLUT3-dependent glutamate co-transmission and its roles in the regulation of diverse brain functions and dysfunctions. Progress in the neuropharmacology of VGLUT3 could lead to decisive breakthroughs in the treatment of Parkinson's disease (PD), addiction, eating disorders, anxiety, presbycusis, or pain. This review summarizes recent findings on VGLUT3 and its vesicular underpinnings as well as on possible ways to target this atypical transporter for future therapeutic strategies.
Collapse
|
9
|
Dzhala VI, Staley KJ. KCC2 Chloride Transport Contributes to the Termination of Ictal Epileptiform Activity. eNeuro 2021; 8:ENEURO.0208-20.2020. [PMID: 33239270 PMCID: PMC7986536 DOI: 10.1523/eneuro.0208-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/10/2023] Open
Abstract
Recurrent seizures intensely activate GABAA receptors (GABAA-Rs), which induces transient neuronal chloride ([Cl-]i) elevations and depolarizing GABA responses that contribute to the failure of inhibition that engenders further seizures and anticonvulsant resistance. The K+-Cl- cotransporter KCC2 is responsible for Cl- extrusion and restoration of [Cl-]i equilibrium (ECl) after synaptic activity, but at the cost of increased extracellular potassium which may retard K+-Cl- extrusion, depolarize neurons, and potentiate seizures. Thus, KCC2 may either diminish or facilitate seizure activity, and both proconvulsant and anticonvulsant effects of KCC2 inhibition have been reported. It is now necessary to identify the loci of these divergent responses by assaying both the electrographic effects and the ionic effects of KCC2 manipulation. We therefore determined the net effects of KCC2 transport activity on cytoplasmic chloride elevation and Cl- extrusion rates during spontaneous recurrent ictal-like epileptiform discharges (ILDs) in organotypic hippocampal slices in vitro, as well as the correlation between ionic and electrographic effects. We found that the KCC2 antagonist VU0463271 reduced Cl- extrusion rates, increased ictal [Cl-]i elevation, increased ILD duration, and induced status epilepticus (SE). In contrast, the putative KCC2 upregulator CLP257 improved chloride homeostasis and reduced the duration and frequency of ILDs in a concentration-dependent manner. Our results demonstrate that measuring both the ionic and electrographic effects of KCC2 transport clarify the impact of KCC2 modulation in specific models of epileptiform activity. Anticonvulsant effects predominate when KCC2-mediated chloride transport rather than potassium buffering is the rate-limiting step in restoring ECl and the efficacy of GABAergic inhibition during recurrent ILDs.
Collapse
Affiliation(s)
- Volodymyr I Dzhala
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
- Harvard Medical School, Boston, MA 02114
| | - Kevin J Staley
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
- Harvard Medical School, Boston, MA 02114
| |
Collapse
|
10
|
Leiguarda C, McCarthy CJ, Casadei M, Lundgren KH, Coronel MF, Trigosso-Venario H, Seal RP, Seroogy KB, Brumovsky PR. Transcript Expression of Vesicular Glutamate Transporters in Rat Dorsal Root Ganglion and Spinal Cord Neurons: Impact of Spinal Blockade during Hindpaw Inflammation. ACS Chem Neurosci 2020; 11:2602-2614. [PMID: 32697906 DOI: 10.1021/acschemneuro.0c00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Studies in mouse, and to a lesser extent in rat, have revealed the neuroanatomical distribution of vesicular glutamate transporters (VGLUTs) and begun exposing the critical role of VGLUT2 and VGLUT3 in pain transmission. In the present study in rat, we used specific riboprobes to characterize the transcript expression of all three VGLUTs in lumbar dorsal root ganglia (DRGs) and in the thoracolumbar, lumbar, and sacral spinal cord. We show for the first time in rat a very discrete VGLUT3 expression in DRGs and in deep layers of the dorsal horn. We confirm the abundant expression of VGLUT2, in both DRGs and the spinal cord, including presumable motorneurons in the latter. As expected, VGLUT1 was present in many DRG neuron profiles, and in the spinal cord it was mostly localized to neurons in the dorsal nucleus of Clarke. In rats with a 10 day long hindpaw inflammation, increased spinal expression of VGLUT2 transcript was detected by qRT-PCR, and intrathecal administration of the nonselective VGLUT inhibitor Chicago Sky Blue 6B resulted in reduced mechanical and thermal allodynia for up to 24 h. In conclusion, our results provide a collective characterization of VGLUTs in rat DRGs and the spinal cord, demonstrate increased spinal expression of VGLUT2 during chronic peripheral inflammation, and support the use of spinal VGLUT blockade as a strategy for attenuating inflammatory pain.
Collapse
Affiliation(s)
- Candelaria Leiguarda
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Carly J. McCarthy
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Mailin Casadei
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Kerstin H. Lundgren
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - María Florencia Coronel
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Harry Trigosso-Venario
- Hospital Universitario Austral, Austral University, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Rebecca P. Seal
- Pittsburgh Center for Pain Research, Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kim B. Seroogy
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Pablo R. Brumovsky
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| |
Collapse
|
11
|
Pietrancosta N, Djibo M, Daumas S, El Mestikawy S, Erickson JD. Molecular, Structural, Functional, and Pharmacological Sites for Vesicular Glutamate Transporter Regulation. Mol Neurobiol 2020; 57:3118-3142. [PMID: 32474835 PMCID: PMC7261050 DOI: 10.1007/s12035-020-01912-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) control quantal size of glutamatergic transmission and have been the center of numerous studies over the past two decades. VGLUTs contain two independent transport modes that facilitate glutamate packaging into synaptic vesicles and phosphate (Pi) ion transport into the synaptic terminal. While a transmembrane proton electrical gradient established by a vacuolar-type ATPase powers vesicular glutamate transport, recent studies indicate that binding sites and flux properties for chloride, potassium, and protons within VGLUTs themselves regulate VGLUT activity as well. These intrinsic ionic binding and flux properties of VGLUTs can therefore be modulated by neurophysiological conditions to affect levels of glutamate available for release from synapses. Despite their extraordinary importance, specific and high-affinity pharmacological compounds that interact with these sites and regulate VGLUT function, distinguish between the various modes of transport, and the different isoforms themselves, are lacking. In this review, we provide an overview of the physiologic sites for VGLUT regulation that could modulate glutamate release in an over-active synapse or in a disease state.
Collapse
Affiliation(s)
- Nicolas Pietrancosta
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Laboratoire des Biomolécules, Sorbonne Université, CNRS, ENS, LBM, 75005, Paris, France.
| | - Mahamadou Djibo
- Sorbonne Paris Cité, Université Paris Descartes, LCBPT, UMR 8601, 75006, Paris, France
| | - Stephanie Daumas
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Salah El Mestikawy
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 boulevard Lasalle, Verdun, Montreal, QC, Canada.
| | - Jeffrey D Erickson
- Neuroscience Center, Louisiana State University, New Orleans, LA, 70112, USA. .,Department of Pharmacology, Louisiana State University, New Orleans, LA, 70112, USA.
| |
Collapse
|
12
|
Thompson CM, Chao CK. VGLUT substrates and inhibitors: A computational viewpoint. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183175. [PMID: 31923412 DOI: 10.1016/j.bbamem.2020.183175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
The vesicular glutamate transporters (VGLUTs) bind and move glutamate (Glu) from the cytosol into the lumen of synaptic vesicles using a H+-electrochemical gradient (ΔpH and Δψ) generated by the vesicular H+-ATPase. VGLUTs show very low Glu binding and to date, no three-dimensional structure has been elucidated. Prior studies have attempted to identify the key residues involved in binding VGLUT substrates and inhibitors using homology models and docking experiments. Recently, the inward and outward oriented crystal structures of d-galactonate transporter (DgoT) emerged as possible structure templates for VGLUT. In this review, a new homology model for VGLUT2 based on DgoT has been developed and used to conduct docking experiments to identify and differentiate residues and binding orientations involved in ligand interactions. This review describes small molecule-ligand interactions including docking using a VGLUT2 homology model derived from DgoT.
Collapse
Affiliation(s)
- Charles M Thompson
- Center for Structural and Functional Neurosciences, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT 59812, United States.
| | - Chih-Kai Chao
- Center for Structural and Functional Neurosciences, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT 59812, United States
| |
Collapse
|
13
|
Poirel O, Mamer LE, Herman MA, Arnulf-Kempcke M, Kervern M, Potier B, Miot S, Wang J, Favre-Besse FC, Brabet I, Laras Y, Bertrand HO, Acher F, Pin JP, Puel JL, Giros B, Epelbaum J, Rosenmund C, Dutar P, Daumas S, El Mestikawy S, Pietrancosta N. LSP5-2157 a new inhibitor of vesicular glutamate transporters. Neuropharmacology 2019; 164:107902. [PMID: 31811873 DOI: 10.1016/j.neuropharm.2019.107902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/08/2019] [Accepted: 12/02/2019] [Indexed: 11/19/2022]
Abstract
Vesicular glutamate transporters (VGLUT1-3) mediate the uptake of glutamate into synaptic vesicles. VGLUTs are pivotal actors of excitatory transmission and of almost all brain functions. Their implication in various pathologies has been clearly documented. Despite their functional importance, the pharmacology of VGLUTs is limited to a few dyes such as Trypan Blue, Rose Bengal or Brilliant Yellow type. Here, we report the design and evaluation of new potent analogs based on Trypan Blue scaffold. Our best compound, named LSP5-2157, has an EC50 of 50 nM on glutamate vesicular uptake. Using a 3D homology model of VGLUT1 and docking experiments, we determined its putative binding subdomains within vesicular glutamate transporters and validated the structural requirement for VGLUT inhibition. To better estimate the specificity and potency of LSP5-2157, we also investigated its ability to block glutamatergic transmission in autaptic hippocampal cells. Neither glutamate receptors nor GABAergic transmission or transmission machinery were affected by LSP5-2157. Low doses of compound reversibly reduce glutamatergic neurotransmission in hippocampal autpases. LSP5-2157 had a low and depressing effect on synaptic efficacy in hippocampal slice. Furthermore, LSP5-2157 had no effect on NMDA-R- mediated fEPSP but reduce synaptic plasticity induced by 3 trains of 100 Hz. Finally, LSP5-2157 had the capacity to inhibit VGLUT3-dependent auditory synaptic transmission in the guinea pig cochlea. In this model, it abolished the compound action potential of auditory nerve at high concentration showing the limited permeation of LSP5-2157 in an in-vivo model. In summary, the new ligand LSP5-2157, has a high affinity and specificity for VGLUTs and shows some permeability in isolated neuron, tissue preparations or in vivo in the auditory system. These findings broaden the field of VGLUTs inhibitors and open the way to their use to assess glutamatergic functions in vitro and in vivo.
Collapse
Affiliation(s)
- Odile Poirel
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Lauren E Mamer
- Institut für Neurophysiologie, Charité Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany; The Ohio State University College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Melissa A Herman
- Institut für Neurophysiologie, Charité Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marie Arnulf-Kempcke
- Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, UMR 894, Paris, 75014, France
| | - Myriam Kervern
- Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, UMR 894, Paris, 75014, France
| | - Brigitte Potier
- Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, UMR 894, Paris, 75014, France; Present address: Laboratoire Aimée Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, 91405, Orsay, France
| | - Stephanie Miot
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France; Institute for Neuroscience Montpellier (INM), INSERM U1051, Université Montpellier, 34091, Montpellier, France
| | - Jing Wang
- Institute for Neuroscience Montpellier (INM), INSERM U1051, Université Montpellier, 34091, Montpellier, France
| | | | - Isabelle Brabet
- Institut de Génomique Fonctionnelle UMR 5203 CNRS - U 1191 INSERM - Univ. Montpellier, 30094, Montpellier, France
| | - Younès Laras
- LCBPT, Université Paris Descartes, Sorbonne Paris Cité, UMR 8601, CNRS, Paris, 75006, France
| | - Hugues-Olivier Bertrand
- BIOVIA, Dassault Systèmes, 10 rue Marcel Dassault, CS 40501, 78946, Velizy-Villacoublay Cedex, France
| | - Francine Acher
- LCBPT, Université Paris Descartes, Sorbonne Paris Cité, UMR 8601, CNRS, Paris, 75006, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle UMR 5203 CNRS - U 1191 INSERM - Univ. Montpellier, 30094, Montpellier, France
| | - Jean-Luc Puel
- Institute for Neuroscience Montpellier (INM), INSERM U1051, Université Montpellier, 34091, Montpellier, France
| | - Bruno Giros
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France; Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875, boulevard Lasalle Verdun, QC, Canada
| | - Jacques Epelbaum
- Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, UMR 894, Paris, 75014, France
| | - Christian Rosenmund
- Institut für Neurophysiologie, Charité Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| | - Patrick Dutar
- Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, UMR 894, Paris, 75014, France; Present address: Laboratoire Aimée Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, 91405, Orsay, France
| | - Stephanie Daumas
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Salah El Mestikawy
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France; Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875, boulevard Lasalle Verdun, QC, Canada.
| | - Nicolas Pietrancosta
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France; LCBPT, Université Paris Descartes, Sorbonne Paris Cité, UMR 8601, CNRS, Paris, 75006, France; Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France.
| |
Collapse
|
14
|
Yifa O, Weisinger K, Bassat E, Li H, Kain D, Barr H, Kozer N, Genzelinakh A, Rajchman D, Eigler T, Umansky KB, Lendengolts D, Brener O, Bursac N, Tzahor E. The small molecule Chicago Sky Blue promotes heart repair following myocardial infarction in mice. JCI Insight 2019; 4:128025. [PMID: 31723055 DOI: 10.1172/jci.insight.128025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
The adult mammalian heart regenerates poorly after injury and, as a result, ischemic heart diseases are among the leading causes of death worldwide. The recovery of the injured heart is dependent on orchestrated repair processes including inflammation, fibrosis, cardiomyocyte survival, proliferation, and contraction properties that could be modulated in patients. In this work we designed an automated high-throughput screening system for small molecules that induce cardiomyocyte proliferation in vitro and identified the small molecule Chicago Sky Blue 6B (CSB). Following induced myocardial infarction, CSB treatment reduced scar size and improved heart function of adult mice. Mechanistically, we show that although initially identified using in vitro screening for cardiomyocyte proliferation, in the adult mouse CSB promotes heart repair through (i) inhibition of CaMKII signaling, which improves cardiomyocyte contractility; and (ii) inhibition of neutrophil and macrophage activation, which attenuates the acute inflammatory response, thereby contributing to reduced scarring. In summary, we identified CSB as a potential therapeutic agent that enhances cardiac repair and function by suppressing postinjury detrimental processes, with no evidence for cardiomyocyte renewal.
Collapse
Affiliation(s)
- Oren Yifa
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Karen Weisinger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Elad Bassat
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hanjun Li
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - David Kain
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Haim Barr
- HTS unit, The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), and
| | - Noga Kozer
- HTS unit, The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), and
| | - Alexander Genzelinakh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dana Rajchman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Eigler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Kfir Baruch Umansky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daria Lendengolts
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Brener
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
15
|
Iwai Y, Kamatani S, Moriyama S, Omote H. Function of essential chloride and arginine residue in nucleotide binding to vesicular nucleotide transporter. J Biochem 2019; 165:479-486. [PMID: 30649354 DOI: 10.1093/jb/mvz002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/09/2019] [Indexed: 11/13/2022] Open
Abstract
Vesicular nucleotide transporter (VNUT) plays a key role in purinergic signalling through its ability to transport nucleotides. VNUT belongs to the SLC17 family, which includes vesicular glutamate transporters (VGLUTs) and Type I Na+/phosphate cotransporters. All of these transporters exhibit membrane potential and Cl--dependent organic anion transport activity and have essential arginine in the transmembrane region. Previously, we reported that ketoacids inhibit these transporters through modulation of Cl- activation. Although this regulation is important to control signal transmission, the mechanisms underlying Cl--dependent regulation are unclear. Here, we examined the functional roles of Cl- and essential arginine residue on ATP binding to VNUT using the fluorescent ATP analogue trinitrophenyl-ATP (TNP-ATP). The fluorescence of TNP-ATP was enhanced by VNUT, whereas no enhancement was observed by VGLUT. Concentration-dependence curves showed that TNP-ATP was a high-affinity fluorescent probe for VNUT, with a Kd of 4.8 μM. TNP-ATP binding was competitive to ATP and showed similar specificity to transport activity. Addition of Cl- and ketoacids did not affect the apparent affinity for TNP-ATP. The Arg119 to Ala mutant retained TNP-ATP binding ability with slightly reduced affinity. Overall, these results indicated that Cl- and essential arginine were not important for ATP binding.
Collapse
Affiliation(s)
- Yuma Iwai
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama, Okayama, Japan
| | - Setsuko Kamatani
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama, Okayama, Japan
| | - Sawako Moriyama
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama, Okayama, Japan
| | - Hiroshi Omote
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama, Okayama, Japan
| |
Collapse
|
16
|
Miras-Portugal MT, Menéndez-Méndez A, Gómez-Villafuertes R, Ortega F, Delicado EG, Pérez-Sen R, Gualix J. Physiopathological Role of the Vesicular Nucleotide Transporter (VNUT) in the Central Nervous System: Relevance of the Vesicular Nucleotide Release as a Potential Therapeutic Target. Front Cell Neurosci 2019; 13:224. [PMID: 31156398 PMCID: PMC6533569 DOI: 10.3389/fncel.2019.00224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/02/2019] [Indexed: 01/07/2023] Open
Abstract
Vesicular storage of neurotransmitters, which allows their subsequent exocytotic release, is essential for chemical transmission in the central nervous system. Neurotransmitter uptake into secretory vesicles is carried out by vesicular transporters, which use the electrochemical proton gradient generated by a vacuolar H+-ATPase to drive neurotransmitter vesicular accumulation. ATP and other nucleotides are relevant extracellular signaling molecules that participate in a variety of biological processes. Although the active transport of nucleotides into secretory vesicles has been characterized from the pharmacological and biochemical point of view, the protein responsible for such vesicular accumulation remained unidentified for some time. In 2008, the human SLC17A9 gene, the last identified member of the SLC17 transporters, was found to encode the vesicular nucleotide transporter (VNUT). VNUT is expressed in various ATP-secreting cells and is able to transport a wide variety of nucleotides in a vesicular membrane potential-dependent manner. VNUT knockout mice lack vesicular storage and release of ATP, resulting in blockage of the purinergic transmission. This review summarizes the current studies on VNUT and analyzes the physiological relevance of the vesicular nucleotide transport in the central nervous system. The possible role of VNUT in the development of some pathological processes, such as chronic neuropathic pain or glaucoma is also discussed. The putative involvement of VNUT in these pathologies raises the possibility of the use of VNUT inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- María T Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Aida Menéndez-Méndez
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Javier Gualix
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
17
|
Martineau M, Guzman RE, Fahlke C, Klingauf J. VGLUT1 functions as a glutamate/proton exchanger with chloride channel activity in hippocampal glutamatergic synapses. Nat Commun 2017; 8:2279. [PMID: 29273736 PMCID: PMC5741633 DOI: 10.1038/s41467-017-02367-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/24/2017] [Indexed: 12/18/2022] Open
Abstract
Glutamate is the major excitatory transmitter in the vertebrate nervous system. To maintain synaptic efficacy, recycling synaptic vesicles (SV) are refilled with glutamate by vesicular glutamate transporters (VGLUTs). The dynamics and mechanism of glutamate uptake in intact neurons are still largely unknown. Here, we show by live-cell imaging with pH- and chloride-sensitive fluorescent probes in cultured hippocampal neurons of wild-type and VGLUT1-deficient mice that in SVs VGLUT functions as a glutamate/proton exchanger associated with a channel-like chloride conductance. After endocytosis most internalized Cl− is substituted by glutamate in an electrically, and presumably osmotically, neutral manner, and this process is driven by both the Cl− gradient itself and the proton motive force provided by the vacuolar H+-ATPase. Our results shed light on the transport mechanism of VGLUT under physiological conditions and provide a framework for how modulation of glutamate transport via Cl− and pH can change synaptic strength. During neurotransmission synaptic vesicles are filled with glutamate by vesicular glutamate transporters (VGLUTs). Here, authors image intact neurons and show that in synaptic vesicles VGLUT functions as a glutamate/proton exchanger associated with a channel-like chloride conductance.
Collapse
Affiliation(s)
- Magalie Martineau
- Department of Cellular Biophysics, Institute for Medical Physics and Biophysics, University of Muenster, 48149, Muenster, Germany. .,University of Bordeaux and Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000, Bordeaux, France.
| | - Raul E Guzman
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Jürgen Klingauf
- Department of Cellular Biophysics, Institute for Medical Physics and Biophysics, University of Muenster, 48149, Muenster, Germany. .,IZKF Münster and Cluster of Excellence EXC 1003, Cells in Motion (CiM), 48149, Muenster, Germany.
| |
Collapse
|
18
|
Schenck S, Kunz L, Sahlender D, Pardon E, Geertsma ER, Savtchouk I, Suzuki T, Neldner Y, Štefanić S, Steyaert J, Volterra A, Dutzler R. Generation and Characterization of Anti-VGLUT Nanobodies Acting as Inhibitors of Transport. Biochemistry 2017; 56:3962-3971. [DOI: 10.1021/acs.biochem.7b00436] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Stephan Schenck
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Laura Kunz
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniela Sahlender
- Department
of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Els Pardon
- VIB
Center for Structural Biology, VIB, 1050 Brussels, Belgium
- Structural
Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Eric R. Geertsma
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute
of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Straβe
9, 60438 Frankfurt
am Main, Germany
| | - Iaroslav Savtchouk
- Department
of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Toshiharu Suzuki
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yvonne Neldner
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Saša Štefanić
- Institute
of Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland
| | - Jan Steyaert
- VIB
Center for Structural Biology, VIB, 1050 Brussels, Belgium
- Structural
Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Andrea Volterra
- Department
of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Raimund Dutzler
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
19
|
Phosphorylation of Synaptojanin Differentially Regulates Endocytosis of Functionally Distinct Synaptic Vesicle Pools. J Neurosci 2017; 36:8882-94. [PMID: 27559170 DOI: 10.1523/jneurosci.1470-16.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/14/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The rapid replenishment of synaptic vesicles through endocytosis is crucial for sustaining synaptic transmission during intense neuronal activity. Synaptojanin (Synj), a phosphoinositide phosphatase, is known to play an important role in vesicle recycling by promoting the uncoating of clathrin following synaptic vesicle uptake. Synj has been shown to be a substrate of the minibrain (Mnb) kinase, a fly homolog of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A); however, the functional impacts of Synj phosphorylation by Mnb are not well understood. Here we identify that Mnb phosphorylates Synj at S1029 in Drosophila We find that phosphorylation of Synj at S1029 enhances Synj phosphatase activity, alters interaction between Synj and endophilin, and promotes efficient endocytosis of the active cycling vesicle pool (also referred to as exo-endo cycling pool) at the expense of reserve pool vesicle endocytosis. Dephosphorylated Synj, on the other hand, is deficient in the endocytosis of the active recycling pool vesicles but maintains reserve pool vesicle endocytosis to restore total vesicle pool size and sustain synaptic transmission. Together, our findings reveal a novel role for Synj in modulating reserve pool vesicle endocytosis and further indicate that dynamic phosphorylation and dephosphorylation of Synj differentially maintain endocytosis of distinct functional synaptic vesicle pools. SIGNIFICANCE STATEMENT Synaptic vesicle endocytosis sustains communication between neurons during a wide range of neuronal activities by recycling used vesicle membrane and protein components. Here we identify that Synaptojanin, a protein with a known role in synaptic vesicle endocytosis, is phosphorylated at S1029 in vivo by the Minibrain kinase. We further demonstrate that the phosphorylation status of Synaptojanin at S1029 differentially regulates its participation in the recycling of distinct synaptic vesicle pools. Our results reveal a new role for Synaptojanin in maintaining synaptic vesicle pool size and in reserve vesicle endocytosis. As Synaptojanin and Minibrain perturbations are associated with various neurological disorders, such as Parkinson's, autism, and Down syndrome, understanding mechanisms modulating Synaptojanin function provides valuable insights into processes affecting neuronal communication.
Collapse
|
20
|
Sánchez-Mendoza EH, Bellver-Landete V, Arce C, Doeppner TR, Hermann DM, Oset-Gasque MJ. Vesicular glutamate transporters play a role in neuronal differentiation of cultured SVZ-derived neural precursor cells. PLoS One 2017; 12:e0177069. [PMID: 28493916 PMCID: PMC5426660 DOI: 10.1371/journal.pone.0177069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/22/2017] [Indexed: 11/19/2022] Open
Abstract
The role of glutamate in the regulation of neurogenesis is well-established, but the role of vesicular glutamate transporters (VGLUTs) and excitatory amino acid transporters (EAATs) in controlling adult neurogenesis is unknown. Here we investigated the implication of VGLUTs in the differentiation of subventricular zone (SVZ)-derived neural precursor cells (NPCs). Our results show that NPCs express VGLUT1-3 and EAAT1-3 both at the mRNA and protein level. Their expression increases during differentiation closely associated with the expression of marker genes. In expression analyses we show that VGLUT1 and VGLUT2 are preferentially expressed by cultured SVZ-derived doublecortin+ neuroblasts, while VGLUT3 is found on GFAP+ glial cells. In cultured NPCs, inhibition of VGLUT by Evans Blue increased the mRNA level of neuronal markers doublecortin, B3T and MAP2, elevated the number of NPCs expressing doublecortin protein and promoted the number of cells with morphological appearance of branched neurons, suggesting that VGLUT function prevents neuronal differentiation of NPCs. This survival- and differentiation-promoting effect of Evans blue was corroborated by increased AKT phosphorylation and reduced MAPK phosphorylation. Thus, under physiological conditions, VGLUT1-3 inhibition, and thus decreased glutamate exocytosis, may promote neuronal differentiation of NPCs.
Collapse
Affiliation(s)
- Eduardo H. Sánchez-Mendoza
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Victor Bellver-Landete
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Carmen Arce
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Thorsten R. Doeppner
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Dirk M. Hermann
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - María Jesús Oset-Gasque
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Universidad Complutense de Madrid (UCM), Madrid, Spain
- * E-mail:
| |
Collapse
|
21
|
Kehrl J, Althaus JC, Showalter HD, Rudzinski DM, Sutton MA, Ueda T. Vesicular Glutamate Transporter Inhibitors: Structurally Modified Brilliant Yellow Analogs. Neurochem Res 2017; 42:1823-1832. [DOI: 10.1007/s11064-017-2198-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022]
|
22
|
|
23
|
Li W, Suwanwela NC, Patumraj S. Curcumin by down-regulating NF-kB and elevating Nrf2, reduces brain edema and neurological dysfunction after cerebral I/R. Microvasc Res 2015; 106:117-27. [PMID: 26686249 DOI: 10.1016/j.mvr.2015.12.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Oxidation, inflammation, and apoptosis are three critical factors for the pathogenic mechanism of cerebral ischemia/reperfusion (I/R) injury. Curcumin exhibits substantial biological properties via anti-oxidation, anti-inflammation and anti-apoptotic effects; however, the molecular mechanism underlying the effects of curcumin against cerebral I/R injury remains unclear. OBJECTIVE To investigate the effects of curcumin on cerebral I/R injury associated with water content, infarction volume, and the expression of nuclear factor-kappa-B (NF-κB) and nuclear factor-erythroid-related factor-2 (Nrf2). METHODS Middle cerebral artery occlusion (MCAO, 1-hour occlusion and 24-hour reperfusion) was performed in male Wistar rats (n=64) as a cerebral I/R injury model. In the MCAO+CUR group, the rats were administered curcumin (300mg/kg BW, i.p.) at 30min after occlusion. The same surgical procedures were performed in SHAM rats without MCAO occlusion. At 24h post-operation, the parameters, including neurological deficit scores, blood brain barrier (BBB) disruption, water content, and infarction volume, were determined. Brain tissue NF-κB and Nrf2 expression levels were assayed through immunohistochemistry. RESULTS Compared with the SHAM group, BBB disruption, neurological deficit, and increased brain water content and infarction volume were markedly demonstrated in the MCAO group. NF-κB expression was enhanced in the MCAO group. However, in the MCAO+CUR group, the upregulation of Nrf2, an anti-oxidation related protein, was consistent with a significant decline in the water content, infarction volume, and NF-κB expression. CONCLUSION The protective effects of curcumin against cerebral I/R injury reflect anti-oxidation, anti-inflammation and anti-apoptotic activities, resulting in the elevation of Nrf2 and down-regulation of NF-κB.
Collapse
Affiliation(s)
- Wei Li
- International Ph.D. Program in Medical Science, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nijasri C Suwanwela
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suthiluk Patumraj
- Center of Excellence for Microcirculation, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
24
|
Functional Characterization of a Vesicular Glutamate Transporter in an Interneuron That Makes Excitatory and Inhibitory Synaptic Connections in a Molluscan Neural Circuit. J Neurosci 2015; 35:9137-49. [PMID: 26085636 DOI: 10.1523/jneurosci.0180-15.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Understanding circuit function requires the characterization of component neurons and their neurotransmitters. Previous work on radula protraction in the Aplysia feeding circuit demonstrated that critical neurons initiate feeding via cholinergic excitation. In contrast, it is less clear how retraction is mediated at the interneuronal level. In particular, glutamate involvement was suggested, but was not directly confirmed. Here we study a suspected glutamatergic retraction interneuron, B64. We used the representational difference analysis (RDA) method to successfully clone an Aplysia vesicular glutamate transporter (ApVGLUT) from B64 and from a glutamatergic motor neuron B38. Previously, RDA was used to characterize novel neuropeptides. Here we demonstrate its utility for characterizing other types of molecules. Bioinformatics suggests that ApVGLUT is more closely related to mammalian VGLUTs than to Drosophila and Caenorhabditis elegans VGLUTs. We expressed ApVGLUT in a cell line, and demonstrated that it indeed transports glutamate in an ATP and proton gradient-dependent manner. We mapped the ApVGLUT distribution in the CNS using in situ hybridization and immunocytochemistry. Further, we demonstrated that B64 is ApVGLUT positive, supporting the idea that it is glutamatergic. Although glutamate is primarily an excitatory transmitter in the mammalian CNS, B64 elicits inhibitory PSPs in protraction neurons to terminate protraction and excitatory PSPs in retraction neurons to maintain retraction. Pharmacological data indicated that both types of PSPs are mediated by glutamate. Thus, glutamate mediates the dual function of B64 in Aplysia. More generally, our systematic approaches based on RDA may facilitate analyses of transmitter actions in small circuits with identifiable neurons.
Collapse
|
25
|
Changes in VGLUT2 expression and function in pain-related supraspinal regions correlate with the pathogenesis of neuropathic pain in a mouse spared nerve injury model. Brain Res 2015; 1624:515-524. [PMID: 26300222 DOI: 10.1016/j.brainres.2015.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 01/05/2023]
Abstract
Vesicular glutamate transporters (VGLUTs) control the storage and release of glutamate, which plays a critical role in pain processing. The VGLUT2 isoform has been found to be densely distributed in the nociceptive pathways in supraspinal regions, and VGLUT2-deficient mice exhibit an attenuation of neuropathic pain; these results suggest a possible involvement of VGLUT2 in neuropathic pain. To further examine this, we investigated the temporal changes in VGLUT2 expression in different brain regions as well as changes in glutamate release from thalamic synaptosomes in spared nerve injury (SNI) mice. We also investigated the effects of a VGLUT inhibitor, Chicago Sky Blue 6B (CSB6B), on pain behavior, c-Fos expression, and depolarization-evoked glutamate release in SNI mice. Our results showed a significant elevation of VGLUT2 expression up to postoperative day 1 in the thalamus, periaqueductal gray, and amygdala, followed by a return to control levels. Consistent with the changes in VGLUT2 expression, SNI enhanced depolarization-induced glutamate release from thalamic synaptosomes, while CSB6B treatment produced a concentration-dependent inhibition of glutamate release. Moreover, intracerebroventricular administration of CSB6B, at a dose that did not affect motor function, attenuated mechanical allodynia and c-Fos up-regulation in pain-related brain areas during the early stages of neuropathic pain development. These results demonstrate that changes in the expression of supraspinal VGLUT2 may be a new mechanism relevant to the induction of neuropathic pain after nerve injury that acts through an aggravation of glutamate imbalance.
Collapse
|
26
|
Hackett JT, Ueda T. Glutamate Release. Neurochem Res 2015; 40:2443-60. [PMID: 26012367 DOI: 10.1007/s11064-015-1622-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/17/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
Our aim was to review the processes of glutamate release from both biochemical and neurophysiological points of view. A large body of evidence now indicates that glutamate is specifically accumulated into synaptic vesicles, which provides strong support for the concept that glutamate is released from synaptic vesicles and is the major excitatory neurotransmitter. Evidence suggests the notion that synaptic vesicles, in order to sustain the neurotransmitter pool of glutamate, are endowed with an efficient mechanism for vesicular filling of glutamate. Glutamate-loaded vesicles undergo removal of Synapsin I by CaM kinase II-mediated phosphorylation, transforming to the release-ready pool. Vesicle docking to and fusion with the presynaptic plasma membrane are thought to be mediated by the SNARE complex. The Ca(2+)-dependent step in exocytosis is proposed to be mediated by synaptotagmin.
Collapse
Affiliation(s)
- John T Hackett
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908-0736, USA
| | - Tetsufumi Ueda
- Molecular and Behavioral Neuroscience Institute, The University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA. .,Department of Pharmacology, Medical School, The University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Psychiatry, Medical School, The University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
27
|
Risse E, Nicoll AJ, Taylor WA, Wright D, Badoni M, Yang X, Farrow MA, Collinge J. Identification of a Compound That Disrupts Binding of Amyloid-β to the Prion Protein Using a Novel Fluorescence-based Assay. J Biol Chem 2015; 290:17020-8. [PMID: 25995455 PMCID: PMC4505445 DOI: 10.1074/jbc.m115.637124] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 11/20/2022] Open
Abstract
The prion protein (PrP) has been implicated both in prion diseases such as Creutzfeldt-Jakob disease, where its monomeric cellular isoform (PrPC) is recruited into pathogenic self-propagating polymers of misfolded protein, and in Alzheimer disease, where PrPC may act as a receptor for synaptotoxic oligomeric forms of amyloid-β (Aβ). There has been considerable interest in identification of compounds that bind to PrPC, stabilizing its native fold and thereby acting as pharmacological chaperones to block prion propagation and pathogenesis. However, compounds binding PrPC could also inhibit the binding of toxic Aβ species and may have a role in treating Alzheimer disease, a highly prevalent dementia for which there are currently no disease-modifying treatments. However, the absence of a unitary, readily measurable, physiological function of PrP makes screening for ligands challenging, and the highly heterogeneous nature of Aβ oligomer preparations makes conventional competition binding assays difficult to interpret. We have therefore developed a high-throughput screen that utilizes site-specifically fluorescently labeled protein to identify compounds that bind to PrP and inhibit both Aβ binding and prion propagation. Following a screen of 1,200 approved drugs, we identified Chicago Sky Blue 6B as the first small molecule PrP ligand capable of inhibiting Aβ binding, demonstrating the feasibility of development of drugs to block this interaction. The interaction of Chicago Sky Blue 6B was characterized by isothermal titration calorimetry, and its ability to inhibit Aβ binding and reduce prion levels was established in cell-based assays.
Collapse
Affiliation(s)
- Emmanuel Risse
- From the Medical Research Council (MRC) Prion Unit and Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Andrew J Nicoll
- From the Medical Research Council (MRC) Prion Unit and Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom
| | - William A Taylor
- From the Medical Research Council (MRC) Prion Unit and Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Daniel Wright
- From the Medical Research Council (MRC) Prion Unit and Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Mayank Badoni
- From the Medical Research Council (MRC) Prion Unit and Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Xiaofan Yang
- From the Medical Research Council (MRC) Prion Unit and Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Mark A Farrow
- From the Medical Research Council (MRC) Prion Unit and Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom
| | - John Collinge
- From the Medical Research Council (MRC) Prion Unit and Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom
| |
Collapse
|
28
|
Saxena T, Loomis KH, Pai SB, Karumbaiah L, Gaupp E, Patil K, Patkar R, Bellamkonda RV. Nanocarrier-mediated inhibition of macrophage migration inhibitory factor attenuates secondary injury after spinal cord injury. ACS NANO 2015; 9:1492-505. [PMID: 25587936 DOI: 10.1021/nn505980z] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Spinal cord injury (SCI) can lead to permanent motor and sensory deficits. Following the initial traumatic insult, secondary injury mechanisms characterized by persistent heightened inflammation are initiated and lead to continued and pervasive cell death and tissue damage. Anti-inflammatory drugs such as methylprednisolone (MP) used clinically have ambiguous benefits with debilitating side effects. Typically, these drugs are administered systemically at high doses, resulting in toxicity and paradoxically increased inflammation. Furthermore, these drugs have a small time window postinjury (few hours) during which they need to be infused to be effective. As an alternative to MP, we investigated the effect of a small molecule inhibitor (Chicago sky blue, CSB) of macrophage migration inhibitory factor (MIF) for treating SCI. The pleiotropic cytokine MIF is known to contribute to upregulation of several pro-inflammatory cytokines in various disease and injury states. In vitro, CSB administration alleviated endotoxin-mediated inflammation in primary microglia and macrophages. Nanocarriers such as liposomes can potentially alleviate systemic side effects of high-dose therapy by enabling site-specific drug delivery to the spinal cord. However, the therapeutic window of 100 nm scale nanoparticle localization to the spinal cord after contusion injury is not fully known. Thus, we first investigated the ability of nanocarriers of different sizes to localize to the injured spinal cord up to 2 weeks postinjury. Results from the study showed that nanocarriers as large as 200 nm in diameter could extravasate into the injured spinal cord up to 96 h postinjury. We then formulated nanocarriers (liposomes) encapsulating CSB and administered them intravenously 48 h postinjury, within the previously determined 96 h therapeutic window. In vivo, in this clinically relevant contusion injury model in rats, CSB administration led to preservation of vascular and white matter integrity, improved wound healing, and an increase in levels of arginase and other transcripts indicative of a resolution phase of wound healing. This study demonstrates the potential of MIF inhibition in SCI and the utility of nanocarrier-mediated drug delivery selectively to the injured cord.
Collapse
Affiliation(s)
- Tarun Saxena
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine , Atlanta, Georgia 30332, United States
| | | | | | | | | | | | | | | |
Collapse
|
29
|
The antinociceptive effects of intracerebroventricular administration of Chicago sky blue 6B, a vesicular glutamate transporter inhibitor. Behav Pharmacol 2014; 24:653-8. [PMID: 24128751 DOI: 10.1097/fbp.0000000000000007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Accumulating evidence suggests that vesicular glutamate transporters (VGLUTs), which control the storage and release of glutamate, may play a role in pain processing. Chicago sky blue 6B (CSB6B), which is structurally related to glutamate, is a competitive VGLUT inhibitor without affecting plasma membrane transporters. The present study was designed to investigate the antinociceptive effects of CSB6B in a number of pain models. The hot-plate test was used as an acute thermal pain test. Inflammatory pain was evaluated using acetic acid writhing, formalin, and complete Freund's adjuvant tests. Intracerebroventricular administration of CSB6B did not affect acute thermal pain responses in 50 or 55°C hot plate tests. However, CSB6B attenuated acetic acid-induced writhing in a dose-dependent and time-dependent manner. In addition, CSB6B reduced licking/biting behavior during the second phase, but not during the first phase, following an intraplantar injection of formalin. In the complete Freund's adjuvant test, a significant attenuation of thermal hyperalgesia was also observed in CSB6B-treated mice. At antinociceptive doses, CSB6B did not affect mice spontaneous locomotor activity. The present study shows that pharmacological inhibition of VGLUT activity was sufficient to attenuate experimental inflammatory pain and suggests that regulation of VGLUTs might be a novel therapeutic strategy for the treatment of pain.
Collapse
|
30
|
Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion. Cell Rep 2014; 9:661-73. [PMID: 25373904 PMCID: PMC4536302 DOI: 10.1016/j.celrep.2014.09.030] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 08/19/2014] [Accepted: 09/15/2014] [Indexed: 11/29/2022] Open
Abstract
Incretins, hormones released by the gut after meal ingestion, are essential for maintaining systemic glucose homeostasis by stimulating insulin secretion. The effect of incretins on insulin secretion occurs only at elevated glucose concentrations and is mediated by cAMP signaling, but the mechanism linking glucose metabolism and cAMP action in insulin secretion is unknown. We show here, using a metabolomics-based approach, that cytosolic glutamate derived from the malate-aspartate shuttle upon glucose stimulation underlies the stimulatory effect of incretins and that glutamate uptake into insulin granules mediated by cAMP/PKA signaling amplifies insulin release. Glutamate production is diminished in an incretin-unresponsive, insulin-secreting β cell line and pancreatic islets of animal models of human diabetes and obesity. Conversely, a membrane-permeable glutamate precursor restores amplification of insulin secretion in these models. Thus, cytosolic glutamate represents the elusive link between glucose metabolism and cAMP action in incretin-induced insulin secretion. Glutamate is derived from the malate-aspartate shuttle upon glucose stimulation Shuttle-derived glutamate is crucial for incretin-induced insulin secretion Cytosolic glutamate is transported into insulin granules via cAMP/PKA signaling Glutamate production by glucose is defective in incretin-unresponsive β cells
Collapse
|
31
|
Normand A, Rivière E, Renodon-Cornière A. Identification and characterization of human Rad51 inhibitors by screening of an existing drug library. Biochem Pharmacol 2014; 91:293-300. [PMID: 25124703 DOI: 10.1016/j.bcp.2014.07.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 12/21/2022]
Abstract
Homologous Recombination (HR) plays an essential role in cellular proliferation and in maintaining genomic stability by repairing DNA double-stranded breaks that appear during replication. Rad51, a key protein of HR in eukaryotes, can have an elevated expression level in tumor cells, which correlates with their resistance to anticancer therapies. Therefore, targeted inhibition of Rad51 through inhibitor may improve the tumor response to these therapies. In order to identify small molecules that inhibit Rad51 activity, we screened the Prestwick Library (1120 molecules) for their effect on the strand exchange reaction catalyzed by Rad51. We found that Chicago Sky Blue (CSB) is a potent inhibitor of Rad51, showing IC₅₀ values in the low nanomolar range (400 nM). Biochemical analysis demonstrated that the inhibitory mechanism probably occurs by disrupting the Rad51 association with the single-stranded DNA, which prevents the nucleoprotein filament formation, the first step of the protein activity. Structure Activity Relationship analysis with a number of compounds that shared structure homology with CSB was also performed. The sensitivity of Rad51 inhibition to CSB modifications suggests specific interactions between the molecule and Rad51 nucleofilament. CSB and some of its analogs open up new perspectives in the search for agents capable of potentiating chemo- and radio-therapy treatments for cancer. Moreover, these compounds may be excellent tools to analyze Rad51 cellular functions. Our study also highlights how CSB and its analogs, which are frequently used in colorants, stains and markers, could be responsible of unwanted side effects by perturbing the DNA repair process.
Collapse
Affiliation(s)
- Anaïs Normand
- Research Unit UFIP UMR 6286, Centre National de la Recherche Scientifique & University of Nantes, F-44322 Nantes cedex 3, France
| | - Emmanuelle Rivière
- Research Unit UFIP UMR 6286, Centre National de la Recherche Scientifique & University of Nantes, F-44322 Nantes cedex 3, France
| | - Axelle Renodon-Cornière
- Research Unit UFIP UMR 6286, Centre National de la Recherche Scientifique & University of Nantes, F-44322 Nantes cedex 3, France.
| |
Collapse
|
32
|
Inhibition of vesicular glutamate transporters contributes to attenuate methamphetamine-induced conditioned place preference in rats. Behav Brain Res 2014; 267:1-5. [DOI: 10.1016/j.bbr.2014.02.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/19/2014] [Accepted: 02/22/2014] [Indexed: 11/23/2022]
|
33
|
Favre-Besse FC, Poirel O, Bersot T, Kim-Grellier E, Daumas S, El Mestikawy S, Acher FC, Pietrancosta N. Design, synthesis and biological evaluation of small-azo-dyes as potent Vesicular Glutamate Transporters inhibitors. Eur J Med Chem 2014; 78:236-47. [PMID: 24686010 DOI: 10.1016/j.ejmech.2014.03.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/04/2014] [Accepted: 03/17/2014] [Indexed: 12/01/2022]
Abstract
Vesicular Glutamate Transporters (VGLUTs) allow the loading of presynapic glutamate vesicles and thus play a critical role in glutamatergic synaptic transmission. VGLUTs have proved to be involved in several major neuropathologies and directly correlated to clinical dementia in Alzheimer and Parkinson's disease. Accordingly VGLUT represent a key biological target or biomarker for neuropathology treatment or diagnostic. Yet, despite the pivotal role of VGLUTs, their pharmacology appears quite limited. Known competitive inhibitors are restricted to some dyes as Trypan Blue (TB) and glutamate mimics. This lack of pharmacological tools has heavily hampered VGLUT investigations. Here we report a rapid access to small molecules that combine benefits of TB and dicarboxylic quinolines (DCQs). Their ability to block vesicular glutamate uptake was evaluated. Several compounds displayed low micromolar inhibitory potency when size related compounds are thirty to forty times less potent (i.e. DCQ). We then confirmed the VGLUT selectivity by measuring the effect of the series on vesicular monoamine transport and on metabotropic glutamate receptor activity. These inhibitors are synthesized in only two steps and count among the best pharmacological tools for VGLUTs studies.
Collapse
Affiliation(s)
- Franck-Cyril Favre-Besse
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris 06, France
| | - Odile Poirel
- Institut National de la Santé et de la Recherche Médicale (INSERM), U952, Université Pierre et Marie Curie, 9 quai Saint Bernard, 75005 Paris, France; Centre National de la Recherche Scientifique (CNRS) UMR 7224, 9 quai Saint Bernard, 75005 Paris, France; Université Pierre et Marie Curie (UPMC) Paris 06, Pathophysiology of Central Nervous System Disorders, 9 quai Saint Bernard, 75005 Paris, France
| | - Tiphaine Bersot
- Institut National de la Santé et de la Recherche Médicale (INSERM), U952, Université Pierre et Marie Curie, 9 quai Saint Bernard, 75005 Paris, France; Centre National de la Recherche Scientifique (CNRS) UMR 7224, 9 quai Saint Bernard, 75005 Paris, France; Université Pierre et Marie Curie (UPMC) Paris 06, Pathophysiology of Central Nervous System Disorders, 9 quai Saint Bernard, 75005 Paris, France
| | - Elodie Kim-Grellier
- Institut National de la Santé et de la Recherche Médicale (INSERM), U952, Université Pierre et Marie Curie, 9 quai Saint Bernard, 75005 Paris, France; Centre National de la Recherche Scientifique (CNRS) UMR 7224, 9 quai Saint Bernard, 75005 Paris, France; Université Pierre et Marie Curie (UPMC) Paris 06, Pathophysiology of Central Nervous System Disorders, 9 quai Saint Bernard, 75005 Paris, France
| | - Stephanie Daumas
- Institut National de la Santé et de la Recherche Médicale (INSERM), U952, Université Pierre et Marie Curie, 9 quai Saint Bernard, 75005 Paris, France; Centre National de la Recherche Scientifique (CNRS) UMR 7224, 9 quai Saint Bernard, 75005 Paris, France; Université Pierre et Marie Curie (UPMC) Paris 06, Pathophysiology of Central Nervous System Disorders, 9 quai Saint Bernard, 75005 Paris, France
| | - Salah El Mestikawy
- Institut National de la Santé et de la Recherche Médicale (INSERM), U952, Université Pierre et Marie Curie, 9 quai Saint Bernard, 75005 Paris, France; Centre National de la Recherche Scientifique (CNRS) UMR 7224, 9 quai Saint Bernard, 75005 Paris, France; Université Pierre et Marie Curie (UPMC) Paris 06, Pathophysiology of Central Nervous System Disorders, 9 quai Saint Bernard, 75005 Paris, France; Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 boulevard Lasalle Verdun, QC, Canada
| | - Francine C Acher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris 06, France.
| | - Nicolas Pietrancosta
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris 06, France.
| |
Collapse
|
34
|
Omote H, Moriyama Y. Vesicular neurotransmitter transporters: an approach for studying transporters with purified proteins. Physiology (Bethesda) 2014; 28:39-50. [PMID: 23280356 DOI: 10.1152/physiol.00033.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vesicular storage and subsequent release of neurotransmitters are the key processes of chemical signal transmission. In this process, vesicular neurotransmitter transporters are responsible for loading the signaling molecules. The use of a "clean biochemical" approach with purified, recombinant transporters has helped in the identification of novel vesicular neurotransmitter transporters and in the analysis of the control of signal transmission.
Collapse
Affiliation(s)
- Hiroshi Omote
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | |
Collapse
|
35
|
Tamura Y, Ogita K, Ueda T. A new VGLUT-specific potent inhibitor: pharmacophore of Brilliant Yellow. Neurochem Res 2014; 39:117-28. [PMID: 24248859 PMCID: PMC4025951 DOI: 10.1007/s11064-013-1196-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
Abstract
The increased concentration of glutamate in synaptic vesicles, mediated by the vesicular glutamate transporter (VGLUT), is an initial vital step in glutamate synaptic transmission. Evidence indicates that aberrant overexpression of VGLUT is involved in certain pathophysiologies of the central nervous system. VGLUT is subject to inhibition by various types of agents. The most potent VGLUT-specific inhibitor currently known is Trypan Blue, which is highly charged, hence membrane-impermeable. We have sought a potent, VGLUT-specific agent amenable to easy modification to a membrane-permeable analog. We provide evidence that Brilliant Yellow exhibits potent, VGLUT-specific inhibition, with a Ki value of 12 nM. Based upon structure-activity relationship studies and molecular modeling, we have defined the potent inhibitory pharmacophore of Brilliant Yellow. This study provides new insight into development of a membrane-permeable agent to lead to specific blockade, with high potency, of accumulation of glutamate into synaptic vesicles in neurons.
Collapse
Affiliation(s)
- Yutaka Tamura
- Molecular and Behavioral Neuroscience Institute, Medical School, The University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200, USA
| | - Kiyokazu Ogita
- Molecular and Behavioral Neuroscience Institute, Medical School, The University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200, USA
| | - Tetsufumi Ueda
- Molecular and Behavioral Neuroscience Institute, Medical School, The University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200, USA
- Department of Pharmacology, Medical School, The University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Psychiatry, Medical School, The University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
36
|
VGLUTs in Peripheral Neurons and the Spinal Cord: Time for a Review. ISRN NEUROLOGY 2013; 2013:829753. [PMID: 24349795 PMCID: PMC3856137 DOI: 10.1155/2013/829753] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/25/2013] [Indexed: 02/07/2023]
Abstract
Vesicular glutamate transporters (VGLUTs) are key molecules for the incorporation of glutamate in synaptic vesicles across the nervous system, and since their discovery in the early 1990s, research on these transporters has been intense and productive. This review will focus on several aspects of VGLUTs research on neurons in the periphery and the spinal cord. Firstly, it will begin with a historical account on the evolution of the morphological analysis of glutamatergic systems and the pivotal role played by the discovery of VGLUTs. Secondly, and in order to provide an appropriate framework, there will be a synthetic description of the neuroanatomy and neurochemistry of peripheral neurons and the spinal cord. This will be followed by a succinct description of the current knowledge on the expression of VGLUTs in peripheral sensory and autonomic neurons and neurons in the spinal cord. Finally, this review will address the modulation of VGLUTs expression after nerve and tissue insult, their physiological relevance in relation to sensation, pain, and neuroprotection, and their potential pharmacological usefulness.
Collapse
|
37
|
Krueger M, Härtig W, Reichenbach A, Bechmann I, Michalski D. Blood-brain barrier breakdown after embolic stroke in rats occurs without ultrastructural evidence for disrupting tight junctions. PLoS One 2013; 8:e56419. [PMID: 23468865 PMCID: PMC3582567 DOI: 10.1371/journal.pone.0056419] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/09/2013] [Indexed: 12/27/2022] Open
Abstract
The term blood-brain barrier (BBB) relates to the ability of cerebral vessels to hold back hydrophilic and large molecules from entering the brain, thereby crucially contributing to brain homeostasis. In fact, experimental opening of endothelial tight junctions causes a breakdown of the BBB evidenced as for instance by albumin leakage. This and similar observations led to the conclusion that BBB breakdown is predominantly mediated by damage to tight junction complexes, but evidentiary ultrastructural data are rare. Since functional deficits of the BBB contribute to an increased risk of hemorrhagic transformation and brain edema after stroke, which both critically impact on the clinical outcome, we studied the mechanism of BBB breakdown using an embolic model of focal cerebral ischemia in Wistar rats to closely mimic the essential human pathophysiology. Ischemia-induced BBB breakdown was detected using intravenous injection of FITC-albumin and tight junctions in areas of FITC-albumin extravasation were subsequently studied using fluorescence and electron microscopy. Against our expectation, 25 hours after ischemia induction the morphology of tight junction complexes (identified ultrastructurally and using antibodies against the transcellular proteins occludin and claudin-5) appeared to be regularly maintained in regions where FITC-albumin massively leaked into the neuropil. Furthermore, occludin signals along pan-laminin-labeled vessels in the affected hemisphere equaled the non-affected contralateral side (ratio: 0.966 vs. 0.963; P = 0.500). Additional ultrastructural analyses at 5 and 25 h after ischemia induction clearly indicated FITC-albumin extravasation around vessels with intact tight junctions, while the endothelium exhibited enhanced transendothelial vesicle trafficking and signs of degeneration. Thus, BBB breakdown and leakage of FITC-albumin cannot be correlated with staining patterns for common tight junction proteins alone. Understanding the mechanisms causing functional endothelial alterations and endothelial damage is likely to provide novel protective targets in stroke.
Collapse
Affiliation(s)
- Martin Krueger
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
- * E-mail: (MK); (DM)
| | - Wolfgang Härtig
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, Leipzig, Germany
- * E-mail: (MK); (DM)
| |
Collapse
|
38
|
He Z, Yan L, Yong Z, Dong Z, Dong H, Gong Z. Chicago sky blue 6B, a vesicular glutamate transporters inhibitor, attenuates methamphetamine-induced hyperactivity and behavioral sensitization in mice. Behav Brain Res 2012; 239:172-6. [PMID: 23159705 DOI: 10.1016/j.bbr.2012.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/01/2012] [Accepted: 11/05/2012] [Indexed: 10/27/2022]
Abstract
Several lines of evidence demonstrate that glutamatergic system plays an important role in drug addiction. The present study was designed to investigate the effects of Chicago sky blue 6B (CSB6B), a vesicular glutamate transporters (VGLUTs) inhibitor, on methamphetamine (METH)-induced behaviors in mice. Mice were induced behavioral sensitization to METH by subcutaneous injection of 1mg/kg METH once daily for 7 days and then challenged with 1mg/kg METH in 14th day. Intracerebroventricular administration of CSB6B (7.5μg) 2.5h prior to METH was to observe its effects on METH -induced behavioral sensitization. Our results showed that the expressions of behavioral sensitization were significantly attenuated by intracerebroventricular administration of CSB6B 2.5h prior to METH either during the development period or before methamphetamine challenge in mice, while CSB6B itself had no effect on locomotor activity. Meanwhile, pretreatment of CSB6B also attenuated hyperactivity caused by a single injection of METH in mice. These results demonstrated that CSB6B, a VGLUTs inhibitor, attenuated acute METH-induced hyperactivity and chronic METH-induced behavioral sensitization, which indicated that VGLUTs were involved in the effect of chronic METH-induced behavioral sensitization and may be a new target against the addiction of METH.
Collapse
Affiliation(s)
- Zongsheng He
- Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Haidian District, Beijing, China
| | | | | | | | | | | |
Collapse
|
39
|
Bai F, Asojo OA, Cirillo P, Ciustea M, Ledizet M, Aristoff PA, Leng L, Koski RA, Powell TJ, Bucala R, Anthony KG. A novel allosteric inhibitor of macrophage migration inhibitory factor (MIF). J Biol Chem 2012; 287:30653-63. [PMID: 22782901 DOI: 10.1074/jbc.m112.385583] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a catalytic cytokine and an upstream mediator of the inflammatory pathway. MIF has broad regulatory properties, dysregulation of which has been implicated in the pathology of multiple immunological diseases. Inhibition of MIF activity with small molecules has proven beneficial in a number of disease models. Known small molecule MIF inhibitors typically bind in the tautomerase site of the MIF trimer, often covalently modifying the catalytic proline. Allosteric MIF inhibitors, particularly those that associate with the protein by noncovalent interactions, could reveal novel ways to block MIF activity for therapeutic benefit and serve as chemical probes to elucidate the structural basis for the diverse regulatory properties of MIF. In this study, we report the identification and functional characterization of a novel allosteric MIF inhibitor. Identified from a high throughput screening effort, this sulfonated azo compound termed p425 strongly inhibited the ability of MIF to tautomerize 4-hydroxyphenyl pyruvate. Furthermore, p425 blocked the interaction of MIF with its receptor, CD74, and interfered with the pro-inflammatory activities of the cytokine. Structural studies revealed a unique mode of binding for p425, with a single molecule of the inhibitor occupying the interface of two MIF trimers. The inhibitor binds MIF mainly on the protein surface through hydrophobic interactions that are stabilized by hydrogen bonding with four highly specific residues from three different monomers. The mode of p425 binding reveals a unique way to block the activity of the cytokine for potential therapeutic benefit in MIF-associated diseases.
Collapse
Affiliation(s)
- Fengwei Bai
- L2 Diagnostics, LLC, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Budzinski KL, Zeigler M, Fujimoto BS, Bajjalieh SM, Chiu DT. Measurements of the acidification kinetics of single SynaptopHluorin vesicles. Biophys J 2012; 101:1580-9. [PMID: 21961583 DOI: 10.1016/j.bpj.2011.08.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 08/15/2011] [Accepted: 08/19/2011] [Indexed: 11/29/2022] Open
Abstract
Uptake of neurotransmitters into synaptic vesicles is driven by the proton gradient established across the vesicle membrane. The acidification of synaptic vesicles, therefore, is a crucial component of vesicle function. Here we present measurements of acidification rate constants from isolated, single synaptic vesicles. Vesicles were purified from mice expressing a fusion protein termed SynaptopHluorin created by the fusion of VAMP/synaptobrevin to the pH-sensitive super-ecliptic green fluorescent protein. We calibrated SynaptopHluorin fluorescence to determine the relationship between fluorescence intensity and internal vesicle pH, and used these values to measure the rate constant of vesicle acidification. We also measured the effects of ATP, glutamate, and chloride on acidification. We report acidification time constants of 500 ms to 1 s. The rate of acidification increased with increasing extravesicular concentrations of ATP and glutamate. These data provide an upper and a lower bound for vesicle acidification and indicate that vesicle readiness can be regulated by changes in energy and transmitter availability.
Collapse
Affiliation(s)
- Kristi L Budzinski
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
41
|
Borisova T, Krisanova N, Sivko R, Kasatkina L, Borysov A, Griffin S, Wireman M. Presynaptic malfunction: the neurotoxic effects of cadmium and lead on the proton gradient of synaptic vesicles and glutamate transport. Neurochem Int 2011; 59:272-9. [PMID: 21672571 DOI: 10.1016/j.neuint.2011.05.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 05/19/2011] [Accepted: 05/26/2011] [Indexed: 11/17/2022]
Abstract
Exposure to Cd(2+) and Pb(2+) has neurotoxic consequences for human health and may cause neurodegeneration. The study focused on the analysis of the presynaptic mechanisms underlying the neurotoxic effects of non-essential heavy metals Cd(2+) and Pb(2+). It was shown that the preincubation of rat brain nerve terminals with Cd(2+) (200 μM) or Pb(2+) (200 μM) resulted in the attenuation of synaptic vesicles acidification, which was assessed by the steady state level of the fluorescence of pH-sensitive dye acridine orange. A decrease in L-[(14)C]glutamate accumulation in digitonin-permeabilized synaptosomes after the addition of the metals, which reflected lowered L-[(14)C]glutamate accumulation by synaptic vesicles inside of synaptosomes, may be considered in the support of the above data. Using isolated rat brain synaptic vesicles, it was found that 50 μM Cd(2+) or Pb(2+) caused dissipation of their proton gradient, whereas the application of essential heavy metal Mn(2+) did not do it within the range of the concentration of 50-500 μM. Thus, synaptic malfunction associated with the influence of Cd(2+) and Pb(2+) may result from partial dissipation of the synaptic vesicle proton gradient that leads to: (1) a decrease in stimulated exocytosis, which is associated not only with the blockage of voltage-gated Ca(2+) channels, but also with incomplete filling of synaptic vesicles; (2) an attenuation of Na(+)-dependent glutamate uptake.
Collapse
Affiliation(s)
- Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev 01601, Ukraine
| | | | | | | | | | | | | |
Collapse
|
42
|
Omote H, Miyaji T, Juge N, Moriyama Y. Vesicular Neurotransmitter Transporter: Bioenergetics and Regulation of Glutamate Transport. Biochemistry 2011; 50:5558-65. [DOI: 10.1021/bi200567k] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hiroshi Omote
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, Japan
| | - Takaaki Miyaji
- Advanced Science Research Center, Okayama University, Okayama 700-8530, Japan
| | - Narinobu Juge
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, Japan
| | - Yoshinori Moriyama
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, Japan
- Advanced Science Research Center, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
43
|
Miller KE, Hoffman EM, Sutharshan M, Schechter R. Glutamate pharmacology and metabolism in peripheral primary afferents: physiological and pathophysiological mechanisms. Pharmacol Ther 2011; 130:283-309. [PMID: 21276816 DOI: 10.1016/j.pharmthera.2011.01.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 11/25/2022]
Abstract
In addition to using glutamate as a neurotransmitter at central synapses, many primary sensory neurons release glutamate from peripheral terminals. Primary sensory neurons with cell bodies in dorsal root or trigeminal ganglia produce glutaminase, the synthetic enzyme for glutamate, and transport the enzyme in mitochondria to peripheral terminals. Vesicular glutamate transporters fill neurotransmitter vesicles with glutamate and they are shipped to peripheral terminals. Intense noxious stimuli or tissue damage causes glutamate to be released from peripheral afferent nerve terminals and augmented release occurs during acute and chronic inflammation. The site of action for glutamate can be at the autologous or nearby nerve terminals. Peripheral nerve terminals contain both ionotropic and metabotropic excitatory amino acid receptors (EAARs) and activation of these receptors can lower the activation threshold and increase the excitability of primary afferents. Antagonism of EAARs can reduce excitability of activated afferents and produce antinociception in many animal models of acute and chronic pain. Glutamate injected into human skin and muscle causes acute pain. Trauma in humans, such as arthritis, myalgia, and tendonitis, elevates glutamate levels in affected tissues. There is evidence that EAAR antagonism at peripheral sites can provide relief in some chronic pain sufferers.
Collapse
Affiliation(s)
- Kenneth E Miller
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, United States.
| | | | | | | |
Collapse
|
44
|
Borisova T, Sivko R, Borysov A, Krisanova N. Diverse presynaptic mechanisms underlying methyl-β-cyclodextrin-mediated changes in glutamate transport. Cell Mol Neurobiol 2010; 30:1013-23. [PMID: 20502957 DOI: 10.1007/s10571-010-9532-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 05/13/2010] [Indexed: 02/05/2023]
Abstract
The effect of the cholesterol-depleting agent methyl-β-cyclodextrin (MβCD) on exocytotic, transporter-mediated, tonic release, the ambient level and uptake of L-[(14)C]glutamate was assessed in rat brain synaptosomes using different methodological approaches of MβCD application. The addition of 15 mM MβCD to synaptosomes (the acute treatment, AT) immediately resulted in the extraction of cholesterol and in a two times increase in the extracellular L-[(14)C]glutamate level. When 15 mM MβCD was applied to synaptosomes for 35 min followed by washing of the acceptor (the long-term pretreatment, LP), this level was only one-third higher than in the control. The opposite effects of MβCD on tonic L-[(14)C]glutamate release and glutamate transporter reversal were found in AT and LP. Tonic release was dramatically enlarged in AT, but decreased after LP. Transporter-mediated release was increased several times in AT, but attenuated in LP. Depolarization-evoked exocytotic release of L-[(14)C]glutamate was completely lost in AT, whereas after LP, it was decreased by half in comparison with the control. Na(+)-dependent L-[(14)C]glutamate uptake was decreased by ~60% in AT, whereas in LP, it was lowered by ~40% only. The presence of MβCD in the incubation media during AT caused dramatic dissipation of the proton gradient of synaptic vesicles that was shown with the pH-sensitive dye acridine orange, whereas after LP, no statistically significant changes were registered in synaptic vesicle acidification. It was concluded that the diverse changes in glutamate transport in AT and LP were associated with the difference in the functional state of synaptic vesicles.
Collapse
Affiliation(s)
- Tatiana Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev, Ukraine.
| | | | | | | |
Collapse
|
45
|
Abstract
ATP is released from pancreatic acini in response to cholinergic and hormonal stimulation. The same stimuli cause exocytosis of ZG (zymogen granules) and release of digestive enzymes. The aim of the present study was to determine whether ZG stored ATP and to characterize the uptake mechanism for ATP transport into the ZG. ZG were isolated and the ATP content was measured using luciferin/luciferase assays and was related to protein in the sample. The estimate of ATP concentration in freshly isolated granules was 40-120 microM. The ATP uptake had an apparent Km value of 4.9+/-2.1 mM when granules were incubated without Mg2+ and a Km value of 0.47+/-0.05 mM in the presence of Mg2+, both in pH 6.0 buffers. The uptake of ATP was significantly higher at pH 7.2 compared with pH 6.0 solutions. The anion transport blockers DIDS (4,4'-di-isothiocyanostilbene-2,2'-disulfonate) and Evans Blue inhibited ATP transport. Western blot analysis on the ZG showed the presence of VNUT (vesicular nucleotide transporter). Together, these findings indicate that VNUT may be responsible for the ATP uptake into ZG. Furthermore, the present study shows the presence of ATP together with digestive enzymes in ZG. This indicates that co-released ATP would regulate P2 receptors in pancreatic ducts and, thus, ductal secretion, and this would aid delivery of enzymes to the duodenum.
Collapse
|
46
|
Pietrancosta N, Kessler A, Favre-Besse FC, Triballeau N, Quentin T, Giros B, El Mestikawy S, Acher FC. Rose Bengal analogs and vesicular glutamate transporters (VGLUTs). Bioorg Med Chem 2010; 18:6922-33. [PMID: 20708942 DOI: 10.1016/j.bmc.2010.06.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 06/21/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) allow the loading of presynaptic glutamate vesicles and thus play a critical role in glutamatergic synaptic transmission. Rose Bengal (RB) is the most potent known VGLUT inhibitor (Ki 25 nM); therefore we designed, synthesized and tested in brain preparations, a series of analogs based on this scaffold. We showed that among the two tautomers of RB, the carboxylic and not the lactonic form is active against VGLUTs and generated a pharmacophore model to determine the minimal structure requirements. We also tested RB specificity in other neurotransmitter uptake systems. RB proved to potently inhibit VMAT (Ki 64 nM) but weakly VACHT (Ki>9.7 microM) and may be a useful tool in glutamate/acetylcholine co-transmission studies.
Collapse
Affiliation(s)
- Nicolas Pietrancosta
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR8601 CNRS, Université Paris Descartes, 45 rue des Saints-Pères, 75270 Paris 06, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ramoino P, Milanese M, Candiani S, Diaspro A, Fato M, Usai C, Bonanno G. γ-Amino butyric acid (GABA) release in the ciliated protozoon Paramecium occurs by neuronal-like exocytosis. J Exp Biol 2010; 213:1251-8. [DOI: 10.1242/jeb.039594] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SUMMARY
Paramecium primaurelia expresses a significant amount of γ-amino butyric acid (GABA). Paramecia possess both glutamate decarboxylase (GAD)-like and vesicular GABA transporter (vGAT)-like proteins, indicating the ability to synthesize GABA from glutamate and to transport GABA into vesicles. Using antibodies raised against mammalian GAD and vGAT, bands with an apparent molecular weight of about 67 kDa and 57 kDa were detected. The presence of these bands indicated a similarity between the proteins in Paramecium and in mammals. VAMP, syntaxin and SNAP, putative proteins of the release machinery that form the so-called SNARE complex, are present in Paramecium. Most VAMP, syntaxin and SNAP fluorescence is localized in spots that vary in size and density and are primarily distributed near the plasma membrane. Antibodies raised against mammal VAMP-3, sintaxin-1 or SNAP-25 revealed protein immunoblot bands having molecular weights consistent with those observed in mammals. Moreover, P. primaurelia spontaneously releases GABA into the environment, and this neurotransmitter release significantly increases after membrane depolarization. The depolarization-induced GABA release was strongly reduced not only in the absence of extracellular Ca2+ but also by pre-incubation with bafilomycin A1 or with botulinum toxin C1 serotype. It can be concluded that GABA occurs in Paramecium, where it is probably stored in vesicles capable of fusion with the cell membrane; accordingly, GABA can be released from Paramecium by stimulus-induced, neuronal-like exocytotic mechanisms.
Collapse
Affiliation(s)
- P. Ramoino
- Department for the Study of Territory and its Resources (DIP.TE.RIS.), University of Genoa, Corso Europa 26, 16132 Genova, Italy
| | - M. Milanese
- Department of Experimental Medicine, Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | - S. Candiani
- Department of Biology, University of Genoa, Viale Benedetto XV, 16132 Genova, Italy
| | - A. Diaspro
- The Italian Institute of Technology (IIT), Nanophysics Unit, Via Morego 30, 16163 Genova, Italy
| | - M. Fato
- Department of Communication, Computer and System Sciences (DIST), University of Genoa, Viale Causa 13, 16145 Genova, Italy
| | - C. Usai
- Institute of Biophysics, CNR Genoa, Via De Marini 6, 16149 Genova, Italy
| | - G. Bonanno
- Department of Experimental Medicine, Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132 Genova, Italy
- National Institute of Neuroscience, Corso Raffaello 30, 10125 Torino, Italy
| |
Collapse
|
48
|
Cholesterol Depletion from the Plasma Membrane Impairs Proton and Glutamate Storage in Synaptic Vesicles of Nerve Terminals. J Mol Neurosci 2010; 41:358-67. [DOI: 10.1007/s12031-010-9351-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 03/12/2010] [Indexed: 12/14/2022]
|
49
|
Carme Mulero M, Orzáez M, Messeguer J, Messeguer Á, Pérez-Payá E, Pérez-Riba M. A fluorescent polarization-based assay for the identification of disruptors of the RCAN1–calcineurin A protein complex. Anal Biochem 2010; 398:99-103. [DOI: 10.1016/j.ab.2009.10.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 10/20/2022]
|
50
|
Conformationally-restricted amino acid analogues bearing a distal sulfonic acid show selective inhibition of system x(c)(-) over the vesicular glutamate transporter. Bioorg Med Chem Lett 2009; 20:2680-3. [PMID: 20303751 DOI: 10.1016/j.bmcl.2009.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 11/22/2022]
Abstract
A panel of amino acid analogs and conformationally-restricted amino acids bearing a sulfonic acid were synthesized and tested for their ability to preferentially inhibit the obligate cysteine-glutamate transporter system x(c)(-) versus the vesicular glutamate transporter (VGLUT). Several promising candidate molecules were identified: R/S-4-[4'-carboxyphenyl]-phenylglycine, a biphenyl substituted analog of 4-carboxyphenylglycine and 2-thiopheneglycine-5-sulfonic acid both of which reduced glutamate uptake at system x(c)(-) by 70-75% while having modest to no effect on glutamate uptake at VGLUT.
Collapse
|